
Citation: Yang, Q.; Duan, S.; Wang, L.

Efficient Identification of Apple Leaf

Diseases in the Wild Using

Convolutional Neural Networks.

Agronomy 2022, 12, 2784. https://

doi.org/10.3390/agronomy12112784

Academic Editor: Gniewko

Niedbała

Received: 8 October 2022

Accepted: 6 November 2022

Published: 9 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Efficient Identification of Apple Leaf Diseases in the Wild
Using Convolutional Neural Networks
Qing Yang 1,2,3 , Shukai Duan 1,3,4 and Lidan Wang 1,2,3,5,*

1 College of Artificial Intelligence, Southwest University, Chongqing 400715, China
2 Brain-Inspired Computing & Intelligent Control of Chongqing Key Lab, Chongqing 400715, China
3 National & Local Joint Engineering Laboratory of Intelligent Transmission and Control Technology,

Chongqing 400715, China
4 Chongqing Brain Science Collaborative Innovation Center, Chongqing 400715, China
5 Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education,

Southwest University, Chongqing 400715, China
* Correspondence: ldwang@swu.edu.cn

Abstract: Efficient identification of apple leaf diseases (ALDs) can reduce the use of pesticides and
increase the quality of apple fruit, which is of significance to smart agriculture. However, existing
research into identifying ALDs lacks models/methods that satisfy efficient identification in the wild
environment, hindering the application of smart agriculture in the apple industry. Therefore, this
paper explores an ACCURATE, LIGHTWEIGHT, and ROBUST convolutional neural network (CNN)
called EfficientNet-MG, improving the conventional EfficientNet network by the multistage feature
fusion (MSFF) method and gaussian error linear unit (GELU) activation function. The shallow
and deep convolutional layers usually contain detailed and semantic information, respectively, but
conventional EfficientNets do not fully utilize the different stage convolutional layers. Thus, MSFF
was adopted to improve the semantic representation capacity of the last layer of features, and GELU
was used to adapt to complicated tasks. Further, a comprehensive ALD dataset called AppleLeaf9
was constructed for the wild environment. The experimental results show that EfficientNet-MG
achieves a higher accuracy (99.11%) and fewer parameters (8.42 M) than the five classical CNN
models, thus proving that EfficientNet-MG achieves more competitive results on ALD identification.

Keywords: smart agriculture; apple leaf diseases; convolutional neural network; EfficientNet;
multistage feature fusion

1. Introduction

Apples (Malus × domestica Borkh.) are rich in many vitamins and provide material
security for human health. Meanwhile, the apple industry is one of the largest fruit
industries in the world [1,2]. With the advent of COVID-19, securing the world’s food
supply has become even more critical. However, due to plant leaf diseases, apples may
suffer significant quality deterioration and yield losses. For example, scab, one of the
typical apple diseases, is highly contagious and can cause yield losses of 70% or more if
not appropriately managed [2]. One of the typical applications of artificial intelligence (AI)
in agriculture is the automatic identification of crop diseases. Smart agriculture requires
unmanned aerial vehicles (UAVs) to diagnose crop diseases accurately and apply pesticides
in real time [3,4]. At the same time, farmers can make precise diagnoses of plant diseases via
their mobile phones. However, traditional apple leaf disease (ALD) identification methods
mainly rely on expert experience to manually extract features such as the texture, shape,
and color of the diseased leaf images [5]. Due to the complexity of the disease spots and
background, the manual identification process is often laborious, time-consuming, and
subjective [6]. Therefore, efficient identification of ALDs can reduce the use of pesticides
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and increase the yield of apple fruit, which is of significance to environmental protection
and the apple industry.

With the development of traditional machine learning (ML) methods, some identifi-
cation methods for plant diseases have been proposed. Chuanlei et al. adopted a genetic
algorithm and correlation-based feature selection to select the most valuable features of
the 38 types of features. They then used a support vector machine (SVM) classifier to
identify three categories of ALDs, with which they were able to achieve 94.22% accuracy [7].
Singh et al. applied the brightness-preserving dynamic fuzzy histogram equalization
technique to enhance images and then used the k-nearest neighbor (KNN) classifier to
identify two categories of ALDs. In their experimental results, the classification accuracy
was 96.41% [8]. Although traditional ML makes the diagnosis of plant diseases more
convenient, the feature extraction of these plant diseases is artificially designed. Extracting
features through artificial designs is often laborious and time-consuming.

