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Abstract: Under the current water crisis in agriculture, irrigation methods for saving and conserving
water are necessary. However, these methods must guarantee an appropriate yield with a concomitant
economic benefit and a reduced environmental impact. In this study, two irrigation thresholds for
irrigation timing (IT) based on thermal imagery were analyzed with the UNICA potato variety in
three trials under drip (DI) and furrow (FI) irrigation during 2017-2018 in Lima, Peru. The control
(T1) remained at >70% of soil field capacity. For other treatments, thresholds were defined based
on stomatal conductance at light saturation (T2: 0.15 and T3: 0.05 mol H,O m2s 1) and crop
water stress index (T2: 0.4 and T3: 0.6) based on canopy temperature. An integrated index (IIN)
was established for the valuation of treatments using the criteria of high fresh tuber yield (FTY) and
a low total amount of irrigated water, production cost (PC), and total C emissions (TE) and using
criteria of a score. FI-T2 (0.69-0.72) and DI-T3 (0.19-0.29) showed the highest and lowest IIN value,
respectively. FTY in T2 was not significantly reduced under FI, resulting in a lower PC regarding
DI-T2 and emphasizing the usefulness of thermal imagery in determining watering schedules in
potatoes under furrow irrigation systems.

Keywords: crop water stress index; irrigation scheduling; carbon footprint; benefit cost

1. Introduction

Agriculture is regarded as the activity that consumes the highest quantity of fresh
water globally (~70%, [1,2]). Although irrigated agriculture is considered crucial for guar-
anteeing food production [3], improper irrigation management and governance is one
of the leading causes of land degradation, promoting salinization and the reduction of
water productivity in crops [4-6]. The substantial water risk due to agriculture has been
highlighted in the future caused by climate change [7,8], which calls for ways to optimize
water use. Potatoes are the third most crucial edible crop worldwide [9] and are also
considered one of the most effective water use crops because of its higher energy produced
per water volume, which is higher than rice, maize, and other crops [10,11]. Due to its
low carbon emissions and water use, the potato is a highly regarded staple crop. Thus,
potato cultivation replacing other higher GHG emitter crops (such as rice) is considered an
appropriate alternative to mitigate climate change in the future [12]. Concerning irrigated
potatoes, water management through alternate and deficit irrigation [13,14], high-tech irri-
gation, i.e., irrigation techniques that maximize water use by crops and improve irrigation
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timing [15,16], and decision support methodologies to determine how much [17,18] and
when irrigation should occur [19-21] have been substantiated. There are fundamental
advances regarding procedures to schedule irrigation timing using physiological indicators
as thresholds for irrigation scheduling in potatoes. Thus, the early detection of water stress
through cameras with infrared sensors has allowed monitoring of the foliage temperature,
which is associated with stomatal openness in irrigated potatoes [19-23]. For that purpose,
the use of a foliage temperature-based crop water stress index (CWSI) to assess complemen-
tary temperatures associated with maximum and minimum leaf transpiration has allowed
water savings of between 342-516 m3 ha~! [21] using a value <0.4 of CWSI in potato. This
CWEI threshold value depends on the kind of irrigation system. Thus, Silva-Diaz et al. [24]
suggest that furrow irrigation promotes a short-memory mechanism, allowing more strict
thresholds (>0.4) to save water without tuber penalization in comparison to drip irrigation.
Agriculture is one of the most critical worldwide GHG emissions contributors [25,26],
and the necessity to include environmental and social indicators in the assessment of
agricultural practices has been pointed out. Thus, the use of key performance indicators to
achieve “agronomic gain” through improved productivity, resource use efficiency, and soil
health has been recently remarked on by Saito et al. [27]. However, the combination of
agronomic, environmental, and economic indicators is scarce. In potatoes, for example,
besides tuber yield, Qin et al. [15] used C footprint analysis and net return to compare
alternate furrow irrigation against drip irrigation. In this study, trials under drip and furrow
irrigation using CWSI thresholds to establish timing for irrigation were assessed with the
hypothesis that using these thresholds can allow good productivity, water, and money
savings and reduce C emissions compared to conventional irrigation. The study aimed to
compare the timing of scheduled watering treatments (through CWSI) based on agronomic,
environmental, and economic indicators under drip and furrow irrigation systems.

