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Abstract: The accurate and rapid acquisition of crop and weed information is an important prereq-
uisite for automated weeding operations. This paper proposes the application of a network model
based on Faster R-CNN for weed identification in images of cropping areas. The feature pyramid
network (FPN) algorithm is integrated into the Faster R-CNN network to improve recognition accu-
racy. The Faster R-CNN deep learning network model is used to share convolution features, and the
ResNeXt network is fused with FPN for feature extractions. Tests using >3000 images for training
and >1000 images for testing demonstrate a recognition accuracy of >95%. The proposed method can
effectively detect weeds in images with complex backgrounds taken in the field, thereby facilitating
accurate automated weed control systems.

Keywords: weed identification; Faster-R-CNN; FPN; ResNeXt

1. Introduction

Weeds include all kinds of herbaceous plants that grow where they are not wanted [1,2].
Weeds cause much harm to the agricultural economy [3]. Not only do they compete with
crops for sunlight, water and fertilizer, but they also compete for living space. If not dealt
with in time, weeds will reduce crop growth, yield and quality, and can even cause crop
failure. With the development of computer technology, rapid and accurate machine vision-
based recognition technology has been increasingly used for weed identification [4–7].
Deep learning has achieved good results in the recognition of human behaviour, crop
fruits and weeds. The image recognition method of kiwifruit based on a convolutional
neural network (CNN) shows that CNNs have good application prospects in field fruit
recognition. Recognition of corn weeds based on CNNs, hash codes and multi-scale
hierarchical features has proven the effectiveness of CNNs in recognising weeds in field
images. In a study on broccoli seedlings, a crop detection method based on the Faster R-
CNN model was proposed. Using a dropout value of 0.6, the ResNet101 network was used
as the feature extraction network, and an average precision of 91.73% was achieved. At
present, the Faster R-CNN model is also widely applied in the field of vehicle detection [8],
ground object recognition in remote sensing images [9,10], appearance defect detection [11],
pedestrian detection and recognition [12], and field image detection [13], and has excellent
recognition accuracy.
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Since most current models have the shortcomings of high complexity and difficulty in
modification, an improved Faster R-CNN field weed detection model is proposed in this
study. This network model was fused with the Feature Pyramid Network (FPN) to improve
the detection accuracy of the model in weed identification. On the basis of obtaining a
large amount of weed and plant seedling data, a deep learning network is established,
and the ResNeXt feature extraction network is used to generate target recognition models
for different types of weeds. After training, it can effectively identify weeds and plant
seedlings in images. In this way, a Faster R-CNN-based rapid weed identification system
for use in the field is obtained, which can identify weeds in multiple crops.

2. Materials and Methods
2.1. Image Data Acquisition

Image data were obtained from the V2 Plant Seedlings Dataset [14]. This dataset
consists of images of nine field weeds—scentless mayweed, common chickweed, shep-
herd’s purse, cleavers, charlock, fat hen, small-flowered cranesbill, black-grass, and loose
silky-bent—and three crop seedlings—maize, common wheat, and sugar beet (Figure 1).
To ensure experimental accuracy, the images were collected under different conditions,
including sunny, cloudy, and rainy days. There were 5539 images in total, including 598 of
scentless mayweed, 713 of common chickweed, 274 of shepherd’s purse, 335 of cleavers,
452 of charlock, 538 of fat hen, 576 of small-flowered cranesbill, 309 of black-grass, 762 of
loose silky-bent, 257 of maize, 253 of common wheat, and 463 of sugar beet. The resolution
of the images after processing was 227 × 227 pixels. All processed images were divided
as follows: 3329 in a training set, 1107 in a validation set, and 1103 in a testing set. The
pictures in these sets did not overlap each other. The training set was used to train the
model parameters, the test set was used to evaluate the generalization error of the model
applied to the samples after training, and the validation set was used to tune the hyperpa-
rameters of the model during the training process. After the experiment was completed,
deep learning was used to apply evaluation indicators typically used in the field of object
recognition to measure the performance of the detector model.
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Figure 1. Examples of partial samples of (a) black-grass; (b) charlock; (c) maize; (d) scentless
mayweed; (e) fat hen; (f) common wheat; (g) sugar beet; and (h) shepherd’s purse.