In recent years, increasing speeds and capacities of graphical processing units (GPUs)
have paved the way for the development of convolutional neural networks (CNNs) [9].
Researchers have applied CNN models to smart agriculture with encouraging results.
Zhong and Zhao utilized a CNN model based on the DenseNet-121 [10] network and
compared three methods of the classification loss function to identify ALDs. In their
experimental results, the best accuracy was 93.71% [11]. However, the dataset for their
experiment did not contain images in the wild environment. Yadav and Yadav presented a
CNN model that applies a fuzzy c-means clustering algorithm and a contrast stretching-
based preprocessing technique to identify ALDs. Although their proposed model achieved
98% accuracy, it can only identify four categories of ALDs [12]. To identify four categories
of ALDs, Jiang et al. used a CNN model using the ResNet [13] network and the transfer
learning algorithm. Their experiment results showed that the ALD identification accuracy
of their model is 83.75%. Although the accuracy of their proposed model exceeded that
of the traditional ResNet model, the model was not designed to be lightweight [14]. Chao
et al. implemented global average pooling (GAP) [15] layers instead of fully connected (FC)
layers and proposed a CNN model named XDNet, which combined DenseNet [10] and
Xception [16]. Their proposed model achieved 98.82% accuracy on a dataset containing
healthy leaves and five categories of ALDs [17]. In another study, Bi et al. proposed
an improved CNN model based on MobileNet [18] for ALD identification. Although
his proposed model is lightweight, it only obtained 73.50% recognition accuracy for two
types of ALDs [19]. Yan et al. adopted an improved model based on VGG [20] for ALD
identification in which batch normalization (BN) [21] layers were adopted to improve the
inference speed. Meanwhile, the GAP layer was used to replace the FC layer to reduce
parameters (params). They tested on the PlantVillage dataset (PVD) [22] and obtained
99.01% classification accuracy [23]. Luo et al. utilized BN layers and the rectifier linear unit
(ReLU) activation function to improve ResNet. To solve the severe loss of information in the
ResNet downsample, they used channel projection and spatial projection of downsampling.
Their proposed method achieved 94.99% accuracy on a dataset containing five types of
ALDs and healthy leaves. However, this model had more than 20 M parameters which
made it challenging to meet the needs of mobile devices [24]. Yu et al. proposed the
MSO-ResNet (multistep optimization ResNet) network as an ALD recognition model. To
reduce the parameters of their proposed model, they presented the convolution kernel
decomposition and the identity mapping methods. Their proposed model achieved an
average of 95.70% accuracy [25]. Recently, Pradhan et al. utilized ten well-known CNN
models for the detection of ALDs. In their experiments, the dataset consisted of three classes
of ALDs and healthy leaves from PVD. Their experiments showed that DenseNet-201 [10]
outperformed the other nine CNN models with an accuracy of 98.75% [26]. In addition,
Gao et al. proposed a CNN to assess the severity of Fusarium head blight (FHB) in wheat.
By calculating the proportion of the diseased area to the total area, the disease degree
of wheat FHB was divided into four levels, and the accuracy of disease level prediction
reached 91.8% [27].
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Despite the research mentioned above on breakthroughs in CNN applications for
smart agriculture, there are still some shortcomings in the existing research, such as the lack
of accurate and lightweight CNN models for mobile devices. Efficient identification means
that CNNs can achieve high-precision identification with fewer params. In terms of datasets
for identifying ALDs, there is a lack of datasets with rich categories in the wild environment.
A wild environment means the background of plant leaves in the image, not the static
background in the laboratory (usually a single-color background), but the real natural
wild background. Agricultural practitioners use mobile phones to diagnose plant diseases
accurately, usually in non-laboratory environments. Typically, the average execution time
(AET) indicates the inference time required to predict a given image. Keeping a lower AET
and fewer parameters is beneficial for the deployment of mobile devices. Therefore, this
study aims to explore a novel ALD identification model to compensate for the inefficiency
of the models proposed in existing studies. Meanwhile, a category-rich ALD dataset
was constructed to make up for the shortcomings of the existing ALD dataset with fewer
categories. The contributions of this paper are summarized as follows:

1. Data fusion: An apple leaf disease dataset called AppleLeaf9 was constructed to
ensure the generalization of performance of the CNN model. To improve the diversity
of the identified categories, AppleLeaf9 fuses together four different ALD datasets.
The AppleLeaf9 dataset includes healthy apple leaves and eight categories of ALDs,
most of which are in the wild environment.

2. A novel ALD identification model called EfficientNet-MG is proposed. This model
introduces the multistage feature fusion (MSFF) method and the Gaussian error
linear unit (GELU) activation function into EfficientNet, which has the following
three merits:

Accurate: Compared to classical CNN models and previous research methods, the
proposed model ensures a higher accuracy in ALD identification;

Lightweight: To meet real-time demands on mobile devices, the proposed model
maintains a lower AET and fewer parameters;

Robust: More types of ALDs can be identified in the wild environment without
limiting the shooting angles, noise, and other factors.

The rest of this paper is organized as follows: Section 2 describes the datasets and
EfficientNet-MG. Experimental studies are given in Section 3. In Section 4, the results and
comparisons with classical models are obtained. Discussions with comparative research
are given in Section 5. Finally, this paper is concluded in Section 6.

2. Materials and Methods

In this section, the comprehensive dataset called AppleLeaf9 is first introduced. Sec-
ond, the preprocessing image strategy is described, such as contrast limited adaptive
histogram equalization (CLAHE) and data augmentation methods. Finally, EfficientNet-
MG is presented, including the EfficientNet network, MSFF method, GELU activation
function, and transfer learning strategy.

