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Abstract: Melon is an important horticultural crop worldwide. The high diversity of melon makes it
a model plant for various different properties. Some quantitative trait loci or candidates have been
discovered, but few were verified as limiting genetic transformation and genome editing systems.
Identifying new genetic resources with resistance and special fruit quality traits is imperative to
develop effective and useful breeding technologies in melon. This review describes the advances in
genetics, genomics, and the breeding of melon and puts forward some recommendations in these
areas.
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1. Introduction

Melon (Cucumis melo L.), an important crop in the Cucurbitaceae family, is cultivated
worldwide, with more than 28 million tons produced in 2020 (United Nations Food and
Agriculture Organization (FAO) statistics). It is highly diverse in fruit type and other
properties, such as fruit size, peel and flesh color, and flavor [1]. Based on ovary pubescence,
melon has been classified into two subspecies, C. melo subsp. melo (hereafter as melo) and C.
melo subsp. agrestis (hereafter as agrestis). The two subspecies can be further divided into 16
groups or varieties, five in agrestis and eleven in melo [2]. Recently, the melon was described
as 19 groups of wild, feral, and domesticated melons, and some of them of sub-groups [3].
The diversity in phenotype and genetics of melon make it feasible as a model cucurbit for
studying sex expression [1,4] and flower and fruit development [4–6].

The previous researchers have identified a few accessions with resistance or special
characters, and several elite varieties developed using these accessions. In addition, some
quantitative trait loci or candidates for important characters in melon have been discovered.
Furthermore, next-generation sequencing technologies in the past years have allowed
unprecedented access to draft genome sequences for the main crops and plants. Since
the first melon genome sequence was released [7], more and more data from divergent
genotypes by de novo sequencing and re-sequencing have become available. The advances
in genetics and genomics in melon have accelerated the development of melon breeding.
This paper will review the advances in genetics, genomics, and breeding in melon.

2. The Genetic Maps and Genetics of Related Characters in Melon

Dissecting the genetic base of characters is the foundation for utilizing germplasm
innovation and breeding. In previous studies, several genetic and physical maps were
conducted, and considerable genetic research on agronomic characteristics of melon was
performed, including sex determination, fruit quality, fruit development, and resistance.
The main QTLs and genes for melon reported in previous research are discussed in detail
below (Table 1).
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2.1. Genetic Map

Considerable melon genetic maps have been reported since the first melon genetic
linkage map constructed in 1991 [8] based on relatively few markers as amplified fragment
length polymorphisms (AFLPs) [9], random amplified polymorphic DNA (RAPD) [10]
and simple sequence repeats (SSRs) [11]. Then, the first consensus linkage map for melon
was integrated under the International Cucurbit Genomics Initiative (ICuGI) framework,
including the position of QTLs related to important agronomic traits [12]. However, due to
the position of ICuGI markers in the genome remaining unknown and different marker
sets used, it is essential to develop an integrated genetic map with the physical position of
different makers after the melon genome was released in 2012 [7]. Diaz et al. [13] integrated
a total of 1850 previously reported markers in the genome sequence, which has been
used as a reference genetic map for research. In recent years, with the development of
next-generation sequencing (NGS), high-resolution genetic maps have been constructed
using single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing (GBS) and
re-sequencing data for melon [7,14–18].

