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Abstract: Currently, deep convolutional neural networks have achieved great achievements in
semantic segmentation tasks, but existing methods all require a large number of annotated images for
training and do not have good scalability for new objects. Therefore, few-shot semantic segmentation
methods that can identify new objects with only one or a few annotated images are gradually gaining
attention. However, the current few-shot segmentation methods cannot segment plant diseases well.
Based on this situation, a few-shot plant disease semantic segmentation model with multi-scale and
multi-prototypes match (MPM) is proposed. This method generates multiple prototypes and multiple
query feature maps, and then the relationships between prototypes and query feature maps are
established. Specifically, the support feature and query feature are first extracted from the high-scale
layers of the feature extraction network; subsequently, masked average pooling is used for the support
feature to generate prototypes for a similarity match with the query feature. At the same time, we
also fuse low-scale features and high-scale features to generate another support feature and query
feature that mix detailed features, and then a new prototype is generated through masked average
pooling to establish a relationship with the query feature of this scale. Subsequently, in order to solve
the shortcoming of traditional cosine similarity and lack of spatial distance awareness, a CES (cosine
euclidean similarity) module is designed to establish the relationship between prototypes and query
feature maps. To verify the superiority of our method, experiments are conducted on our constructed
PDID-5i dataset, and the mIoU is 40.5%, which is 1.7% higher than that of the original network.

Keywords: few-shot semantic segmentation; mixed similarity; multi-scale fusion; plant disease

1. Introduction

With the rapid development of agricultural information technology [1–6], semantic
segmentation using FCN [7], UNet [8], SegNet [9], Deeplab [10], ASPP [11] has become
one of the main technologies of agricultural intelligence. However, large pixel-by-pixel
annotated datasets, which are costly to be obtained, are required to train these models.
Although weakly supervised learning can reduce this cost to some extent, it still requires a
lot of weakly annotated data. To solve the problem of obtaining a large number of annotated
datasets, few-shot semantic segmentation [12], which aims to learn from a few support
images, is proposed and has gradually attracted attention in various fields, especially in
plant disease segmentation, making it discriminative for new unseen classes.

Most few-shot segmentation methods learn from a small number of support images
and then feed the learned knowledge into a parameterized module for query segmentation.
However, this approach resulted in a mixture of model segmentation and supported
semantic features due to the simultaneous feature extraction and object segmentation
process. At the same time, the current few-shot semantic segmentation method is generally
implemented by comparing the similarity between prototypes and query features. For
example, SG-one [13] extracts the guiding feature of the support image through VGG16 [14]
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and then uses the cosine similarity to establish the relationship between the prototypes and
the query image feature. Taking this research idea, the PANet [15] adds support prototypes
and query features, which are regularized to provide better generalization ability.

Although few-shot semantic segmentation has made great progress in processing
natural images, these methods cannot handle the segmentation of plant disease images
well. Because the guidance feature extracted from the support images through the backbone
network and the query image is used for foreground detection, it cannot handle the huge
differences in the shape and texture of different plant diseases well. Therefore, simply
matching the prototypes generated from the deep feature of the supported image with
the query image will lose many disease features, which can lead to predictions that ignore
smaller disease areas and fail to identify differences among multiple diseases accurately.

To overcome the above problem of few-shot segmentation algorithms in plant disease
images, a few-shot semantic segmentation network based on multi-scale and multi-match
plant disease images is proposed. In this paper, semantic segmentation is performed for
early disease images of plant leaves, and the diseased areas in leaves are drawn, which
provides a new method for plant disease control. Specifically, the high-scale support feature
and query feature are obtained through the last layer of the feature extraction network, and
then the feature relationship is established to obtain the similarity map. In order to obtain
more detailed features, this paper fuses the low-scale and high-scale features extracted from
the feature extraction network VGG16 to obtain fused support features and fused query
features that contain the more detailed features. Then, new prototypes generated from
the fused support feature by masked average pooling are used to match with the fused
query feature for similarity. Finally, the similarity map is obtained through multi-scale
fusion. Specifically, the average similarity is obtained by averaging multiple similarities. By
matching multi-support image prototypes and multi-query image features, the recognition
accuracy of the network model can be improved to a certain extent.