2.1. AppleLeaf9

Insufficient data and low regional representations are among the main issues affecting
the performance of the prediction models [28]. PVD collected 54,306 images of 14 crop
species with 26 diseases, and it contained healthy apple leaves and three categories of
ALDs [22]. However, PVD only contained static background images. It was necessary
to collect ALD images with wild backgrounds to meet the needs of the natural field
environment [17]. The plant pathology challenge datasets (PPCD2020, PPCD2021) were
taken from the online data science platform Kaggle, and the images were collected in
wild fields [29]. The apple tree leaf disease segmentation dataset (ATLDSD) was collected
from four different apple experimental demonstration stations. ATLDSD was collected
in the laboratory (about 51.9%) and wild fields (about 48.1%) under different weather
conditions [30].



Agronomy 2022, 12, 2784 4 of 20

The fusion of the four datasets can make the proposed model identify more categories
of ALDs in the wild environment, which enhances the model’s ability to cope with environ-
mental changes, thus making the proposed model more robust. Therefore, in this paper,
the dataset called AppleLeaf9 was fused from PVD, ATLDSD, PPCD2020, and PPCD2021.
The AppleLeaf9 dataset is available at https://github.com/JasonYangCode/AppleLeaf9
(accessed on 7 October 2022). AppleLeaf9 will help agricultural practitioners better apply
CNN models to solve more ALD practical problems. Agricultural disease experts were
invited to screen each image, and images with incorrect labels were removed. In the pro-
cess of data fusion, some static background images were reduced. Since PVD contains
only static background images, only 2.5% of all images in AppleLeaf9 are from PVD. At
the same time, since some disease categories of ATLDSD, PPCD2020, and PPCD2021 are
the same, AppleLeaf9 fuses partial images of the three datasets. The AppleLeaf9 dataset
contains 14,582 images, 94% in the wild environment. The distribution of AppleLeaf9’s
image sources is shown in Figure 1.
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Figure 1. Distribution of image sources in AppleLeaf9.

The dataset of AppleLeaf9 includes healthy apple leaves and eight categories of ALDs,
with the main symptoms and causes shown in Table 1 [1,17,28]. The samples of AppleLeaf9
are shown in Figure 2. In the early stages of grey spot, subcircular yellow-brown lesions
are found. Then, the spot turns grey. Therefore, Alternaria leaf spot is easily confused with
grey spot in its early stage, which raises the difficulty of identifying the two spots.

Table 1. Main symptoms and causes of the eight types of ALDs.

Types Main Symptoms Main Causes

Alternaria leaf spot The diseased spots often have small round brown or black lesions that
gradually enlarge with a brownish-purple border on leaves.

Alternaria alternata f.
sp. mali

Brown spot The dark brown spots are morphologically different from other lesions. Marssonina coronaria

Frogeye leaf spot The center of the spot turns brownish with dark-brown to purplish edges,
giving the spot a frog eye appearance. Botryosphaeria obtusa

Grey spot In the early stages, sub-circular yellow-brown lesions are found, which later
turn grey.

Phyllosticta pirina Sacc.
& Coryneum foliicolum

Mosaic Bright yellow spots spread throughout the leaves. Apple mosaic virus
Powdery mildew Tiny white spots spread throughout the leaves. Podosphaera leucotricha

Rust The diseased spots are often rusty yellow dots with brown acicular dots in the
center of these dots. Pucciniaceae glue rust

Scab The diseased spots are velvet-like with fringed borders. Venturia inaequalis

https://github.com/JasonYangCode/AppleLeaf9
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2.2. Dataset Preprocessing
2.2.1. CLAHE

CLAHE has been proposed and summarized [31,32]. This technique, which has been
successfully proven to be effective in biomedical image analyses [33], is an adaptive contrast
histogram equalization method. The contrast of an image is reinforced by applying contrast
limited histogram equalization (CLHE) on small image areas, called tiles, rather than the
entire image. In addition, CLAHE reduces the noise amplification of the tiles by limiting
the contrast. Although it does not eliminate artifacts, it is better than adaptive histogram
equalization (AHE).

The process of CLAHE can be divided into three steps. Firstly, the image is decom-
posed into rectangular blocks of equal size, and histogram adjustment is performed in
every rectangular block, including histogram creation, clipping, and redistribution. Sec-
ondly, the mapping function is obtained by the cumulative distribution function of the
clipped histogram. Finally, bilinear interpolation between the rectangular blocks is used to
remove possible block artifacts. The histogram statistics comparison between the original
and CLAHE images is shown in Figure 3. The grayscale value is a constrained linear
combination of the red (R), green (G), and blue (B) channels of the input color image. The
weights of R, G, and B are 0.299, 0.587, and 0.114, respectively, and their summation is 1. It
can be seen that the details of the leaf disease spots become clearer after using CLAHE, and
the pixels of the greyscale image are more widely distributed on the X-axis.
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2.2.2. Data Augmentation

One of the main features of CNNs is their generalization ability, that is, their ability to
process data that has never been observed. However, when the data diversity is limited,
CNN models tend to overfit and have a low generalization ability after training [34]. The
AppleLeaf9 dataset has been divided into three subsets, including training, validation, and
testing datasets in a ratio of 3:1:1. To improve the network’s generalization ability and
reduce overfitting, the data augmentation methods were randomly used to simulate the
changes in angle and noise. The total number in the training dataset was increased one
time to 17,512 images after the data augmentation. Examples of dataset augmentation are
shown in Figure 4, where the direction of rotation is counterclockwise. The number of
images in the dataset is recorded in Table 2.