2.2. Genetics of Related Characters in Melon
2.2.1. Sex Expression

Melon is considered the model plant for studying sex determination [1,4]. The flowers
of melon can be divided into male flowers, female flowers, and bisexual flowers. Based
on the distribution and ratio of different flowers on the same plant, gynoecy, androecy,
hermaphrodite, monoecy, and andromonoecy were classified as melon [19]. In melon,
sex determination is governed by two major genes, andromonoecious (a) and gynoecious
(g), which correspond to CmACS-7 and CmWIP1 [20,21], respectively. The dominant G
allele governs the production of a separate male flower by suppressing carpel develop-
ment [19,21]. In contrast, a gene encoding an ACC synthase inhibits the development of the
male organs in female flowers [20]. The transition between monoecy and andromonoecy
is conferred by a single substitution in CmACS-7, which leads to an inactive form of this
key enzyme (1-aminocyclopropane-1-carboxylic acid synthase) in the ethylene biosynthe-
sis [20]. Monoecious (A-G-) and andromonoecious (aaG-) individuals bear male flowers
on the main stem and female or hermaphrodite flowers on axillary branches, respectively,
whereas gynoecious (AAgg) and hermaphrodite (aagg) individuals only bear female and
hermaphrodite flowers, respectively [20]. Additionally, a third locus having the recessive
m allele (CmACS11) is essential for the production of stable gynoecious phenotypes [22].
However, sex expression in melon is quite plastic and collectively determined through
mutual interaction of the hormonal, environmental, and development aspects [19].

This plasticity requires signal perception/integration, changing gene expression in
response to those signals, and then the maintenance of that response until conditions
change again [23]. Epigenetic mechanisms provide a molecular memory that underpins the
maintenance phase of these responses. The perception of the sex-determinative signals and
their translation at the product level in flowers or plants might have been regulated by some
epigenetic mechanisms [4] and have been described previously [24]. In the gynoecious
genotype, the transition from male to female flowers results from epigenetic changes in
the CmWIP1 promoter caused by the insertion of a transposon, Gyno-hAT [21,24]. The
female-promoting gene, CmACS11, represses the expression of the male-promoting gene
CmWIP1 via the deposition of H3K27me3 [4]. The genes of ACS7, ACS11, and WIP1, in
an epistatic or hypostatic manner, along with the recruitment of H3K9ac and H3K27me3,
determine sex expression epigenetically [19].

2.2.2. Sugar Content

The sensory quality of fruit is largely determined by its sugar and organic acid levels,
in addition to the volatile aromatic components. Sugar content is not only the major
determinant of both fruit quality and consumer acceptance. Still, it is also a primary target
for crop improvement in melon [25], mainly comprised of sucrose, glucose, and fructose.
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Significantly, the increase in total sugar content in mature melon fruit is particularly due
to sucrose accumulation during the final stages of fruit development. As sucrose is the
dominant factor in sugar content, understanding the molecular mechanisms involved in
the process of sucrose accumulation is essential for possible genetic improvements.

The metabolic pathway of sucrose accumulation was involved in nearly 20 enzymes,
especially invertases (INV), sucrose synthase (SS), and sucrose phosphate synthase (SPS),
and the balance between sucrose breakdown and sucrose synthesis activities was con-
sidered the crucial factor in final sucrose accumulation. Forty-two genes encoding the
enzymatic reactions of the sugar metabolism pathway in melon were reported [26]. There
has been some progress in studying the genetic control of sugar accumulation. Burger
et al. [27] considered that a single major gene, suc, controls sucrose accumulation. However,
Harel-Beja et al. [28] reported six significant QTLs on chromosomes 2, 3, 5, and 8 for sugar
content. Diaz et al. [12] further developed a consensus linkage map of melon combining
the previously reported QTLs from 18 mapping experiments, which consisted of more
than 10 QTLs for Brix, sugars, and sucrose. Though many QTLs have been reported, few
candidate genes have been identified. Recently, three important clusters related to sugar
content have been identified, of which a major QTL, SUCQSC5.1, reducing soluble solids
content (SSC) and sucrose content was detected, and MELO3C014519 was considered as
the candidate gene [25]. Additionally, some new different-expression genes responsible
for the sucrose content were detected for melon, such as CmINH3, CmTPP1, and CmTPS5,
CmTPS7, CmTPS9 [29]. Sugars are synthesized in mesophyll cells and translated into the
other parts of the plant, particularly sink organs in plants. Therefore, sugar accumulation
in melon fruit depends not only on sugar synthesis but also on sugar transport. Three
tonoplast sugar transporters (TSTs), CmTST1, CmTST2, and CmTST3, were isolated from
melon, but only CmTST2 plays an important role in sugar accumulation in melon fruit [30].
The considerable QTLs for sugar content detected in melon fruit is probably due to the
diverse backgrounds in these research or the complex metabolic pathways in sugar. It is a
challenge to discover and functionally validate the major QTLs or crucial genes for sugar
accumulation and transportation.