2. Materials and Methods
2.1. Study Description and Experimental Conditions

Three field trials were conducted at the International Potato Center (CIP) and the
National Agrarian University La Molina (UNALM) experimental stations in Lima (12°4’ S,
76°56' W, 244 m.a.s.l.) from 5 July to 10 October 2017 (CIP, Trial A), 5 October 2017 to
15 January 2018 (CIP, Trial B) and 13 June to 13 September 2018 (UNALM, Trial C). The study
area belongs to the central coast of Peru, characterized by an arid desert climate [28] with
19.5 £ 0.91 °C, 81.8 & 1.64%, and 7.1 &= 0.14 mm of average annual temperature, relative
humidity, and rain, respectively (2013-2020 CIP-Meteorological Station; see details in
Table S1). The soil conditions in these trials were a sandy loam texture with organic matter
content, phosphorous, and potassium with ranges between 1.31-1.53%, 14.9-45.9 ppm,
and 197.3-273.2 ppm, respectively. Additionally, the average air temperature, relative
humidity, and solar radiation remained in the ranges of 14.4-23.2 °C, 63.0-96.8%, and
0.99-22.3 MJ m~2 during the three growing seasons. See more details of the meteorological
conditions for Trial A and B-C in Silva et al. [24] and Cucho-Padin et al. [21], respectively.

2.2. Experimental Design and Water Management

The potato cultivar studied was UNICA (CIP code: 392797.22), an early and im-
proved genotype with high-temperature tolerance [29]. Trials A and B were carried out
in 24 plots of 3.6 x 12.5 m? grouped in 2 blocks (14.4 x 62 m? each) under furrow (FI)
and drip irrigation (DI). Trial C consisted of 15 sub-plots of 4.5 x 15.8 m? under DI in
1738.8 m? of total area (the experimental layout is available in the supplementary material
of Silva-Dfaz et al. [24]). Fertility management for Trials A and B consisted of 180, 100, and
160 kg ha=1 of N, P,0s, and K,O, respectively, and Trial C was done through fertigation,
dissolving the fertilizers in 250 L tank using 160, 80, and 180 kg ha~1 as a source of N, P,Os,
and K,O, respectively. Additionally, in Trial C, doses of 60 and 30 kg ha~! were supplied
as CaO and MgO, respectively. The plant density was 3.7 plants m 2 for all the trials, using
120 and 180 plants per plot in Trials A and B and Trial C, respectively. Chemical applications
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for disease-pest controls were applied under an integrated pest management program for
all the trials, such as Rugby 10G (Farmagro, Peru), Trigard 75 WP (Syngenta, Switzerland)
and Movento 150 OD (Bayer AG, Germany), with doses of 10 kg ha=?, 0.15 kg ha~! and
0.50 L ha™!, respectively. Additionally, Vertimec 1.8 EC (Syngenta, Switzerland) and Sun-
fire 24 SC (BASF, Brazil) were applied with doses of 0.5 and 0.25 L ha™!, respectively, for
Trial A and Evisetc-S (Arysta, Cary, NC, USA) and Sorba 50 EC (Farmagro, Peru) with doses
of 0.60 kg ha~! and 0.55 L ha™!, respectively, for Trial B. Ethological controls were realized
by installing yellow and pheromone traps in all trials. Before every irrigation, soil samples
(from 0-0.3 m in depth) were collected randomly in each plot using a soil sampler. Water
content was calculated using the gravimetric method [24]. FI was performed by pumping
groundwater to the furrows with approximately 0.22 m® min~! flow per irrigation. In con-
trast, the DI system of non-pressure compensation consisted of two drip tapes (Aqua-Traxx
PBX, Toro, Bloomington, MN, USA) per furrow (separated 0.35 m) at a distance between
emitters of 0.20 m and using an emitter flow rate of 1.49 & 0.05 L h~! at 0.05 MPa. A motor
pump supplied the water with 1 hp (Venus 33M, ESPA, Banyoles, Spain ) connected to a
polyethylene tank of 5000 L capacity. Both irrigation systems were set up independently
per plot; in FI, the irrigation was carried out by controlling the time of entry of the water
until it filled all the furrows of the plot. DI was carried out by measuring the irrigation time
per plot and using the methodology used by Silva-Diaz et al. [24] to estimate the irrigation
volume per plot.