Table 2. Number of images for training, validation, and testing.

Types Total
Images

Training Images Validation
Images

Testing
Images Labels

Original Augmentation

Alternaria leaf spot 417 251 502 83 83 A1
Brown spot 411 247 494 82 82 A2

Frogeye leaf spot 3181 1909 3818 636 636 A3
Grey spot 339 205 410 67 67 A4
Healthy 516 310 620 103 103 A5
Mosaic 371 223 446 74 74 A6

Powdery mildew 1184 712 1424 236 236 A7
Rust 2753 1653 3306 550 550 A8
Scab 5410 3246 6492 1082 1082 A9
Sum 14,582 8756 17,512 2913 2913 -



Agronomy 2022, 12, 2784 7 of 20

Agronomy 2022, 12, x FOR PEER REVIEW 6 of 21 
 

 

original and CLAHE images is shown in Figure 3. The grayscale value is a constrained 
linear combination of the red (R), green (G), and blue (B) channels of the input color image. 
The weights of R, G, and B are 0.299, 0.587, and 0.114, respectively, and their summation 
is 1. It can be seen that the details of the leaf disease spots become clearer after using 
CLAHE, and the pixels of the greyscale image are more widely distributed on the X-axis. 

 
Figure 3. Comparison between the original image and the CLAHE image: (a) original image; (b) 
histogram of the greyscale image in (a); (c) result of enhancement using CLAHE; (d) histogram of 
the greyscale image in (c). 

2.2.2. Data Augmentation 
One of the main features of CNNs is their generalization ability, that is, their ability 

to process data that has never been observed. However, when the data diversity is limited, 
CNN models tend to overfit and have a low generalization ability after training [34]. The 
AppleLeaf9 dataset has been divided into three subsets, including training, validation, 
and testing datasets in a ratio of 3:1:1. To improve the network’s generalization ability and 
reduce overfitting, the data augmentation methods were randomly used to simulate the 
changes in angle and noise. The total number in the training dataset was increased one 
time to 17,512 images after the data augmentation. Examples of dataset augmentation are 
shown in Figure 4, where the direction of rotation is counterclockwise. The number of 
images in the dataset is recorded in Table 2. 

 
Figure 4. Examples of dataset augmentation: (a) original image; (b) rotated 45°; (c) rotated 90°; (d) 
rotated 135°; (e) rotated 180°; (f) rotated 225°; (g) rotated 270°; (h) rotated 315°; (i) salt-and-pepper 
noise; (j) Gaussian noise. 

  

Figure 4. Examples of dataset augmentation: (a) original image; (b) rotated 45◦; (c) rotated 90◦;
(d) rotated 135◦; (e) rotated 180◦; (f) rotated 225◦; (g) rotated 270◦; (h) rotated 315◦; (i) salt-and-
pepper noise; (j) Gaussian noise.

2.3. Proposed EfficientNet-MG
2.3.1. EfficientNet

As the CNNs used in the ImageNet dataset have become more complex since 2012,
the accuracy has continued to increase, but many models are not effective in computational
load. Tan and Le proposed EfficientNet, one of the state-of-the-art models, achieving
an accuracy of 84.3% in the ImageNet dataset and can be regarded as a group of CNN
models [35]. The EfficientNet group consists of 8 models between B0 and B7 derived
from the baseline network (usually called EfficientNet-B0) by extension. The advantages
of EfficientNet are reflected in two aspects: it not only has a higher accuracy, but also
improves the model’s effectiveness by reducing parameters and floating-point operations
(FLOPs) [36]. Unlike other CNN models, EfficientNet uses a new activation function called
SiLU instead of the ReLU activation function.

By adopting the network architecture search (NAS) method in all network dimensions
(i.e., width, depth, and resolution), EfficientNet has attracted attention because of its
advantages in predictive performance. The width refers to the number of channels in
any layer, the depth relates to the number of layers, and the resolution is associated
with the size of the images. The dimensions are scaled in the following way through
composite coefficients:

depth : d = αϕ

width : w = βϕ

resolution : r = γϕ

s.t. α·β2·γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(1)

where ϕ is a composite coefficient and α, β, and γ are the scaling coefficients of each
dimension that the grid search can fix. After determining the scaling coefficients, these
coefficients are applied to the baseline network (EfficientNet-B0) for scaling to obtain the
desired target model size and parameters. For example, in the case of EfficientNet-B0,
when ϕ = 1 is set, the optimal values are yielded by grid search, i.e., α = 1.2, β = 1.1, and
γ = 1.15, under the constraint of α·β2·γ2 ≈ 2. By changing the value of ϕ in Equation (1),
EfficientNet-B0 can be enlarged to obtain EfficientNet-B1 to B7. Table 3 showcases the
network structure of EfficientNet-B0, in which k is the size of convolution kernels.
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Table 3. EfficientNet-B0 network structure of the baseline network.