2.2.3. Acidity

Acidity is a major determinant of the taste and quality of most fruits, in combination
with sugars and flavor volatiles. Melon is fairly unique among fleshy fruit in that they have
very low acidity besides a few varieties [31]. Fruit acidity is due to the presence of organic
acids, and malic and citric acids are the main acids found in most ripe fruits, measured
by titratable acidity and PH. In melon, citric acid is the predominant organic acid present
throughout fruit development and is positively correlated with titratable acidity [32].

A single dominant locus for the sourness or acidity of melon flesh was identified
based on different populations and termed So or PH [28,31,33,34], which encodes a trans-
membrane transporter [35]. Surprisingly, the nucleosides adenosine and the major organic
acids citrate and malate in melon fruits were detected. The PH protein harboring in the
endoplasmic reticulum may indirectly play a role via modification of a proton gradient
or nucleoside and acid metabolism [35]. A 12-bp insertion was detected occurring in
non-acidic melon accessions of the melo group but not consistent in the agrestis group.
Intriguingly, MELO3C011482, which encodes ATP-citrate synthase, was identified on chro-
mosome 3 in the agrestis group [36]. The results also support the hypothesis that the melo
and agrestis groups were domesticated independently.

2.2.4. Peel Color

Peel color is an important fruit quality trait that influences the choice of the consumer
and the acceptability of the melon [37]. The primary peel colors of commercial melons are
green, white, or yellow, which are conferred by distinct pigments accumulation, mainly by
switching from green rind containing chlorophyll to various peel colors possessing kinds
of combinations of chlorophylls, carotenoids, and flavonoids [38,39].
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Green peel is a dominant epistatic to non-green (white and yellow) peel by analyzing
an F2 segregating population from a cross between green peel and yellow peel lines [36].
The candidate gene MELO3C003375 on chromosome 4 was detected associating with green
peel formation of melon and fruit pigment accumulation in watermelon [40]. In fact, besides
the primary color, the secondary color of the mature fruit is also present in some special
melon accessions, such as speckles, stripes, and spots. Recently, two dominant epistatic
genes (CmMt1 and CmMt2) for mottled peel and one gene (st3) for striped peel were
reported. CmMt1 and CmMt2 could control the content of chlorophyll and the different
ratios in chlorophyll accumulation conjointly. Interestingly, CmMt1 has been confirmed
as MELO3C003375 [41], and the position of st3 harboring on the chromosome is close
to MELO3C003375 [42], which was suggested that MELO3C003375 plays a central role
on regulating the accumulation of pigment. We also detected a gene (MELO3C003097)
encoding the protein SLOW GREEN 1, which is required for chloroplast development on
chromosome 8 and is associated with the green peel trait and maybe a minor gene involved
in the formation of rind color [36]. Naringenin chalcone, a kind of yellow flavonoid pigment,
was found to be one of the major pigments infecting the melon rind color in ‘canary yellow’
type melons [37], which is independent of carotenoids and chlorophyll pigments [38].
Additionally, CmKFB, a kelch domain-containing F-box protein-coding gene located on
chromosome 10, has been identified to be a negative regulator for naringenin chalcone
accumulation [37].

Many genes controlling the rind color have been identified, and the genetic mechanism
is complex. The functional verification of these genes and their application in breeding
remains to be developed.