Now, the cosine similarity is used in the original algorithm for matching the prototypes
of the supported image with the query feature, which calculates the similarity between
two vectors only by considering the similarity of their direction angles in the space and
does not consider the distance between the two vectors. Therefore, a hybrid similarity
calculation is adopted, which calculates the euclidean distance and the cosine similarity of
the two vectors. Then a weighted sum is performed according to 9:1 (the cosine similarity:
the euclidean distance). In this way, the method can obtain more accurate similarity maps.

With limited computing power, it is important to allocate computing resources to
more important tasks. In deep learning, with the increase of network parameters, there
will be a problem of information overload. Therefore, the CBAM (convolutional block
attention module) [16] is introduced into our network after the fusion of shallow features
and deep features, which can not only pay more attention to important information and
filter other irrelevant information but also improve the efficiency and performance of
segmentation tasks.

There are few plant disease datasets suitable for few-shot semantic segmentation tasks.
Therefore, this paper constructs a plant disease dataset (PDID-5i) containing ten different
categories, which are then annotated at the pixel level, and conducts experiments on the
dataset to verify the effectiveness of our network.

The main contributions of our method are as follows:

1. Multi-scale and multi-prototypes match is proposed for few-shot plant disease se-
mantic segmentation. This method generates multiple prototypes and multiple query
feature maps at different scales, and then the relationships between prototypes and
query feature maps are established through the similarity measure method. Finally,
the relationships at different scales are fused. With this approach, our network can
more precisely identify plant disease signatures.

2. The mixed similarity is designed as the weighted sum of cosine similarity and eu-
clidean distance. When the similarity of the direction and the actual distance between
two vectors are jointly considered, more accurate similarity can be obtained.
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3. A CBAM attention module is added to our network to make the network pay attention
to the important plant disease feature and ignore interference information, which is
beneficial to improve accuracy.

4. To accomplish the few-shot semantic segmentation task, we constructed a plant
disease dataset(PDID-5i) that is suitable for the task. Experiments on the dataset show
that the model we designed is very effective.

2. Related Work
2.1. Semantic Segmentation of Plant Disease Images

Semantic segmentation is an extremely challenging task whose purpose is to perform
pixel-wise class prediction. In recent years, with the rapid development of deep learning,
semantic segmentation of plant disease images has gradually received attention [17–20].
Some works utilize a combination of traditional methods and convolutional neural net-
works to solve the disease segmentation task [21,22]. For example, Sodjinou et al. [23]
proposed a segmentation method based on the combination of semantic segmentation and
the K-means algorithm. Through feature fusion structure, the most differential information
can be obtained from multiple original feature sets involved in fusion, thus improving
the accuracy of model recognition. As Lin et al. [24] used U-net convolutional neural
network to fuse the feature from the encoding stage and the feature from the decoding
stage and then segmented the cucumber powdery mildew. Zhong et al. [25] proposed a
three-stream segmentation network. First, the hole convolution was used to expand the
receptive field of each branch, and the feature fusion module was used to fuse the feature
of each branch to obtain rich context information, thereby improving the segmentation
accuracy. He et al. [26] proposed a lightweight network based on multi-scale feature fusion
and attention refinement to enhance the representation ability of deep networks to extract
feature maps. Along this direction, we fuse the detail feature in the shallow layers and
the semantic feature in the deep layers to generate the fused feature maps and employ the
attention mechanism to refine the feature maps. However, few-shot semantic segmentation
can solve the problem of difficulty in obtaining agricultural datasets based on traditional
semantic segmentation.