Stage Operator Resolution Channels Layers

1 Conv3×3 224 × 224 32 1
2 MBConv1, k = 3 × 3 112 × 112 16 1
3 MBConv6, k = 3 × 3 112 × 112 24 2
4 MBConv6, k = 5 × 5 56 × 56 40 2
5 MBConv6, k = 3 × 3 28 × 28 80 3
6 MBConv6, k = 5 × 5 14 × 14 112 3
7 MBConv6, k = 5 × 5 14 × 14 192 4
8 MBConv6, k = 3 × 3 7 × 7 320 1
9 Conv1×1 & Pooling & FC 7 × 7 1280 1

The feature extraction blocks of EfficientNet consist of mobile reverse bottleneck
convolution (MBConv) [37] blocks, with built-in convolution (conv), BN, SiLU, depth-
wise convolution (DW Conv), squeeze-and-excitation (SE) [38] blocks, and dropout. The
structure of the MBConv block is illustrated in Figure 5, where H, W, and C represent the
height, width, and channel size of the feature map, respectively. In the MBConv block, the
input channel size is first expanded by a factor of four and then the four-times-wider state
is projected back to the original channel size.
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2.3.2. MSFF Method

Recent studies have demonstrated that it is worth employing CNN features from
multiple stages since the shallow convolutional layers contain detailed information, and
the deep convolutional layers have rich semantic information [39]. Although EfficientNet
uses the NAS method and MBConv blocks, the different stage convolutional layers were
not fully utilized. Therefore, the MSFF method is used to learn complementary information
from multiple-stage convolutional layers to address this problem.

Due to the need for being lightweight, EfficientNet-B1 is adopted as the baseline
network to integrate the features of different stage convolutional layers. The features of
various layers f1 are complementary to improve the semantic representation capacity of
the last layer of features. The neural network architecture of EfficientNet-MG is depicted in
Figure 6, in which k and c represent the size and number of convolution kernels, respectively.
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The GAP layers are used in EfficientNet-MG to replace part of the FC layers to reduce
parameters and suppress overfitting.
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Due to the features of different layers having different influencing factors, GELU( f1)
is prefixed with the weighting factor λi. The MSFF formula of EfficientNet-MG is shown
in Equation (2). For comparative analysis, EfficientNet-MG1 to MG3 are proposed as
alternative models with the formulas shown in Equations (3)–(5).

fMG = Concat

(
GELU( f1), GELU( f2),

5

∑
i=3

λiGELU( fi)

)
(2)

fMG1 =
5

∑
i=3

λiGELU( fi) (3)

fMG2 =
5

∑
i=3

GELU( fi) (4)

fMG3 = Concat(GELU( f1), GELU( f2), · · · , GELU( f5)) (5)

2.3.3. GELU Activation Function

The activation function choice is a necessary architecture decision for CNNs to pre-
vent the network as a deep linear classifier. Therefore, the activation functions play an
essential role in CNNs for complex tasks. The activation function of ReLU, which has been
extensively applied in CNNs, was proposed to realize better object recognition. To further
enhance the capability of ReLU, the activation function of exponential linear unit (ELU) [40]
was developed in 2015. After that, the activation function of SiLU was found to realize
a smooth, non-monotonic function. The GELU activation function is a high-performing
activation function [41]. Its nonlinearity weights inputs by their value, rather than gating
inputs by their sign, as in ReLU. Since the GELU activation function has superior perfor-
mance [42,43], it was adopted by EfficientNet-MG to accommodate complex identification
tasks. Considering that the transfer learning strategy is applied to EfficientNet-MG, this
paper uses GELU in part of the FC layers.
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2.4. Transfer Learning

CNNs usually require training in many annotated images to achieve a high prediction
accuracy. However, obtaining such a large-scale dataset is difficult and expensive. In re-
sponse to these challenges, many previous studies have adopted transfer learning methods
to solve cross-domain image classification problems, and they have proven to be very
useful [17,23,26]. The transfer learning method is an ML method in which the knowledge
gained during training in a task is used for training in another field [44]. In the real world,
some examples can be used to explain the transfer learning method. For example, learn-
ing to play the electronic organ may help us understand the piano [44]. Undersampling
of the dataset can easily cause overfitting problems in training, which will lead to poor
robustness of the model. Using pretrained model weights built on the ImageNet dataset
(involving 3.2 million images), EfficientNet-MG was optimized by the transfer learning
method. Figure 7 showcases the transfer learning process from the EfficientNet network to
EfficientNet-MG [45].
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3. Experiment

In this section, the experimental setup is first introduced, including details of the
testing platform and hardware. Then, the training settings (including the loss function,
optimizer, and dynamic multistage attenuation learning rate (DMALR)) are presented,
where four-fold cross-validation is used to ensure the reliability of the experiments. Finally,
the details of the performance metrics are provided. The block diagram of the experimental
procedure is illustrated in Figure 8.
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3.1. Experimental Device

All CNN models used in this work were compiled with a GPU and Python language
support. The experimental studies were conducted in the TensorFlow deep learning (DL)
framework and the Ubuntu server. The configuration parameters of the experiments are
recorded in Table 4.
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Table 4. Hardware and software environment.