2.2.5. Flesh Color

Flesh color is one of the most important traits of melon. The different flesh colors not
only affect the preference of consumers but also mean different nutrients. The primary flesh
colors in commercial varieties contain orange, white and green, largely governed by two
major genes, white flesh (wf ) and green flesh (gf ). Orange flesh is determined by Gf and is
dominant to green flesh (gf ). Fruit with the genotype of gfgf has either green (Wf -) or white
flesh (wfwf ) [43]. Recently, the two major genes for flesh color in melon were identified.
The candidate gene CmOr associated with carotenoid accumulation in melon fruit flesh
was discovered, which is identical to the previously described gf locus [44]. Combining the
QTL with GWAS results, a 96-kb overlapping interval containing 11 protein-coding genes
was detected [36]. However, a previously reported candidate gene MELO3C003069 for Wf
is 202 kb away from the 96-kb interval, and thus MELO3C003097 was considered a strong
candidate for the Wf locus [35,45].

2.2.6. Resistance to Abiotic and Biotic Stresses in Melon

Plants suffer from abiotic and biotic stresses frequently during their development. The
occurrence of powdery mildew, downy mildew, fusarium wilt, gummy stem blight, virus,
and aphis gossypii reduce melon yield and quality worldwide [46]. Much research has been
conducted on the genetics of resistance to abiotic and biotic stresses in melon.

Powdery Mildew

Powdery mildew (PM) caused by Podosphaera xanthii and Golovinomyces cichoracearum
is an important foliar disease in melon, which includes seven races of Podosphaera xanthii
and two of Golovinomyces cichoracearum [47–52]. The diverse climatic conditions result
in differentiation in the dominant physiological race of powdery mildew around the
world. Several QTLs associating resistance to different races of powdery mildew have been
identified from the different resistant accessions in previous research, including Pm-1 from
PMR 45 [53], Pm-2 from PMR 5 and PMR 6 [54], Pm-3 and Pm-6 from PI 124111F [55], Pm-4
and Pm-5 from PI 124112 [55,56], Pm-w from WMR 29 [57], Pm-x from PI 414723 and Pm-y
from VA 435 [8], Pm-R from TGR-1551 [57], PmV.1 and PmXII.1 from PI 124112 [47], BPm12.1
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from MR-1 [58], PmEdisto47–1 from Edisto47 [52], Pm-2F from K7–1 [59]. The different
results obtained in inheritance patterns and QTL mapping may be due to the diverse
physiological races of powdery mildew and resistant accessions used. Unfortunately, there
are not so many functional genes reported so far.

Gummy Stem Blight

Gummy stem blight (GSB) is one of the most serious diseases causing enormous losses
to melon production worldwide [60]. In previous studies, genetic analyses have explored
several independent GSB resistance loci from diverse cultigens of melon. The first resistant
gene for GSB, Gsb-1, was reported to be a monogenic dominant locus in PI 140471 [61]. The
other four resistant genes, Gsb-2, Gsb-3, Gsb-4, and Gsb-5, were considered to govern the
resistance of PI 157082, PI 511890, PI 482398, PI 482399 to GSB, respectively [62]. Globally,
the previous studies suggested GBS is governed by a single gene in each of the resistant
melon accessions. Gsb-1, Gsb-2, Gsb-3, Gsb-4 and Gsb-6 are dominant loci, except for Gsb-
5 [63–65]. In addition to MELO03C012987, few candidates were identified through several
loci reported [66].

Fusarium Wilt

Fusarium wilt (FW) caused by Fusarium oxysporum (Fom) is one of the destructive
soil-borne diseases resulting in economic damage in a large number of melon-producing
countries [67]. Four races of Fom have been described in melon: 0, 1, 2, and 1, 2 based on
resistance genes. Genetic studies on the inheritance of resistance to the different races of
Fom have been described in previous studies [68,69]. Fom-2 was identified and considered
as the locus conferring resistance to Fom races 0 and 1 [70]. Fom-1 locus was mapped and
conferred as resistance to race 2 [71]. Fom-4 conferred resistance to races 0 and 2 and was
found to be a recessive gene closely linked to Fom-1 [72]. Interestingly, Fom-3 was found
to control resistance to races 0 and 2, and it is possible allelism with Fom-1 [73]. Recently,
another single dominant gene for FW resistance and defined as Fom-5 [74]. Fom-1, Fom-2,
Fom-3 and Fom-5 are four single dominant genes associated with FW resistance besides
Fom-4.