2.2. Few-Shot Semantic Segmentation

The few-shot semantic segmentation task uses a small number of annotated query
images with a new category. Zhang et al. [13] proposed an efficient similarity-guided
network to obtain the guided feature of the support image and then used the cosine
similarity to match the query image feature to complete the few-shot segmentation task.
Tang et al. [27] designed a CRE contextual relation encoder to capture the local relation
between foreground and background and repeatedly used the CRE module to optimize
the segmentation module. Wang et al. [28] introduced a democratized graph attention
mechanism, which can activate more pixels on objects when the relationship between the
support image and the query image is established. Therefore, the method can transfer
more guiding features from the supported image to the query image, improving the model
performance and robustness. Xie et al. [29] proposed a scale-aware graph neural network to
construct a scale-aware graph using multi-scale query feature maps, in which support image
guidance is employed as nodes of the graph. However, this method has poor flexibility
and scalability and is not necessarily suitable for plant diseases. Few-shot segmentation
can be used in plant disease segmentation to solve the problem that plant-labeled images
are difficult to obtain from reality.

3. The Proposed Method
3.1. Problem Setting

The few-shot segmentation model proposed in this paper aims to obtain the guiding
feature from a small number of annotated support images to segment the new segmented
objects of the query image. This paper adopts the following strategies to train and test the
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model. First, we divide the dataset category set into the known category set Cknow and the
unknown category set Cunknow. The data set Dtrain for training is from Cknow, and the test
set Dtest is constructed from Cunknow. Finally, we train the model on the training set and
evaluate the model performance on the test set with the trained model.

The training set and the test set consist of several episodes, each containing an anno-
tated support image set Si and an unannotated query image set Qi. In the k-shot semantic
segmentation task setting, each semantic category in the support set Si has K pairs of
<image, mask>. At the same time, the Cknow category is taken from the total C categories
for training, and the Cunknow category is taken for testing. The query set contains N query
pairs of <image, mask>, where the categories are the same as those in the support set.
The model first extracts the feature knowledge of C categories from the support set and
then performs the segmentation task on the query set using the extracted knowledge.
Through continuous training and learning of different semantic classes, the model has a
good generalization to new semantic classes. Finally, we put the model trained from the
training set Dtrain into the test set Dtest for segmentation performance evaluation.

3.2. Evaluation Indicators

In this paper, mIoU and binary-IoU are used as indicators to evaluate the performance
of the model. The mIoU (Mean Intersection-over-Union) is the ratio obtained by computing
the intersection and union of two sets of true and predicted values. Binary-IoU is to take
all classes of objects as foreground and calculate the average IoU of foreground and back-
ground. We use mIoU and binary-IoU to evaluate the model performance comprehensively.

3.3. Method Overview

Different from most of the current few-shot segmentation methods, the method in
this paper first extracts the guiding feature from the supported image through the feature
extraction network to generate the prototypes. On this basis, we also fuse shallow features
with deep features, generating prototypes with more detailed information. The query image
is extracted by the feature extraction network to generate the query feature map. Similarly,
we fuse the shallow feature and deep feature of the query image to generate a query
feature map containing the detailed feature of the query image. Finally, we combine the
feature maps of multiple prototypes and multiple query images to establish relationships
by mixing similarities.

As shown in Figure 1, the model proposed in this paper performs the segmentation
task as follows. First, a shared backbone network is used to extract the feature maps of
support images and query images. Then, the feature maps of the support images are
further processed by average masked pooling to obtain prototypes. Finally, the relationship
between prototypes and query feature maps is established using our proposed hybrid
similarity, as described in Section 3.5. To better measure the relationship between proto-
types and query feature maps, multi-scale feature maps and multi-scale prototypes are
constructed, and then relationships between prototypes and query feature maps are ob-
tained at multiple scales, as described in Section 3.3. At the feature extraction stage, we
adopt VGG-16 [14] as a shared backbone to extract deep features from support images and
query images. At the same time, we fuse the shallow feature after the third convolution
block with the deep feature after the last convolution block and then pass through the
CBAM attention module to finally generate fused feature maps of support images and
query images, as described in Section 3.4.