Configuration Value

GPU NVIDIA GeForce RTX 3080 Ti 12 GB (NVIDIA Inc., Santa Clara, CA, USA)
CPU 12th Gen Intel(R) Core(TM) i7-12700 K (Intel Inc., Santa Clara, CA, USA)
RAM 32 GB (Kingston Inc., Fountain Valley, CA, USA)

Operation System Ubuntu Server (18.04.5 LTS) (Canonical Inc., London, UK)
Language Python 3.9.7 (Python Software Foundation (PSF) NGO, Wilmington, DE, USA)

DL Framework TensorFlow 2.8.0 (Google Inc., Mountain View, CA, USA)

3.2. DMALR with Cross-Validation

During training, an optimizer of stochastic gradient descent (SGD) [46] was used to
update the models’ weights. The momentum of SGD was set to 0.9. In addition, categorical
cross-entropy (CCE) as the loss function was used for calculating training and testing loss.
In the initial stage of model training, using a higher learning rate (LR) was beneficial to
increase the convergence speed and prevent the model from falling into a locally optimal
solution; as the number of training epochs increased, the LR was gradually reduced to
obtain the best training effect. DMALR was proposed to advance the training effect of the
CNN models. With this method, the LR decayed in stages as the number of training epochs
increased. Meanwhile, there was a slight increase in the LR at the beginning of each stage.
DMALR is defined as follows:

ηN =



M−N
M × η × 1.1, 0 ≤ N < M× 0.3

M−N
M × η × 1.3, M× 0.3 ≤ N < M× 0.5

M−N
M × η × 1.5, M× 0.5 ≤ N < M× 0.7

M−N
M × η × 1.7, M× 0.7 ≤ N < M× 1.0

(6)

Here, η represents the LR in initially, M represents the total number of training epochs,
N represents the Nth epoch (start counting from 0 by default), and ηN represents the
LR corresponding to the Nth epoch. In order to verify the effectiveness of DMALR, a
comparison experiment (in 20 epochs) was conducted between the static LR of 0.1, 0.001,
and DMALR. This comparison experiment did not use the transfer learning strategy to
reduce the influence of other factors. As shown in Table 5, DMALR has the highest accuracy
compared to the two types of static learning rates at the end of 20 epochs. Figure 9 shows
the training effects with different LR strategies in fold 1. It can be found that the accuracy
of the model training process showed relatively large fluctuations due to the static LR at
a value of 0.1 being too high. The model with a static LR of 0.001 had a relatively slow
improvement in the model’s accuracy due to the low value. Compared with the two static
LRs, DMALR can effectively improve the training effect and increase the convergence
speed of the model training.

Table 5. Accuracy of different LR strategies in four-fold cross-validation.

Types Fold 1 Fold 2 Fold 3 Fold 4 Avg

LR = 0.1 90.21% 92.72% 88.87% 92.82% 91.16%
LR = 0.001 89.05% 90.49% 88.77% 89.29% 89.40%

DMALR (η = 0.1) 95.36% 94.02% 93.54% 95.47% 94.60%
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3.3. Evaluation Metrics

Accuracy is one of the widely used evaluation metrics. A higher value of accuracy
corresponds to a better overall performance. However, accuracy alone can be misleading
due to the accuracy paradox when a dataset is unevenly distributed. So, accuracy is
used with other performance metrics, including precision, recall, f1-score, ROC (receiver
operating characteristic curve), and AUC (the area under the curve of ROC). The formulas
of these evaluation metrics are provided below:

Accuracy =
TP + FN

TP + FP + TN + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1−score =
2× Precision× Recall

Precision + Recall
(10)

where TN = true negative, FN = false negative, TP = true positive, and FP = false positive.

4. Results

In this section, the identification performance of EfficientNet-MG is first introduced,
such as convergence comparison, confusion matrix, and ROC. Second, comparisons with
five classical CNN models on performance aspects (e.g., accuracy, parameters, and FLOPs)
are presented. Finally, an ablation study and visualization comparisons are introduced.

4.1. Identification Performance of EfficientNet-MG

Figure 10 shows the accuracy and loss values of the proposed EfficientNet-MG for
training and testing datasets in 70 epochs. It can be found that the accuracy of EfficientNet-
MG exceeds 94% after the first epoch on the testing dataset due to the effect of the transfer
learning method. At the end of the 64th epoch, the highest accuracy of 99.11% is achieved
on the testing dataset.
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The confusion matrix of the final ALD identification results is depicted in Figure 11.
In Figure 11a, all incorrect predictions are off the diagonal, and all correct predictions are
on the diagonal. In Figure 11b, the higher the recall of the model in the corresponding
class, the deeper the color in the visualization results. As can be seen from Table 1, the
early stages of grey spot and Alternaria leaf spot are very similar, which makes it more
challenging to identify these two types of diseases. The recall for all categories is over 97%,
except for Alternaria leaf spot.
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The ROC curves show the comparative performance of EfficientNet-MG in Figure 12.
These curves are generated by plotting the true positive rate on the Y-axis and the false
positive rate on the X-axis. Meanwhile, these curves analyze the model’s score by varying
the cut-off value. Identification outcomes perform better for the high AUC (the area under
ROC) measure. It can be noticed that the AUC for all categories exceeds 0.99.
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4.2. Comparison with the Classical Models