The assessed treatments were arranged in each block using a completely randomized
block design (see the experimental layout in Silva-Diaz et al. [24]). The control treatment
(T1) consisted of plots under full irrigation, maintaining the soil moisture higher than 70%
of field capacity through periodic samplings of soil moisture in each plot. Two irrigation
timing treatments (T2 and T3) were compared against the control. In Trial A, thresholds of
stomatal conductance (gs_yuqx) of 0.15 and 0.05 mol H,O m~2 s~ were defined as T2 and T3,
respectively. A portable photosynthesis system (LI-6400 XT, LI-COR Biosciences, Lincoln,
NE, USA) configured at 400 ppm of CO,, 500 umol s~! of airflow, 1500 pmol m~2 s~!
of PAR (light saturation point) and 1.1-1.8 kPa of pressure deficit were used for gs ax
inspections. These inspections were realized between 8:00 and 11:00 a.m. on 3 target
(central) plants per subplot and on the apical leaflet of the third young leaf per plant.
Irrigation timing for trials B and C were defined using CWSI thresholds of 0.4 and 0.6.
Canopy temperature was measured using a handheld thermal camera (Model E60, FLIR
Systems Inc., Sweden) covering six target plants in the middle of the assessed plot. CWSI
was calculated using the empirical methods applied to potatoes [19,20,23]. For this, canopy
temperature, dry temperature, and wet surface reference were used for the estimations
following the equation described by Cucho-Padin et al. [21]. The dry temperature was
considered 13 °C and 7 °C above the air temperature acquired from the meteorological
station (HOBO U30 model, Onset Computer Corporation, Bourne, MA, USA) for Trial
B (hot season) and Trial C (wet season), respectively. Finally, the assessment frequency
for gs max in Trial A was monitored every 2 days after tuber initiation onset, occurred at
30 days after planting (start of treatment).

2.3. Agronomic, Environmental and Economic Indicators for Potato Production

The environmental indicator used in this study was total carbon emissions (TE, kg
CO; eq. t’l), which was estimated using the “Cool Farm Tool—Potato” model (CFT-
Potato, version 2), developed by the Sustainable Food Lab [30]. CFT-Potato is based on crop
management information (yield, amountn of seeds, planting and harvest date, fertilizer and
irrigation water applied, and amount of chemical pesticides), soil characteristics, and energy
used [31] (see details in Table S2). The production cost (PC) was used as an economic
indicator, and it was calculated using asset and operation costs for each treatment (including
the cost of fertilizer and pesticides, seeds, water, and labor). Additionally, the benefit-cost
ratio (BCR) was calculated using PC over gross returns [32]. All trials used fresh tuber
yield (FTY, t ha~!) and total irrigated water (IW, m® ha~!) as agronomic indicators.
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2.4. Integrated Index

An integrated index (IIN) was calculated combining all the indicators per trial. Thus,
FTY, IW, TE, and PC were divided into ten parts considering the maximum and minimum
values, and each value was assigned a score from 1 to 10. IW, TE, and PC were inverted,
so IIN obtained higher values with high FTY and low IW, TE, and PC. A last criterion of
importance was introduced for each indicator depending on user preference: unimportant,
moderately important, and highly important, with 1, 2, and 3 weighting importance values,
respectively. IIN was calculated as follows:

IIN = sFTY x WFTY + sPC x wPC + sIW x wlW + sTE x wTE D)

where sFTY, sPC, sIW, and sTE were the score values of FTY, PC, IW, and TE, respectively,
divided by the maximum score (10); wFTY, wPC, wIW, and wTE were the importance
weighting value (1-3) divided by the sum of maximum weightings (12) corresponding to
FTY, PC, IW, and TE, respectively. Seven scenarios were analyzed considering the weighted
importance value for each indicator: (I) 3 for FTY and 1 for all other indicators, (II) 3 for
FTY, 2 for PC, and 1 for all other indicators, (III) 3 for FTY and PC, and 1 for all other
indicators, (IV) 3 for FTY and PC, 2 for IW, and 1 for TE, (V) 3 for FTY, PC and IW, and 1
for TE, (VI) 3 for FTY, PC and IW, and 2 for TE, and (VII) 3 for all the indicators. Different
scenarios represented a transition of the user from considering prioritization based only on
yield (classical agronomic perspective, scenario I) to move for a more sustainable view of
prioritization considering economic and environmental criteria (scenario VII).