Virus Disease

Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus (ZYMV), Cucumber green
mottle virus (CGMV), and Melon necrotic spot virus (MNSV) is the main virus diseases in
melon [75–77]. To date, around 200 viral-resistant genes have been found, of which more
than half are recessive genes, part of the recessive genes encoding eukaryotic translation
initiation factors (eIF) that control the viral resistance in melon [78–80]. The Cm-eIF4E
knockdown melon plants possess resistance to MNSV, ZYMV, Cucumber vein yellowing
virus (CVYV), and Moroccan watermelon mosaic virus (MWMV) [77]. The resistance to CMV
in melon accession PI 161375 is governed by one gene and at least two quantitative trait
loci [81]. The major gene CmVPS41 was reported as a general gatekeeper for resistance
to CMV phloem entry in melon [82]. ZYMV resistance in melon PI 414723 is controlled
by a dominant allele at the Zym locus [83]. Nucleotide-binding leucine-rich-repeat (NB–
LRR) genes are one vital resistance (R) gene in melon and have been found to resist many
diseases and insect pests [84]. Vat belonging to an NBS-LRR gene is considered the aphid
resistance gene [85]. Most NB-LRR genes are specialized in resistance. However, plant
disease resistance is easily lost with the mutation of pathogenic bacteria [85]. Therefore,
exploring and cloning disease resistance genes with a broad spectrum will be an important
part of the research of NBS disease resistance genes.

Abiotic Stress

Salinity, drought, and temperature extremes are the main abiotic in melon. Abiotic
stress tolerance is complex because the sensitivity of many crops to a particular abiotic
stress varies depending on their developmental stage. Therefore, the mechanisms of



Agronomy 2022, 12, 2891 6 of 13

resistance or tolerance to abiotic stress are poorly understood. Compared to biotic stresses,
the genetics of abiotic stress tolerance have been paid little attention in melon. The genetics
of abiotic stresses in melon potassium is a major factor in resistance to salinity. Shaker-like
K+ outward rectifying channel (SKOR) is participated in the long-distance distribution
of K+ from roots to the upper parts of the plant [86]. The previous study indicated that
CmSKOR might play a role in distributing K+ to the shoot in melon and improving saline
tolerance in Arabidopsis [87]. CmLOX10 is crucial in regulating tolerance to drought in
melon seedlings by promoting JA accumulation and stomatal closure [88]. Both CmLOX08
and CmCADs were considered the key players in abiotic stress responses, including drought
and salt [89,90]. CmNCED3 plays a crucial role in low-temperature stress response, besides
drought and salt stresses [91].

Table 1. The main QTLs and genes for melon were reported in previous research.

Traits QTLs or Gene Chromosome Function of QTLs and Genes Reference

Sex expression
CmACS-7 (a) 2 Inhibiting stamen development of female

flowers [20]

CmWIP1 (g) 10 Suppressing female [21]

CmACS11 3 Negatively regulating expression of
CmWIP1 [22]

Sugar content SUCQSC5.1 5 Sucrose metabolism [25]
suc Sucrose metabolism [27]

Acidity PH 8 Flesh acidity [35]

Peel color
MELO3C003375 4 Green peel [40]

CmKFB 10 Yellow peel color [37]

Flesh color
CmOr 9 Orange flesh color [44]

MELO3C003097 8 White and green flesh color [36]

Powdery mildew

Pm-1 9 Resistance to P. xanthii race 1 [53]
Pm-2 - Conferring resistance to PMR 5 and PMR 6 [54]
Pm-3 - Conferring resistance to PI 124111F [55]
Pm-4 5 Conferring resistance to PI 124112 [55]
Pm-5 5 Conferring resistance to PI 124112 [56]
Pm-w 5 Resistant to races 1 and 2 [57]
Pm-x - Resistant to race 2F [8]
Pm-y 12 Resistant to P. xanthii race 2 [8]
Pm-R 5 Resistant to races 1, 2, and 5 [57]