In this paper, the five classical CNN models (i.e., VGG-19 [20], ResNet-152 [13],
Inception-V3 [47], DenseNet-201, and InceptionResNet-V2 [48]) were implemented to
evaluate the performance of the proposed EfficientNet-MG model. Figure 13 shows the
convergence comparison of different models on the testing dataset, in which all the models
use the same transfer learning strategy and dataset preprocessing methods. Due to the
effect of the transfer learning method, the initial convergence speed of all the models is
faster. It can be seen that EfficientNet-MG has kept the highest accuracy of the five classical
CNN models in identifying ALDs.
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Figure 14 compares different models with the testing dataset’s accuracy, parameters,
FLOPs, and AET. Although InceptionResNet-V2 combined the model characteristics of
Inception and ResNet, its accuracy is 0.90% lower than EfficientNet-MG, and its parameters,
FLOPs, and AET are about 6.45, 19.37, and 1.21 times larger than EfficientNet-MG’s,
respectively. EfficientNet-MG achieves the highest accuracy of 99.11% with the lowest
parameters, FLOPs, and AET. Thus, the proposed EfficientNet-MG achieved the best
performance compared with the five classical CNN models. Table 6 compares the average
precision, recall, f1-score, and AUC of EfficientNet-MG with the five classical models. It
can be seen that EfficientNet-MG outperforms the five classical CNN models.
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Table 6. Identification performance comparison among different CNN models.

Model Precision Recall F1-Score AUC

VGG-19 0.9590 0.9533 0.9560 0.9986
ResNet-152 0.9781 0.9770 0.9774 0.9996

Inception-V3 0.9772 0.9706 0.9737 0.9996
Densnet-201 0.9811 0.9783 0.9795 0.9996

InceptionResNet-V2 0.9736 0.9668 0.9702 0.9993
EfficientNet-MG (Ours) 0.9835 0.9820 0.9825 0.9997

4.3. Comparison with EfficientNets

Considering the GPU memory, this paper implemented six types of EfficientNets
between B0 and B5 to evaluate the performance of the proposed EfficientNet-MG model.
Table 7 illustrates the comparative performance of the proposed EfficientNet-MGs and the
six types of EfficientNets, in which all the models use the same transfer learning strategy
and dataset preprocessing methods. It can be found that EfficientNet-MG achieves the same
accuracy as EfficientNet-B3 in ALD identification. Although the accuracy of EfficientNet-B5
is 0.20% higher than EfficientNet-MG, the parameters and FLOPs of EfficientNet-B5 are
3.39 and 15.28 times higher than those of EfficientNet-MG, respectively. On the other hand,
EfficientNet-MG has a higher accuracy than the other three alternative MSFF models. As
shown in Table 7, the MSFF method with multiple strategies is more effective than a single
strategy. Meanwhile, the method using weighting factors is more effective than the method
that does not use weighting factors. The accuracy of EfficientNet-MG3 is 0.14% lower
than that of EfficientNet-B1, indicating that directly concatenating feature vectors from
different convolutional layers may harm the semantic representation capacity of high-layer
features. Therefore, when comparing EfficientNet-B0 to B5 and EfficientNet-MG1 to MG3,
EfficientNet-MG achieves more competitive results in ALD identification.
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Table 7. Comparative performances between proposed EfficientNet-MGs and EfficientNets.

Models Input Size Accuracy Params FLOPs AET

EfficientNet-B0 224 × 224 98.59% 4.06 M 0.39 B 46.22 ms
EfficientNet-B1 240 × 240 98.73% 6.59 M 0.64 B 49.48 ms
EfficientNet-B2 260 × 260 98.97% 7.78 M 1.01 B 49.86 ms
EfficientNet-B3 300 × 300 99.11% 10.80 M 1.87 B 55.06 ms
EfficientNet-B4 380 × 380 99.31% 17.69 M 4.46 B 57.19 ms
EfficientNet-B5 456 × 456 99.31% 28.53 M 10.39 B 63.06 ms

EfficientNet-MG1 240 × 240 98.97% 7.79 M 0.68 B 49.63 ms
EfficientNet-MG2 240 × 240 98.73% 7.79 M 0.68 B 49.63 ms
EfficientNet-MG3 240 × 240 98.59% 8.95 M 0.68 B 50.03 ms
EfficientNet-MG 240 × 240 99.11% 8.42 M 0.68 B 50.41 ms

4.4. Visualization of Prediction Results

Feature visualization can help to understand the diagnostic process of the CNN model.
Figure 15 shows the identification results with feature visualization of EfficientNet-MG and
EfficientNet-B1, in which L1 to L4 are the labels of the different layers and are marked in
Figure 6. Although EfficientNet-B1 correctly detects the powdery mildew leaf, its predicted
probability is lower than EfficientNet-MG. On the other hand, for the powdery mildew
leaf containing Gaussian noise, the identification results of EfficientNet-B1 showed errors,
which shows the robustness of EfficientNet-MG. Meanwhile, it can be noticed that the
shallow layer’s features are very close to the original image data, in which the layers retain
most of the detailed information. With the layers becoming deep, more semantic features
are obtained and more details about the ALD’s lesion category become implicitly available.
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4.5. Ablation Study

The ablation study is beneficial for investigating the performance improvement of
CNNs. Table 8 shows the accuracy improvement process of the optimization algorithm
in this paper. Dataset preprocessing methods can enhance the network’s generalization
ability and reduce overfitting, which increases the accuracy by 0.35%. The transfer learning
strategy gives the CNN models a more robust learning capability and saves training time,
which improves the accuracy by 0.27%. Since the shallow and deep convolutional layers
contain detailed and semantic information, respectively, the MSFF method can further
boost the semantic representation capacity of the last layer of features. Meanwhile, GELU
is a high-performing CNN activation function. The MSFF method and the GELU activation
function are used to increase the accuracy by 0.38%.