2.5. Data Analysis and Statistics

A mixed linear model using PROC MIXED (SAS software version 9.2, SAS Institute
Inc., Cary, NC, USA ) was run to analyze the effect of the irrigation system (IS) and timing
of irrigation treatments (IT) in the used indicators (Section 3.2). IS and IT factors and
trials were considered as fixed and random effects, respectively. The restricted maximum
likelihood (REML) criterion at the convergence method was used (details in SAS [33]).
A principal component analysis (PCA) was run to analyze the weight of the indicators
in the ordination of all the plots under different trials, IS and IT. The components with
eigenvalues >1 (“Kaiser Criterion”, [34]) were selected for the analysis. PCA was conducted
using the R software [35].

3. Results
3.1. Timing Schedule Watering Treatments and Irrigation Systems Effects on Assessed Indicators

The ANOVA showed significant effects of irrigation timing treatments (IT) in all
of the assessed indicators, whereas the interaction IS x IT was significant for IW and
PC (Table 1). The trial’s effect (random factor) did not show significant variations in
most indicators (except FTY, data not shown). IW ranged between 2425.8-4848.8 and
696.0~3470.5 m® ha~! for FI and DI, respectively. On average, FI spent 1878.4, 1447.1, and
889.2 m3 ha—! more IW than DI in T1, T2, and T3, respectively (Figure 1A). The use of water
irrigation thresholds significantly reduced the IW in both irrigation systems (Figure 1A).
FTY ranged between 9.8-58.1 and 12.4-57.7 t ha~! for FI and DI, respectively. FTY showed
an average reduction of 6.3, 1.1 and 28.5% under FI compared to DI in T1, T2 and T3,
respectively (Figure 1B). Under FI, FTY under T1 and T2 was significantly higher than
FTY-T3, and under DI, the use of water irrigation thresholds significantly reduced the
yield (Figure 1B). PC ranged between 6765.7-7371.5 and 8395.4-9986.3 USD ha~! for FI
and DI, respectively. This indicator was 21.2, 22.8, and 24.3% higher under DI than FI
in T1, T2, and T3, respectively (Figure 1C). Additionally, the average BCR values for T1,
T2, T3 were 2.0 £ 0.12, 1.6 £ 0.11, 1.0 + 0.08 and 2.4 & 0.20, 2.1 &+ 0.22, 1.0 &£ 0.11 for DI
and FI, respectively. PC showed significant differences among IT in each IS. TE ranged
between 94.5-1064 and 104.2-737.5 kg CO,-eq t fresh tubers~! corresponding to FI and
DI, respectively (Table 2). The average difference of TE of DI related to Fl was —3.9, +9.1,
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and —184.5 kg COy-eq t fresh tubers~! in T1, T2, and T3, respectively (Figure 1D). T3
showed significantly higher TE values than T1-T2 for both IS. The main source of TE was
fertilizer inputs (33.5-47.2%) in T1-T2 for both IS, followed by seed production (27.4-28.7%)
in T2 and energy use activities (24.7-27.0%) in T1 (Table 2). Regarding T3, it was seed
production (40.1-43.4%) followed by fertilizer inputs (33.7-35.7%). In all treatments, off-
farm transport activity was negligible (<1%).
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Figure 1. Total irrigated water (IW, A), fresh tuber yield (FTY, B), production cost (PC, C), and total C
emissions (TE, D) with treatments under furrow (FI, red bars) and drip (DI, white bars) irrigation
using timing schedule irrigation treatments: control (T1), 0.4 (T2) and 0.6 (T3) thresholds of crop
water stress index (CWSI). Different letters show significant differences among timing schedule water
treatments (T1-T3) under FI (lowercase letters) and DI (capital letters) using the least significant
different (LSD) multiple pairwise comparison test at a 0.05 probability level based on the mixed
linear model.

Table 1. Variance analysis of fixed factors for agronomic (FTY—fresh tuber yield per plot and
IW—total irrigated water), environmental (TE—total emissions carbon footprint), and economic
(PC—production cost) indicators. F-values are presented at p < 0.01 (**), p < 0.05 (*), and p > 0.05 (ns)
of significance. DF: degrees of freedom.