PmV.1 and PmXII.1 12 Conferring resistance to PI 124112 [47]
BPm12.1 12 Resistant to P. xanthii race 1 [58]

PmEdisto47–1 2 resistance to P. xanthii race 1 [52]
Pm-2F 2 Resistant to P. xanthii race 2F [59]

Gummy stem blight

Gsb-1 1 Conferring resistance to PI 1401471 [61]
Gsb-2 - Conferring resistance to PI 157082 [62]
Gsb-3 - Conferring resistance to PI 511890 [62]
Gsb-4 - Conferring resistance to PI 482398 [62]
Gsb-5 - Conferring resistance to PI 482399 [62]

Fusarium wilt

Fom-1 9 Resistance to race 2 [71]
Fom-2 11 Resistance to race 0 and 1 [70]
Fom-3 - Resistance to races 0 and 2 [73]
Fom-4 - Resistance to race 0 and 2 [72]

Virus disease
Cm-eIF4E 12 Resistance to virus [77]
CmVPS41 12 Resistance to CMV [82]

Aphis gossypii Vat 5 Resistance to aphid [85]

Abiotic stress

CmSKOR 9 Tolerance to salt [87]
CmLOX10 5 Tolerance to drought [88]
CmLOX08 10 Tolerance to drought and salt [89]
CmCADs - Tolerance to drought and salt [90]

CmNCED3 7 Tolerance to drought, salt, and low
temperature [91]
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3. Genomics of Melon

The reference genome containing the whole genome sequence is the premise for
genomics research and the utilization of plants. The first reference genome (Version 3.5) of
melon with 375 Mb total length and 27,427 protein-coding genes was released in 2012, which
was derived from a double-haploid line by crossing two phylogenetically distant melon
cultivars from melo and agrestis [7]. However, the ratio of oriented scaffold assembly of just
80.8% in the first released melon genome limits its application. Subsequently, the quantity
of anchored and oriented melon scaffold genome assembly was significantly improved by
targeted SNP selection and defined as version 3.5.1 [92]. In order to update the previous
annotation version 3.5.1, an improved assembly (Version 3.6.1) of the melon genome and
new genome annotation (Version 4.0) were reported, which corrected the order and the
orientation of 21 previous scaffolds and identified 8000 new genes [93]. Further, Castanera
et al. [94] improved the melon genome assembly (version 4.0) with the PacBio single-
molecule real-time (SMRT) sequencing technology, reduced the unassigned sequences
substantially, made a great effort to distinguish new gene or transposon variants related to
important phenotypes. Recently, several melon genome assemblies by de novo sequencing
were published based on genetically diverse individuals, which provide insights into
genome structures, genome evolution, diversification, and identified candidate genes
for several agronomic traits of melon [95–97]. Structural variation (SV), including copy
number variation (CNV) and presence/absence variation (PAV), has been shown to be
frequent in plant species [98]. Transposons may be at the origin of an important fraction
of the variability in melon besides SV [99]. Melon research has entered into post-genomic
generation since the genome sequences were released. The analysis of genome variability
using re-sequencing data has been used to shed light on the domestication history. Based
on the re-sequencing of the melon genome, a comprehensive variation map of melon was
constructed, and the domestication history and loci influencing agronomic traits were
identified [36,100–103].

4. Breeding of Melon

Melon breeding has been around for hundred years. The breeding objectives in melons
have developed from enhanced yield, shelf life, disease resistance, and resistance to abiotic
stress to improve fruit quality.