3.4. Multi-Scale and Multi-Prototypes Match

Currently, common few-shot semantic segmentation methods use single-scale proto-
types and query features for similarity calculation. This method will lead to a rough match
of the query feature because the prototypes feature cannot sufficiently represent the details
of the plant disease feature. To address this challenge, a multi-scale and multi-prototypes
match (MPM) method is proposed.
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Figure 1. The overall pipeline of our proposed network(A: The model derives the diseased area of
the query image from the support image with the diseased label; B: The model reversely deduces the
diseased region of the support image by deriving the diseased region of the query image).

Suppose we obtain the support feature Fs1 and the query feature Fq1 from the sup-
ported image and the query image through the VGG-16 extraction network, respectively.
Then, we fuse the feature after the third convolutional block of VGG-16 with the feature
of the last convolutional block of VGG-16 to obtain the fusion feature Fs2 of support im-
ages and Fq2 of query images, respectively. In the same way, the feature of the second
convolution block of VGG-16 and the feature of the fourth convolution block of VGG-16
can be fused so as to obtain the fusion feature Fs3 of the support images and the fusion
feature Fq3 of the query images, respectively. Considering the efficiency of the model,
here we take generating an additional support feature and generating an additional query
feature as an example. First, we pass the feature Fs2 and Fq2 through the CBAM module
so that the model pays more attention to the feature with a higher attention value in the
training process. Next, we use a global pooling operation on the support feature Fs1 and
Fs2 to generate prototypes P1 and P2. Finally, we calculate the similarity between multiple
prototypes and multiple query feature maps.

3.5. CBAM Module

Although the fusion of shallow and deep features can obtain more detailed features of
plant disease textures, it does not consider the differences between different pixel categories,
channel features, and spatial features. Different feature learning weights affect the effect
of plant disease segmentation. The introduction of the attention module can make the
network model pay attention to the characteristics of plant disease areas during training
and reduce unimportant learning weight coefficients, such as background area learning
weight coefficients. So, introducing an attention module after the fusion of each shallow
feature and deep feature allows the network to add different weights to a different feature.

The CBAM module [16] is a convolution-based attention mechanism module. Inspired
by SENet [30], CBAM combines both channel attention and spatial attention, as shown in
Figure 2. It can be clearly seen that CBAM is composed of CAM and SAM modules, which
assign weights to channels and spaces, respectively.
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Figure 2. Structure diagram of CBAM (CAM stands for channel attention, SAM stands for spatial
attention; F: input feature map; Mc: feature map after F passing through CAM; Fc: feature map after
feature fusion of F and Mc; Ms: feature map after Fc passing through SAM).

In the CAM module, max pooling and global average pooling operations are per-
formed on the input feature map F (H ×W × C) based on the height and width directions
to obtain two (1 × 1 × C) feature maps. Next, the obtained feature map is respectively
input to a multi-layer perceptron (MLP) for the pixel addition operation. Then the sigmoid
activation function is applied, resulting in the final channel attention map Mc. Finally, the
channel attention map Mc and the input feature F are multiplied pixel by pixel to obtain
the input feature Fc required by the SAM module. The specific calculation is shown in the
following Formula (1) [16]:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

The SAM module takes the channel attention module output feature Fc as the input
feature. First, channel-based global max pooling and global average pooling are performed
on Fc to obtain two (H ×W × 1) feature maps. Then, a 7 × 7 convolution is, respectively,
acted on the feature map, which is the concatenation of two obtained feature maps along
the channel dimension to reduce the number of channels to 1. Finally, the spatial attention
map Ms is obtained through the sigmoid activation function, and the attention map Ms is
multiplied pixel by pixel with the input feature Fc of the module to obtain the final feature
Fs we need. The specific calculation process is shown in Formula (2) [16]:

Ms(Fc) = σ( f 7×7([Fs
avg; Fs

max])) (2)

3.6. Hybrid Similarity

Usually, in few-shot segmentation tasks, cosine similarity is used to establish the
relationship between prototypes and query features. However, cosine similarity uses
the cosine value of the angle between two vectors in the vector space as a measure of the
difference between two individuals, which only distinguishes differences in direction and is
not sensitive to absolute numerical values. In order to make up for this defect, the euclidean
distance calculation was added to the original basis. The specific Formula (3) is as follows.
Euclidean distance can reflect the difference between two individual numerical features,
making up for the disadvantage that cosine similarity is not sensitive to the numerical value.
The CES (cosine euclidean similarity) module is a new method for similarity calculation
between prototypes and query features proposed in this paper. The principle is shown
in Figure 3. In the three-dimensional space, we multiply the cosine value of the angle
between the two vectors A and B and the euclidean distance between the vectors A and B
by a certain scaling factor, and the sum of the two is used as a new way to establish the
relationship between prototypes and query feature. The role of the scale factor is to balance
the effects of cosine similarity and euclidean distance on the calculation of the difference
between two vectors. When establishing the relationship between the prototypes and the
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query feature maps, the CES module can not only consider the similarity of the two vectors
in the spatial direction but also pay attention to the similarity of the two vectors in the
spatial distance.

Similaryty(A, B) =

n
∑

i=1
(Ai × Bi)√

n
∑

i=1
A2

i ×
√

n
∑

i=1
B2

i

× Factor +
1√

n
∑

i=1
(Ai − Bi)

2

× (1− Factor) (3)
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3.7. Loss Function

As shown in Figure 1, our model is trained according to two processes, which are
Support-Query and Query-Support, respectively. Specifically, the process of Support-Query
is to learn knowledge from the annotated support set, establish the relationship with the
query image, and then predict the query image to obtain the segmentation result. We
calculate the loss between the obtained segmentation result and the real label of the query
image, as shown in Formula (4) [15]. In contrast, the process of Query-Support, which is
only performed during training, is to flow query information to the support set. Average
pool operation is employed to the query feature to obtain another set of prototypes, which
are used to match with the support feature maps to obtain the support prediction results.
Next, this paper calculates the loss of the prediction result according to Formula (5) [15]
and then returns to the training process to adjust the weight.

Lseg = − 1
N ∑

x,y
∑

pj∈ρ

[
M(x,y)

q = j
]

log
∼
M

(x,y)

q;j (4)

LPAR = − 1
CKN ∑

c,k,x,y
∑

pj∈ρ

[
M(x,y)

q = j
]

log
∼
M

(x,y)

q;j (5)

where Mq is the ground truth segmentation mask of the query image, (x,y) denotes the index
of the spatial location, C indicates that the current processing is the one in a set of support
images, K represents the current category and N is the total number of spatial locations.
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4. Experiments
4.1. Experimental Setup

Implementation details: We adopt VGG-16 as the shared feature extraction network.
The size of the input image is (417, 417), and an SGD optimizer is adopted to realize the
end-to-end training process. The hyperparameters of the training phase, such as learning
rate, training iterations, weight decay, momentum, and batch size, are set to 0.001, 30,000,
0.0005, 0.9, 1, respectively.