Source DF FTY W TE PC
Irrigation Systems (IS) 1 0.34 ns 421.01 ** 0.75ns 14812.8 **
Irrigation Timing Treatments (IT) 2 4497 ** 304.89 ** 33.36 ** 256.86 **
IS x IT 2 0.52ns 25.72 ** 3.14* 32.96 **
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Table 2. Average total carbon emissions (TE, kg CO, eq. to fresh tubers 1) are divided into different
agricultural activities under drip irrigation (DI) and furrow irrigation (FI) using timing schedule
irrigation treatments: control (T1), 0.4 (T2), and 0.7 (T3) thresholds of crop water stress index (CWSI).
Calculations were made using the Cool Farm Tool [30].

S TE (kg CO,-eq t Fresh Tubers ') TE (%)
ource
DI-T1  DI-T2  DI-T3 FI-T1 FI-T2 FI-T3 DI-T1  DI-T2  DI-T3 FI-T1 FI-T2 FI-T3
Seed production 38.8 60.5 157.1 443 61.6 252.7 24.1 28.7 40.1 23.6 27.4 434
Fertilizers * 70.4 87.8 139.9 794 93.7 196.4 43.7 417 35.7 42.4 417 33.7
Crop protection 11.5 14.3 22.8 124 14.6 30.7 7.1 6.8 5.9 6.6 6.5 53
Energy use (field) 39.8 47.2 70.9 50.6 53.7 100.9 24.7 224 18.1 27.0 239 17.3
Off-farm transport 0.6 0.7 11 0.7 0.8 1.7 0.4 0.3 0.3 0.4 0.4 0.3
Total 161.0 210.4 391.8 187.4 224.5 582.4 100 100 100 100 100 100

* Calculated with validated default values for fertilizer production.

3.2. Interaction of the Indicators and Treatments Valuation Based on the Integrated Index

The extracted components with eigenvalues > 1 represented 94.9% of the total cu-
mulative variance (Table 3). FTY and TE mainly explained the first principal component
(PComp) with positive and negative signs, respectively. In contrast, the second PComp
was represented primarily by PC and IW, with a negative and positive sign, respectively
(Table 2, Figure 2). FI-T2 showed higher values of IIN for scenarios IV-VII (0.52-0.71),
reaching in VII the maximum value of 0.71 in all the scenarios. Additionally, IIN was higher
for FI-T1 with values of 0.42 and 0.50 under scenarios II and III, respectively (Figure 3).
DI-T3 showed lower IIN values (0.19-0.29) in all the scenarios (Figure 3). The treatment
with higher IIN in most scenarios (FI-T2) was in the group of higher FTY and low IW,
TE and PC, whereas DI-T3 treatment with lower IIN in all scenarios was grouped in the
polygon of lower FTY and IW and higher PC and TE (Figure 4).

-0 -08 -06 -04 -02 00 02 04 06 08 10
T T T T T T T 1 L L I L R |
\\ 1o
3 i |
® Trial A | - 08
® Trial B | oEn 1
S| ® Trial C § o - 0.6

| FLT1
|

Comp.2 (41 %)

3 -2 -1 0 1 2 3
Comp.1 (53.9 %)

Figure 2. Drip (DI) and furrow (FI) irrigation under control (T1), 0.4 (T2) and 0.6 (T3) thresholds of
crop water stress index (CWSI), with ordination based on principal component analysis for agronomic
(DTY and IW), environmental (TE) and economic (PC) indicators. See abbreviations in Table 1.
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Figure 3. Average values of the integrated index for each treatment (T1, T2, and T3 for control and
thresholds of 0.4 and 0.6 crop water stress index for irrigation timing) under drip (DI) and furrow (FI)
irrigation for seven scenarios: (I) “highly important” fresh tuber yield (FTY), with other indicators
labeled as “unimportant”, (II) “highly important” FTY and “moderately important” production cost
(PC), with the other indicators labeled as "unimportant”, (III) “highly important” FTY and PC, with
the other indicators labeled as “unimportant”, (IV) “highly important” FTY and PC, “moderately
important” total irrigated water (IW), and “unimportant” total C emissions (TE), (V) “unimportant”
TE, with the other indicators labeled as “highly important”, (VI) “moderately important” TE, with the
other indicators labeled as "highly important”, and (VII) “highly important” for all the indicators.