This dataset is due to the use of public datasets, so there are some limitations. Because
the pictures in the dataset exist as a single crop, they cannot be used for large-area crop
identification between fields. Moreover, because the dataset collection site is under labora-
tory conditions, a large amount of sand and gravel is selected for plant cultivation, so the
detection accuracy of soil-growing plants cannot be guaranteed.
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2.2. Image Pre-Processing

Since the images were affected by the environmental conditions at the time of col-
lection, extreme highlights and shadows could decrease the model’s recognition success
rate. Therefore, the images were processed and segmented; the green part of the plant
was extracted and non-green areas were suppressed. The application of normalized colour
components can effectively improve the effects of lighting and shadows on image qual-
ity [15,16]. After the greyscale images were obtained, the Otsu method [17,18] was used
to convert them into binary images and separate the plants. After processing, clear plant
images were obtained. They were then filled with noise to obtain single-leaf binary images
after segmentation image processing, as shown in Figure 2.
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3. Model Refinement

Currently, there are two types of object detection models. The first is one complete
object recognition and object positioning in two steps. Typical representatives of this
approach are the R-CNN, Fast R-CNN, and Faster R-CNN families. This type of framework
has a low recognition error rate and a low omission rate and can be used in real-time
detection scenarios. The typical representative of the second category are YOLO (you only
look once), SSD (Single Shot Multibox Detector), YOLOv2, and YOLOv3. To complete
object classification and object localization in one step [19–21], SSD directly regresses the
position and category of the target at the output layer. Although these methods have fast
recognition speed, their accuracy rate is lower than that of Faster R-CNN. Therefore, this
paper selected the Faster R-CNN model framework to identify weed images.

The network structure of Faster R-CNN is shown in Figure 3. The network can
be roughly divided into four parts: (1) a feature extraction layer, (2) a Region Proposal
Network (RPN), (3) a Region of Interest pooling (ROI pooling) layer, and (4) classification
and regression.
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The deep network in the convolutional network is used to respond to the semantics,
and the shallow layer responds to the image. However, in object detection, because the
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feature map size is too small, the high-level network can respond to the semantic features
but is not conducive to object detection [22]. Therefore, a Feature Pyramid Network
(FPN) is introduced to improve the weed detection accuracy of the algorithm in the field
identification process. The structure of the FPN network is shown in Figure 4.
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Figure 4. The FPN network structure diagram.

Bottom-to-top process: It can be seen that the bottom-to-top extraction process is
a conventional feature extraction process. The output of the last layer of each stage is
selected as the input of the feature map. The first layer is not used here due to its large
memory footprint.

Top-down process: Upsampling starting from the highest layer yields better feature
maps, and nearest-neighbour 2× upsampling is used for simplicity.

Horizontal connection process: Each horizontal connection fuses feature maps of the
same spatial size, specifically, the upsampling result and the bottom-up C2, C3, C4, and C5
layers are fused with the same-sized feature maps generated by 1 × 1 convolution. The
output channels are all set to the same 256 channels.

The ResNeXt target extraction network and FPN are selected for fusion in the Faster
R-CNN network. This is used to extract target features in target detection so that the
learning of the target features is more complete.