Table 8. Ablation study from EfficientNet-B1 to the proposed EfficientNet-MG.

EfficientNet-B1 EfficientNet-MG

Dataset
preprocessing ×

√ √ √

Transfer learning × ×
√ √

MSFF & GELU × × ×
√

Accuracy 98.11% 98.46% 98.73% 99.11%

5. Discussion

Plant diseases are a significant threat to the security of the global apple supply, and
the latest AI technologies need to be applied to agriculture to control diseases. CNN-based
disease detection has been widely studied for its ease of feature extraction and robustness.
As the computing power of devices increases, the model size of CNNs becomes increasingly
large, but many models are ineffective in computational load. The apple industry requires
UAVs to diagnose accurately and apply pesticides in real-time. At the same time, farmers
can make precise diagnoses of ALDs via their mobile phones. Efficient identification of
ALDs can reduce the use of pesticides and increase the quality of apple fruit, which is of
significance to the apple industry.

Although the previous research on ALD identification has made welcome progress,
there are still some shortcomings. Table 9 showcases the comparison with some existing
studies for ALD identification. It can be noted that most of the existing studies proposed
methods that can only identify ALDs in six categories and below. The models proposed
in references [7,8,19] only identify two to three classes of ALDs and may not be able to
cope with the diversity of ALDs. While the models proposed in [11] can identify six classes
of ALDs, the dataset for the experiment did not contain images in the wild environment.
Although the accuracy of the models proposed in [24,26] exceeds 90%, the params of these
models exceed 20 M, which may make them unfavorable for mobile device deployment.
On the other hand, while the studies in the [23] proposed model has an accuracy of over
99%, this model can only identify four classes of ALDs and the background of most images
is static, which may not meet the practical requirements for detecting ALDs in the wild.
Although the models proposed in [14,17,25] are able to identify more than four classes of
ALDs, the accuracy of these models is lower than that of the model proposed in this paper.
While these references in Table 9 used different datasets, AppleLeaf9, constructed in this
paper, has more categories of ALDs, and the proposed identification method achieves more
competitive results. Therefore, the ALD identification system proposed in this paper can
accurately identify more categories of ALDs with fewer params, which has great value for
AI applications in agriculture.
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Table 9. Comparison with existing studies for ALD identification.

References Methods/Models Categories Params Accuracy

[7] ML using SVM 3 - 94.22%
[11] CNN using Densenet 6 - 93.71%
[14] CNN using ResNet 4 25.09 M 83.75%
[17] XDNet 6 10.16 M 98.82%
[19] CNN using MobileNet 2 - 73.50%
[23] CNN using VGG 4 14.72 M 99.01%
[8] ML using KNN 2 - 96.41%
[24] CNN using ResNet 6 25.12 M 94.99%
[25] MSO-ResNet 6 - 95.70%
[26] DenseNet-201 4 20.24 M 98.75%

Proposed EfficientNet-MG 9 8.42 M 99.11%

6. Conclusions and Future Work

In this paper, to identify more categories of ALDs in the wild environment, a com-
prehensive dataset called AppleLeaf9 was constructed and opened. This dataset includes
healthy apple leaves and eight types of ALDs in the field environment without limiting the
shooting angles, noise, and other factors. AppleLeaf9 will help agricultural practitioners
better apply CNN models to solve more practical problems on ALDs. CLAHE and some
data augmentation methods were used for dataset preprocessing. Then, an accurate and
lightweight CNN model, namely EfficientNet-MG, was proposed for ALD identification.
Moreover, DMALR was proposed to advance the training effect of the CNN models. The
experimental results showed that EfficientNet-MG achieves an accuracy of 99.11% with
only 8.42 M parameters and 0.68 B FLOPs for healthy apple leaves and eight types of ALDs.
In addition, EfficientNet-MG can identify an ALD image in the wild environment with
only 50.41 ms. In the metrics of accuracy, parameters, FLOPs, and AET, EfficientNet-MG
outperformed the five classical CNN models. Therefore, EfficientNet-MG is an accurate,
lightweight, and robust CNN model for ALD identification in terms of overall performance,
which provides an effective method for improving the yield and quality of apples. There is
still a shortcoming in this paper: ALDs were not classified and diagnosed according to their
degree of disease. In future work, more research can be improved in the following aspects:
(1) To provide more detailed disease indicators, we plan to assess the disease severity of
ALDs based on the diseased area. (2) We plan to deploy the proposed EfficientNet-MG to
mobile devices, such as mobile phones and UAVs.
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