FTY M DT
% M prT2
W DIT3
|_B=EE|
W FT2
M FT3

TE

Figure 4. Radar diagram illustrating drip (DI) and furrow (FI) irrigation systems under control (T1)
and thresholds of 0.4 (T2) and 0.6 (T3) of the crop water stress index (CWSI) for agronomic (FTY),
environmental (TE), and economic (PC) indicators. See abbreviations in Table 1.
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Table 3. Loading of the first two principal components (PComp) obtained for agronomic (FTY and
IW), environmental (total carbon emissions, TE) and economic (PC) indicators. In gray: scores > 10.71.
TCV = total cumulative variance.

Indicator PCompl PComp2
FTY 0.65 —-0.17
w 0.02 0.76
TE —0.65 -0.17
PC —0.39 —0.61
Eigenvalue 2.16 1.64
TCV (%) 53.9 94.9

See abbreviations in Table 1.

4. Discussion
4.1. High-Tech Irrigation Allowed to Save Water but with Higher Monetary Cost

A range of 1200-1600 m3 ha~! of water saving using DI compared to FI has been
reported in potatoes [15,24,36]. A reduction in N leaching, higher nutrient absorption
and water availability, the removal of salt away from roots, and better soil aeration are
the reported causes of the benefits of DI compared to FI that allowed yielding more with
less water in this crop [37-41]. In this study, DI allowed for 1878.4 and 2337.3 m® ha™!
of water saving under control (T1) and using CWSI < 0.4 as a timing irrigation threshold
(T2), respectively, compared to FI under control (T1). This water saved compromised an
average of —2.8 and 5.9 t ha~! of non-significant tuber yield reduction, which highlights
the potential of this technology for water saving purposes in potatoes. An essential part of
the applied/irrigated water is lost through evaporation, percolation, and runoff. Therefore,
the water used (or consumed) by plants for the transpiration process is considered a better
indicator to assess the effectiveness of the irrigation method [16]. In this sense, water
use efficiency in potatoes based on transpired water for assessing DI as optimum water
technology compared to other technologies is scarce [42]. This aspect (correct method of
water productivity calculus) and a narrow “local” scale are why some authors debate the
effectiveness of “high-tech” technology for water saving [16,43,44]. On the other hand, DI
has been reported as less environmentally and economically friendly than furrow irrigation.
Thus, Qin et al. [15] said that high-tech irrigation promotes 16.5% (+603.2 kg CO,-eq ha=1)
more C footprint emissions than alternate FI. Notwithstanding, this result was partially
confirmed by this study’s findings, with IW and PC being the variables showing the lower
and higher values, respectively, in DI compared with FI (Figures 1 and 4). In contrast,
TE did not show differences between IS in the treatments T1 and T2. The explanation
for this result is that in the study area, FI required energy to pump water from the well
(Section 2.2). The global average TE value in this study under T1 (95.7-282.0 kg CO»-eq
t fresh tubers~!) was in the range of the reported for potato under optimum conditions
(41-330 kg CO»-eq Mg fresh tubers~!; [15,45-50]) (Table 2). Our findings are similar to
other potato studies [45,47-52], where fertilizers were the most important source of C emis-
sions for treatments T1-T2 in both IS. In our case, an intensive application was necessary
due to the study area’s low soil fertility level and organic matter (Table S2). In contrast,
in T3, seed production becomes more important due to tuber yield penalization [45]. In this
sense, tuber yield is considered the most influential parameter of C emissions with an
inverse effect [45], which was also corroborated in this study (Figure 2, Table S3). Thus,
Sandafia and Kalazich [48] remark that around 1.4 kg CO,-eq is reduced with the increase
of 1t ha™! of fresh tuber yield by analyzing different potato systems. Because irrigation
timing using 0.05 mol HyO m~2 57! of g5 juax or 0.6 of CWSI as thresholds (T3) poses pho-
tosynthetic impairment in potatoes [24], it promoted a critical tuber yield reduction with a
concomitant TE increase.

The overall average PC values in this study under T1 and T2 (6844.5-9986.3 USD ha~!)
were in the range above that reported for potatoes under optimum conditions. Most studies re-
ported a PC value greater than 900, ranging between 906.0 and 5961.5 USD ha~! [15,32,53-61].
However, some studies reported PC values above 7000 USD ha~! [62,63] with an average of
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approximately 3400 USD ha~!. The high PC values found in this study were because the
experimental trials were carried out in stations where all the components were considered,
including irrigation water, fertilizer, machinery, agrochemicals, and seeds. On the other
hand, it was found that PC values were higher in DI compared to FI due to the irrigation
system used. Additionally, most studies reported a BCR value greater than 1 ranging
between 1.2-2.7 [15,53-56,62]. The trend in BCR values (higher in T1 and lower in T3)
coincides with the literature where BCR decreases when less water is applied [55,58].