The building blocks of ResNet and ResNeXt are shown in Figure 5. While the ResNeXt
network structure retains the basic stacking method of ResNet, it splits its single path into
32 independent paths, which perform convolution operations on the input image at the
same time. Finally, the cumulative summation of outputs from different paths is used as
the final result. This operation makes the division of labour of the network clearer and
the local adaptability stronger. Since each path shares the same topology and convolution
parameters, and the design method is the same, the network parameters will not increase,
which is convenient for model transplantation.
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The improved model is shown in Figure 6. At present, there are mainly two training
methods for Faster R-CNN: alternating training and approximate joint training. The
alternate training method trains two networks—RPN and Fast-RCNN—in a total of two
stages, with each stage training the RPN and Fast-RCNN once. In the approximate joint
training process, only one weighted network is trained, which requires slightly less memory.
This training method saves 25–50% of the training time compared with the alternate training
method, and the two training methods have similar accuracy, so the approximate joint
training method was selected.
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First, the weed image is input into the model and the improved ResNeXt network is
used to fuse the FPN network to extract features from the image. The overall design of
FPN is presented in a multi-scale pyramid structure, and each layer of FPN corresponds
to {P2, P3, P4, P5, P6} in ResNeXt pyramid through anchors, as shown in Figure 7. Using
3 proportions {1:2, 1:1, 2:1}, 15 types of anchors were used to predict the target objects in
weed images in the field. After the feature map is obtained, it is input into the RPN network
and propagated forward to obtain a higher-dimensional feature map. When the feature
map is passed to the RPN network, the proposed box is obtained and a non-maximum
suppression value operation is performed on the proposed box. The top N highest-scoring
proposal boxes are used as ROIs. The feature map and ROIs are passed to the ROI pooling
layer for a pooling operation. Then, the ROI pooling layer is output to the full link layer
and linear regression is performed on each area of interest to obtain accurate detection of
weeds. Then, the Softmax regression model is used to perform multi-classification target
detection and, finally, the categories of weeds and crop seedlings in different fields can
be identified.
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4. Experimental Results and Analysis
4.1. Test Platform

The operating environment for the test was a desktop computer with a Windows
10 64-bit operating system, and the computer memory was a 32 GB, NVIDIA GeForce RTX
3070 graphics card, equipped with an AMD Ryzen 7 5800H processor.

The software environments used are Anaconda 3.9.12 (Developed by Anaconda, Inc.
in Austin, TX, USA), Python 3.7.9, CUDA 11.2 (Developed by NVIDIA Corporation of
California, USA), and cuDNN 8.2.1 (Developed by NVIDIA Corporation of California,
USA). The open-source deep learning framework Tensorflow 2.0 (Developed by Google,
Inc. in California, USA) was used as the development environment.

4.2. Parameter Design

To improve the performance of the model and reduce overfitting, the pre-trained model
was used to initialize the parameters and the stochastic gradient descent (SGD) method
was used to improve the model. The learning rate was set to 0.001, the momentum factor
was set to 0.9, the epoch was set to 1500, the maximum number of iterations was 200,000,
and the learning rate was adjusted to 0.0001 after 80,000 iterations and to 0.00001 after
160,000 iterations. After the model calculation was completed, the model with the highest
accuracy was selected for weed identification. The non-maximum suppression (NMS)
value was set to 0.3 to obtain the best candidate box. Finally, to obtain the trained network
model, the test set was used to further verify the modelling effect, and the recognition
result was the output.

4.3. Evaluating Indicator

In this paper, two evaluation indexes, accuracy (P) and recall (R), were used to verify
whether the model can be used for image recognition of weed seedlings. The range of both
is [0, 1]. In addition, the F1 value was used to harmonize the average evaluation of the
calculation results [23], and the Mean Intersection over Union (MIoU) was used to evaluate
the image segmentation results. The assessment is calculated as follows:

P =
TP

TP + FP
× 100%, (1)

R =
TP

TP + FN
× 100%, (2)

F1 =
2PR

P + R
× 100%, (3)

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(4)

where P stands for accuracy for weed image recognition; R is a recall for weed image
recognition; F1 is the harmonic mean of P and R; TP is the true positive rate (number
of correctly identified crop seedlings and weed targets); FP is the number of incorrectly
identified crop seedlings and weed targets; FN is the number of unidentified crop seedlings
and weed targets; k is how many categories there are in the dataset.