Dataset: In order to meet the plant disease few-shot semantic segmentation task, we
created a dataset PDID that fully meets the requirements of the task. It contains 10 plant
diseases, a total of 963 images, and category information. PASCAL-5i [31] is a dataset
for evaluating few-shot segmentation. The dataset is subdivided into four parts, each
containing five categories, with a total of twenty categories. One section contains annotated
samples from five classes to evaluate few-shot learning methods. The remaining fifteen
categories are used for training. According to the format of PASCAL-5i, we select five
categories from the PDID dataset as the train dataset Dtrain and the remaining categories as
the test dataset Dtest, which are denoted by PDID-50 and PDID-51.The specific categories
are shown in Table 1. In order to simulate the real lighting environment and shooting
angle, rotation, and color jitter, data augmentation operations are used to expand the
dataset to 9630 images, which then is divided into a training set, validation set, and test set
according to the ratio of 8:1:1. In the K-shot setting, we take K + 1 images with the same
class annotation labels from the training set Dtrain, the K images and annotation labels are
input to the model as support images for analysis. The remaining image is input into the
network model as a query image, and its annotation label is used as the ground truth for
loss calculation.

Table 1. Category names in dataset PDID-5i.

C1 C2 C3 C4 C5

PDID-50 Apple
Frogeye Spot Apple Scab

Grape Black
Measles
Fungus

Grape Black
Rot Fungus

Grape Leaf
Blight Fungus

C6 C7 C8 C9 C10

PDID-51 Peach
Bacterial Spot

Tomato Early
Blight

Fungus

Tomato Late
Blight Water

Mold

Tomato Leaf
Mold Fungus

Tomato
Septoria Leaf
Spot Fungus

4.2. Experimental Results and Discussions
4.2.1. Validation of Proposed Model

To validate the effectiveness of the proposed model, we have compared the proposed
model with other methods on the PDID dataset. In this experiment, VGG-16 is used as
the backbone network, and the comparison results are shown in Table 2. In Table 2, 1-shot
means that our support image is one, and 1-way means that we only extract one of the
10 categories.

Table 2. Results of 1-way 1-shot segmentation on PDID-5i dataset using mean-IoU metric.

Method
1-Way 1-Shot

Params
Split-0 Split-1 Mean

PANet 43.1 34.5 38.8 14.7 M

Ours 45.4 35.6 40.5 16.5 M

The results show that the mIoU of our proposed model is 2.3% and 1.1% higher than
that of PANet on Split-0 and on Split-1, respectively, and the average of mIoU on Split-0
and on Split-1 is increased by 1.7%. So we can conclude that our model is significantly more
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outstanding than other methods and is more suitable for the segmentation of few-shot
plant disease images. In addition, more performance enhancement in Split-0 is obtained
than that in Split-1, which shows that Split-0 is easier to transfer knowledge from the base
class to the new class.

4.2.2. Performance Comparison of Different Types of Diseases

To further analyze the performance of different categories of plant diseases under
few-shot segmentation, we list the mIoU results for each category under the 1-shot setting,
as shown in Table 3. According to the table, we can clearly see that almost all categories
have an excellent performance. In particular, C8, C1, C3, and C4 are improved the most
compared to PANet among all categories, which is 3.3%, 2.6%, 2.5%, and 2.5%, respectively.

Table 3. Performance comparison of different classes on PDID-5i dataset.

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

PANet 57.3 35.3 42 54.4 26.7 40.6 52.4 29.4 23 27
Ours 59.9 36.6 44.5 56.9 29.2 41.3 52.2 32.7 23.6 28.2

4.2.3. Qualitative Analysis

In order to show the effectiveness of our method more vividly, we have visualized the
excellent segmentation results, and the qualitative results are shown in Figure 4, which can
demonstrate the strong segmentation ability of our network for plant diseases. Compared
with the ground-truth labels, we can clearly find that the segmentation effect of our model
is not much different from that of the real disease area, which also shows that our model
can extract object feature well from the support image and then be extended to the query
image. In particular, our proposed model can better identify dense, small-target plant
disease areas. This phenomenon can be further explained by the fact that MPM adds
multiple prototypes and multiple query features to match each other, which can make up
for some details lost with the increase of network depth. However, for some extremely
small diseases, our model has some missing results, as shown in Figure 5. The main reason
for this phenomenon is that extremely small diseases have less feature information and are
easily lost in the process of feature extraction.