4.2. Irrigation Timing Based on Thermal Imagery Improved Most Indicators under
Furrow Irrigation

A CWE6I value of 0.4 as a threshold to establish timing irrigation under FI provided
the higher IIN in the scenarios where users considered moderately important and highly
important economic (PC) and environmental indicators (IW, TE) for prioritization beyond
yield production (Figure 3). Although there are studies where tuber yield, water used
quantification, carbon footprint, and economic indicators were measured [47,49,50,64], they
usually are used individually to analyze agricultural sustainability. To our knowledge,
this study is the first to propose an integrated index combining all the indicators that
allows performing a holistic assessment of technologies depending on the user preferences
(scenarios) in potatoes. The weighting method of the proposed IIN in this study (as in
Shi et al. [65] for maize) has the advantage of a more straightforward calculation than other
more complex indexes (fuzzy logic) reported for maize [66]. On the other hand, it has been
highlighted that the threshold values for irrigation based on thermal imagery depend on
the IS in potatoes [21]. Although the plant water delivery under Fl is less efficient than DI,
in which water is supplied directly to the root zone, the former allows potatoes to resist
under more demanding thresholds, saving higher water quantities without significant
tuber reductions [24]. These authors hypothesized short-term water memory is potentially
activated under FI as a mechanism to improve water restriction tolerance. Because of
its lower cost, FI is more accessible to small farmers in developing countries. They can
use it under different methods of water management in potatoes, e.g., supplemental
irrigation [52,67,68], deficit irrigation [69], alternate irrigation [13,14,70,71], and the use of
homemade siphons [72], among others. Qin et al. [15], comparing alternate FI and DI, found
that the former could save the same water quantity as DI with no tuber yield penalization,
less monetary investment, and lower carbon emissions. Water management methods under
FI and the use of canopy temperature require an extra cost investment related to labor and
equipment that must be considered in the cost analysis in the future. Regarding the use of
thermal imagery for canopy temperature assessments, some cameras adapted to a cellphone
with an app for image segmentation can reduce the cost from 7000 to 250 USD [73,74]. Thus,
infrared temperature sensors allow measuring canopy temperatures with high temporal
precision at a reduced price [75]. In addition, due to the fact that canopy temperature
is highly associated with drought stress and crop yield [18,20], CWSI maps retrieved by
thermal imagery from unmanned aerial vehicle (UAV) can be used to optimize resources
such as water, reducing cost production and keeping high yields [76]. On the other hand,
to obtain higher scales, remote sensing technology through UAV or satellite-based thermal
imagery through the training of algorithms using artificial intelligence is being used to
estimate CWSI in crops [77,78]. This technology can be used in irrigated systems that have
suffered from improper water management and governance, such as the Nile basin, where
water productivity has been lost because of improper irrigation and water waste [4-6].

5. Conclusions

The irrigation system that allowed the optimization of the agronomic, economic,
and environmental indicators for potatoes in this study consisted of using thermal imagery
to establish the timing to schedule FI. CWSI thresholds < 0.4 allowed an appropriate
yield and reduced the production cost of benefits, the amount of irrigated water used,
and the C footprint under FI, demonstrating its usefulness in establishing water saving
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technologies in potato-irrigated systems. It is necessary to use thermal cameras assembled
on UAVs to estimate CWSI in different zones, allowing precise irrigation through the
recommended CWHSI threshold in this study to optimize the use of water at larger spatial
scales. After appropriate downscaling analysis and adjustments, satellite information was
found to be a promising method for CWSI analysis in regional irrigation systems in the near
future. The proposed index (Equation (1)) can be used for prioritization schemes to assess
water management technologies, including agronomic, economic, and environmental
indicators. Incorporating other indicators such as soil health will be necessary for assessing
the recently called “agronomic gain” (i.e., “improvement in key performance indicators
related to sustainability, productivity, and environment, through of agronomic practices
and social contexts”; Saito et al. [27]) in studies related to water-saving technologies in
this crop.
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