5. Results and Analysis
5.1. Model Training Results

According to the above experimental methods, a weed recognition network based
on Faster R-CNN fused with FPN was trained and the improved ResNeXt-101 feature
extraction network was adopted. The loss degree and accuracy of this model in recognition
are shown in Figures 8 and 9.
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5.2. Experimental Results

It can be seen from Figures 8 and 9 that the weed recognition network based on Faster
R-CNN integrated with FPN has high recognition accuracy when using the ResNeXt-101
feature extraction network. To select a better deep network model and a suitable feature
extraction network, this experiment compares the Faster R-CNN integrated with FPN
and the ordinary Faster R-CNN network under the condition of the ResNeXt-101 feature
extraction network. The results are shown in Table 1.

Table 1. Performance comparison of the faster R-CNN-FPN network and ordinary Faster R-CNN.

Model (With
ResNeXt-101) Accuracy (%) Recall (%) F1-Value

(%)
MIoU

(%)
Detection
Time (ms)

Faster R-CNN-FPN 95.61 87.26 91.24 93.7 330
Faster R-CNN 92.4 85.2 88.65 89.6 319

It can be seen from Table 1 that Faster R-CNN has a higher accuracy rate when it does
not integrate the FPN and only uses the ResNeXt-101 feature extraction network. However,
with integrated FPN, the accuracy is higher than that of the ordinary Faster R-CNN network,
and the F1-value is higher; in addition, the value of MIOU is about 4% higher than the
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unimproved model. It can be seen that the FPN can optimize the network after being
integrated into the Faster R-CNN network, which improves the recognition accuracy.

With the Faster R-CNN deep network model integrated with FPN, compared with the
ResNet-50 feature extraction network in the literature [22] that proposed FPN, ResNet-50
and ResNeXt-101 were used for training. With increases in the number of model training
iterations, the real-time losses of the overall loss functions of the two feature extraction
networks used in the Faster R-CNN deep network model were compared (Figure 10 and
Table 2).
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Table 2. Feature extraction network comparison.

Model Extraction
Network

Accuracy
(%)

Recall
(%)

F1-Value
(%)

MIoU
(%)

Detection
Time (ms)

Faster
R-CNN-FPN ResNeXt-101 95.61 87.26 91.24 93.7 330

Faster
R-CNN-FPN ResNet-50 91.67 85.19 88.31 89.5 319

Figure 10 shows the losses of the overall loss functions of the two feature extraction
networks with the Faster R-CNN deep network model. The Faster R-CNN deep network
model based on the ResNeXt-101 feature extraction network can converge faster and is
obviously better than the ResNet-50 feature extraction network model. The Faster R-CNN
deep network model of the ResNet-50 feature extraction network oscillated to varying
degrees after 120,000 iterations. The comparison in Table 2 shows that although the
ResNeXt-101 feature extraction network uses 101 layers, there is basically no difference
between the operation time, but the F1-value and MIoU value of ResNeXt-101 as the result
of the feature extraction network are higher than those of the ResNet-50 feature extraction
network; therefore, the ResNeXt-101 network has a higher operation accuracy. Since the
ResNeXt network replaces the three-layer convolutional blocks of the original ResNet with
blocks of the same topology stacked in parallel, it can improve the accuracy of the model
without significantly increasing the number of parameters. Compared with ResNet-50, it
can be seen that ResNeXt-101 has certain advantages.

To determine the superiority of the deep network model comprised of the Faster
R-CNN integrated with the FPN in weed recognition, the results of the three deep network
models and the corresponding feature extraction networks were compared. The recognition
performance of the ResNeXt-101 feature extraction network was the best. Therefore, on
the premise of satisfying the recognition time, ResNeXt-101 was selected as the feature
extraction network to compare the overall loss of the Faster R-CNN model, YOLOv3
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model, and SSD model, and the accuracy of model verification. The results are shown in
Figures 11 and 12 and Table 3.
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Table 3. Deep network model comparison.