Crop plants encounter various biotic and abiotic stresses that hinder life throughout
their growth and development. Therefore, resistance is a major objective in crop breeding.
Several varieties with resistance to powdery mildew in the USA have developed by using
exotic accessions from India. From the previous reports related to resistance evaluation,
most accessions with resistance to powdery mildew and downy mildew derive from the
momordica group and acidulus group. Additionally, there are some Turkish melon accessions
for resistance to ZYMV and WMV [104]. PI 161375 from the conomon group was identified
as a resistant accession to CMV and aphids [81]. Most accessions with resistance in melon
come from the primary and secondary diversity centers and could be considered important
germplasm reservoirs for melon breeders. Therefore, exploiting the accessions for resistance
improvement in melon is imperative. In the future, there will be more and more challenges
from diseases, pests, and potentially extreme weather for us. Developing cultivars with
high resistance to biotic and abiotic stresses is necessary.

With the improvement of people’s living standards, fruit quality has become one of
the major objectives in breeding programs as it influences fruit marketability. Fruit quality
consists of many attributes, including internal quality, such as sugar and acid contents, flesh
texture, and flavor, and external features, such as size, shape, and rind color. The candidates
and molecular markers have been identified for the traits of rind color, flesh color, and
acid content, which will benefit early selection in breeding. However, it is complex for the
genetic basis of most traits related to fruit quality, especially flavor. It is an efficient strategy
to dissect the genetic basis and discover the candidates of fruit flavor traits by using the



Agronomy 2022, 12, 2891 8 of 13

comprehensive analysis of genetics, transcriptomics, and metabolomics, which has been
reported in tomatoes in recent years [105,106].

Heterosis results in the phenotypic superiority of a hybrid over its parents with respect
to traits such as growth rate, reproductive success, and yield [107]. The accessions of
different horticultural groups in melo had high nucleotide diversity. Therefore, it is an
alternative strategy to cross the melon accessions from the divergent horticultural group for
germplasm innovation. Conversely, though agrestis accessions are morphological variables
in fruit, it is observed that they had quite a low nucleotide diversity [36]. This is consistent
with the fact that there was no obvious heterosis in hybrid by crossing two cultivated agrestis
accessions. However, there is an obvious differentiation in the two melon subspecies, melo,
and agrestis, not only for morphological characteristics, but also for ecological adaptation.
It indicates that we can acquire high heterosis and diversity by inter-subspecies crossing in
melon breeding, especially for the agrestis population.

Traditional breeding based on crossing and selection remains important for crop im-
provement. Although the efficiency of crossing and selection has been improved using
marker-assisted selection, it faces limitations in crops with complex genetics. With the increase
of re-sequencing data in melon, more and more polymorphic SNPs have been identified.
It is feasible to construct the platform based on whole genome selection. Genome editing
is expected to be a powerful tool to create desirable variation using molecular scissors and
artificially engineered nucleases. The utilization of CRISPR/Cas editing can accelerate melon
improvement through the introduction of genetic variation in a targeted manner [108]. The
application of genome editing is based on an effective and stable genetic transformation
system. Nevertheless, though some research related to melon genetic transformation has been
reported, the efficiency and universality of distinct genotypes is the limiting factor. Fortu-
nately, the breakthrough of genetic transformation assisted by genes encoding developmental
regulators in watermelons could provide a good reference for melons [109].

5. Concluding Remarks

Melon is an important horticultural crop worldwide with high diversity. In the future,
resistance to biotic and abiotic stresses and fruit quality will be the most important traits
for melon breeding. Identifying new genetic resources with horizontal resistance or special
quality traits of melon fruit is needed. However, the genetics of the traits associated with
resistance and fruit quality are always complex and are controlled by multiple loci. Though
several QTLs have been identified, few candidate genes were reported. It is becoming a
challenge for us to discover the causative genes and pivotal variations for these complex
traits. This might be facilitated by a comprehensive analysis of genomics, transcriptomics,
metabonomics, and bioinformatics.

Most modern elite varieties were developed by conventional breeding, which may
not be able to meet current demands. The new strategies, such as whole genome selection,
genetic transformation, and genome editing, need to be actively utilized in current breeding
programs, which will provide powerful opportunities for genetic improvement of fruit
quality and accelerate the process of future breeding of melon (Figure 1).
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