4.2.4. Training Loss Function

As shown in Figure 6, after 30,000 iterations, the loss functions Lseg and LPAR both
decrease rapidly around 1000 epochs, then slow down as the epochs increase, almost
leveling off at 30,000 epochs. Among them, Lseg represents the loss of the segmentation
result of the query image at the support–query stage, and. LPAR calculates the segmentation
loss of support images at the query–support stage, which makes the support prototypes
and query image prototypes aligned with each other.

4.3. Ablation Studies

To further verify the effectiveness of our designed module, we conduct ablation
experiments on the dataset PDID-50 with a 1-shot setting. First, we study the effect of
different scale coefficients in the CES module on the model performance and use the
adjustment scale factor to distribute the computational shares of cosine similarity and
euclidean distance. CES with different scale coefficients has different effects on computing
prototypes and query feature maps. Among the plant leaf disease feature extracted by the
feature extraction network, it may be more sensitive to the angle between vectors when
calculating similarity, or it may be more sensitive to the euclidean distance between vectors.
So we find an optimal scale factor by constantly adjusting different scale coefficients (cosine
similarity and euclidean distance). As shown in Table 4, the optimal performance occurs
at a ratio of 9:1 (share of cosine similarity: share of euclidean distance) with the mIoU
value of 45.4. After that, the model performance decreases as the share of cosine similarity



Agronomy 2022, 12, 2847 10 of 14

decreases (except for a slight improvement at 7:3 compared to 8:2). In summary, we adopt
the CES module with a ratio of 9:1 for calculating the similarity between prototypes and
query feature maps in our model.

Agronomy 2022, 12, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 4. Qualitative results of our model in 1-way 1-shot segmentation on PDID-5i. Figure 4. Qualitative results of our model in 1-way 1-shot segmentation on PDID-5i.

Table 4. Ablation experiments on different components.

Ratio 9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9

mIoU 45.4 44.1 44.5 44.3 42.7 42.3 41.6 40.5 39.6
binary-mIoU 69.2 68.3 68.4 67.9 66.7 66.5 65.5 64.2 63.4



Agronomy 2022, 12, 2847 11 of 14Agronomy 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 5. Segmentation effect error. 

4.2.4. Training Loss Function 

As shown in Figure 6, after 30,000 iterations, the loss functions Lseg and LPAR both de-

crease rapidly around 1000 epochs, then slow down as the epochs increase, almost level-

ing off at 30,000 epochs. Among them, Lseg represents the loss of the segmentation result 

of the query image at the support–query stage, and. LPAR calculates the segmentation loss 

of support images at the query–support stage, which makes the support prototypes and 

query image prototypes aligned with each other. 

 

Figure 6. The training loss of the model. 

4.3. Ablation Studies 

To further verify the effectiveness of our designed module, we conduct ablation ex-

periments on the dataset PDID-50 with a 1-shot setting. First, we study the effect of differ-

ent scale coefficients in the CES module on the model performance and use the adjustment 

scale factor to distribute the computational shares of cosine similarity and euclidean dis-

tance. CES with different scale coefficients has different effects on computing prototypes 

and query feature maps. Among the plant leaf disease feature extracted by the feature 

Figure 5. Segmentation effect error.

Agronomy 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 5. Segmentation effect error. 

4.2.4. Training Loss Function 

As shown in Figure 6, after 30,000 iterations, the loss functions Lseg and LPAR both de-

crease rapidly around 1000 epochs, then slow down as the epochs increase, almost level-

ing off at 30,000 epochs. Among them, Lseg represents the loss of the segmentation result 

of the query image at the support–query stage, and. LPAR calculates the segmentation loss 

of support images at the query–support stage, which makes the support prototypes and 

query image prototypes aligned with each other. 

 

Figure 6. The training loss of the model. 