Model Extraction
Network

Accuracy
(%)

Recall
(%)

F1-Value
(%)

MIoU
(%)

Detection
Time (ms)

Faster
R-CNN-FPN ResNeXt-101 95.61 87.26 91.24 93.7 330

YOLOv3 ResNeXt-101 84.34 79.85 82.03 84.5 215
SSD ResNeXt-101 88.12 79.69 83.69 85.3 203

The Faster R-CNN, SSD, and YOLOv3 deep network models are compared under the
same image processing method and RESNEXT-101 feature extraction network. It can be
seen from Figures 11 and 12 that when using the ResNeXt-101 feature extraction network,
the SSD network has a slight oscillation at 150,000 steps, while the Faster R-CNN network
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tends to stabilize after 120,000 steps. The network loss curve of Faster R-CNN with FPN
is lower than that of the SSD deep network model after 4000 iterations, and the network
model of Faster R-CNN integrated with FPN is better than the SSD model in terms of loss
degree. By comparing the accuracy, recall rate and F-value, it can be seen that, compared
with the SSD network, the accuracy rate of Faster R-CNN with the integrated FPN network
is about 0.7 higher. Although the detection time is longer than that of the SSD network, the
overall efficiency is still higher than that of the SSD network.

According to the model evaluation, this experiment makes a detailed comparison
of the two indexes of accuracy and recall, F1 value, as well as MIoU and detection time
(single image). The comparative results of the deep network model are shown in Table 3. It
can be concluded from Table 3 that the Faster R-CNN deep network model based on the
ResNext-101 network shows better detection performance, while the accuracy and recall
rate of the YOLOv3 deep network model are both somewhat lower than those of the Faster
R-CNN network. The accuracy of the deep network model can only reach about 84% and
the recall rate can only reach about 80%, the F1 value is about 8% lower than that of Faster
R-CNN and the difference in the value of MIoU can reach about 9%, although it has a
shorter detection time. Hence, the advantages of the Faster R-CNN network are greater.

The Faster R-CNN network model integrated with FPN was analysed via a confusion
matrix (Figure 13). The Faster R-CNN network model integrated with FPN was used for
the detection of weeds and plant seedlings. The light-coloured areas show very low FN and
PN values, most of which are 0 and a few are 1–4. The dark areas show very high values
of TP and TN, which shows that the deep learning network predicts a high proportion of
correct results; hence, it has high accuracy.
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These model training results show the advantages and disadvantages of the two
feature extraction networks (ResNet-50 and ResNeXt-101) in weed recognition. It is found
that, compared with the Faster R-CNN deep network model, the YOLOv3 and SSD deep
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network models have slightly inferior weed recognition accuracy. The Faster R-CNN
network model obtains much better accuracy by integration with the FPN network, while
the improved ResNeXt feature extraction network has higher computational efficiency.
The Faster R-CNN network model integrates the FPN network into the feature extraction
network and adopts the process of bottom-to-top, bottom-up, and horizontal connection to
realize the simultaneous use of high-resolution low-level features and high-level features.
Integrating the features of these different layers to achieve the prediction effect can greatly
improve the detection accuracy. The selected ResNeXt-101 feature extraction network
achieves more accurate target recognition by using a convolution operation with multiple
paths. The experimental results show that the Faster R-CNN deep network model based on
the ResNeXt-101 feature extraction network has obvious advantages for weed recognition
in field images after being integrated with the FPN network.

6. Conclusions

This paper used corn beet and other crop seedling and weed image data to build a
Faster R-CNN deep network model based on the ResNeXt-101 feature extraction network
and the Tensorflow 2.0 (Developed by Google, Inc. in California, USA) deep learning
framework. The FPN network and improved ResNeXt network were applied to the
identification of weeds. The actual effects of the three feature extraction networks were
compared and analysed, and the key parameters of the Faster R-CNN were optimized to
make it more suitable for weed identification in field images with complex backgrounds.

The experimental results show that the Faster R-CNN deep network model obtains
improved recognition accuracy by using the ResNeXt feature extraction network and incor-
porating the FPN network. It has obvious advantages compared with the ResNet feature
extraction network in achieving rapid and effective target recognition, and demonstrates
the great efficiency of deep learning methods in this field.
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