4.3. Ablation Studies 

To further verify the effectiveness of our designed module, we conduct ablation ex-

periments on the dataset PDID-50 with a 1-shot setting. First, we study the effect of differ-

ent scale coefficients in the CES module on the model performance and use the adjustment 

scale factor to distribute the computational shares of cosine similarity and euclidean dis-

tance. CES with different scale coefficients has different effects on computing prototypes 

and query feature maps. Among the plant leaf disease feature extracted by the feature 

Figure 6. The training loss of the model.

In order to verify the impact of different ways of establishing the relationship between
the prototypes and the query feature maps on the performance and efficiency of the model,
we conducted seven sets of experiments, as shown in Table 5. We name the initial prototypes
and initial query feature maps P and Q, respectively, and the new prototypes and query
feature maps obtained through multi-scale feature fusion are P’, Q’. Way 1 represents the
relationship between the prototype P and the query feature map Q, and the new prototype
P’ and the new query feature map Q’. Similarly, way 2 represents the establishment of the
relationship between P-Q’ and P’-Q; way 3 represents the establishment of the relationship
between P-Q, P-Q’, and P’-Q’; way 4 represents the establishment of the relationship
between P-Q, P-Q’, and P’ -Q relationship establishment; way 5 represents the relationship
establishment of P-Q, P’-Q, P’-Q’; way 6 represents the relationship establishment of P-Q’,
P’-Q, P’-Q’; way 7 represents The relationship of P-Q, P-Q’, P’-Q, P’-Q’ is established. From
Table 5, it can be clearly seen that the relationship establishment method of way 1 is more
suitable for our network model and achieves the best performance.
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Table 5. Multiple prototypes and multiple query feature maps to establish relationships.

Way mIoU Binary-mIoU

1 45.4 69.2
2 37.7 64.1
3 42.6 66.5
4 42.9 67.4
5 44 68.5
6 36.8 63.8
7 42.1 66.5

In addition, we further verify the impact of the designed modules on the model
performance. As shown in Table 6, a 0.6% mIoU improvement is obtained by adding our
designed CES module model. By adding multi-scale and multi-prototypes match, the mIoU
of the model is increased by 0.9%, and the binary_mIoU is increased by 0.9%. When the
two modules were jointly combined, the mIoU of our few-shot segmentation network was
up to 45.4%, an improvement of 2.3% compared to 43.1%.

Table 6. Ablation experiments on different components.

CES MPM mIoU Binary_mIoU

43.1 67.9√
43.7 68.5√
44 68.8√ √

45.4 69.2

During the test, in order to prevent the error caused by different detections each
time, this paper conducts five tests and finally takes the average value. As shown in
Figure 7, the model proposed in this paper is higher than the initial network in each test,
so the conclusion that our network has a good segmentation ability for plant diseases can
be drawn.
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5. Conclusions

We propose a novel multi-scale and multi-prototype matching few-shot segmentation
network. First, the MPM structure in the network obtains prototype and query features at
two different scales through multi-scale feature fusion, which can enrich the relationship
between leaf disease prototypes and query features, thereby improving the accuracy of
the model to identify disease areas. Furthermore, this paper proposes a new method
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for establishing the relationship between prototype and query feature maps, which takes
into account the different computations of angles and distances between the two vectors.
Experiments on the scale coefficient show that the performance of this method can reach
the best according to a ratio of 9:1 (cosine similarity: euclidean distance), and the mIoU
reaches 40.5%. Extensive experiments are carried out on the plant disease dataset PDID-5i.
From the experimental results, it can be seen that the mIoU of our proposed network model
is improved by 1.7% compared with that of the original PANet, which proves that our
model has an excellent performance in segmenting plant leaf disease-infected regions. It
provides the possibility for the prevention and control of early plant infection diseases and
can reduce economic losses and increase yield.

Author Contributions: W.H. conceived the paper, designed and conducted experiments, and wrote
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experimental design and analyzed data. L.X. provided constructive comments on the research and
revised the paper. All authors have read and agreed to the published version of the manuscript.
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