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Šeremešić, S.; Pezo, L.; Lončar, B.;
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Abstract: Maize is the most widespread and, along with wheat, the most important staple crop in
the Republic of Serbia, which is of great significance for ensuring national food security. With the
increasing demand for food and forage, intensive agricultural practices have been adopted in the
maize production systems. In this direction, considerable research efforts have been made to examine
the effects of different types of cover crops as a green manure on maize productivity; however,
no consistent conclusions have been reached so far. Therefore, the objective of the present study
is to examine the possibility of predicting the effects of winter cover crops (CC) integrated with
different management practices on the morphological traits, yield, and yield components of maize.
The experiment was carried out on chernozem soil from 2016 to 2020 as a randomized complete
block design arranged as a split-split-plot with three replicates. The pea as a sole crop (P) and the
mixture of pea and triticale (PT) are sown as winter CC with the following subplots: (i) CC used as
green manure, and (ii) CC used as forage and removed before maize sowing. The artificial neural
network is used for exploring nonlinear functions of the tested parameters and 13 categorical input
variables for modeling according to the following factors: CC, way of using CC, N fertilization, and
year. The computed maximums of plant height, number of leaves, number of internodes, plant
density, number of ears, grain yield, 1000-grain weight, hectolitre weight, dry matter harvest residue,
harvest index, leaves percentage, stems percentage, and ears percentage are as follows: 232.3 cm;
9.7; 10.2; 54,340 plants ha−1; 0.9; 9.8 t ha−1; 272.4 g; 67.0 kg HL−1; 9.2 t ha−1; 0.52; 18.9%; 36.0%,
and 45.1%, respectively. The optimal result is obtained with peas used as green manure, with
50 kg N ha−1 and in the climatic conditions of 2018. Consequently, maize production under subse-
quent sowing periods can be successfully optimized by adapting selected management options for
higher yield accomplishment.

Keywords: cover crops; green manure; maize; yield; crop performance; artificial neural network

1. Introduction

The main challenge for agriculture in the 21st century will be to increase food pro-
duction with minimal environmental impact [1,2]. Therefore, it is necessary to analyze
the current approach to agriculture and gradually introduce new solutions and technolo-
gies. Conventional farming over a long time has been proven to lead to soil degradation,
reducing soil buffering capacity in the variable environmental conditions [3], and increas-
ing sensitivity to extreme weather events [4]. This coincides with the state of the arable
land-use systems in the Pannonian Plain, where significant changes in soil properties have
been reported (soil organic matter loss, deterioration of physical and biological properties,
salinization, etc.) [5–7]. An additional concern arises from the limited use of manure, which
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is attributed to decreased livestock numbers [8] and narrow crop rotations. The tendency
for more efficient use of soil, nutrients, and water has made it increasingly important to
adapt current cropping technology. Incorporating cover crops (CC) in crop rotation is one
of the solutions for soil conservation and improvement, focusing on the better utilization of
agroecological conditions [9,10].

CCs in cropping systems could provide economic and environmental benefits and play
an important role in adjusting the cropping systems toward sustainable production [11–15]
and climate-smart agriculture. For example, the introduction of CCs may result in the
reduction of the use of mineral nitrogen (N) fertilizers due to biologically fixed N [16–18];
preserving soil moisture content and preventing nutrient leaching [19,20]; erosion con-
trol [21,22]; maintaining water quality [10]; increasing organic matter content, improvement
of soil structure and biological soil properties [23–25]; as well as in the preservation of
biodiversity [26], and agroecosystem health in general [12,27].

The selection of suitable cover crop species in semi-arid conditions of the Pannonian
Plain is crucial for achieving multiple benefits in sustainable agricultural production.
Considering the risk of extremely unfavorable years and the projected increase in the
variability of climatic conditions [28], CCs have a great potential to be combined with
existing cultivation systems, because during the winter season (November–February),
the fields remain bare. Therefore, winter CCs can regulate soil conditions and water
accessibility for the subsequent crops [29,30]. In the northeastern U.S. dairy farms, winter
CCs that showed higher potential are different types of hairy vetch, clovers, winter wheat,
and rye [31]. The same authors point out that winter triticale is increasingly present in
production as a CC that can be used as a quality ruminant feed in the spring. Conversely,
in Southeastern Europe, Ćupina et al. [32] found the lowest yield of silage maize for two
consecutive years following triticale due to the higher water consumption. In addition
to forage production, winter CCs are increasingly used as green manure [33,34] or as
living mulch. The benefits of green manuring are closely related to the C:N ratio in cover
crop biomass. Thus, leguminous CCs used as green manure ensure N for the subsequent
crop [35], while for increased soil organic matter, priority should be given to grasses
because of their higher C:N ratio [36]. Sustainable agricultural practices also favor late
spring plowing or reduced tillage, as well as direct maize sowing into living mulch [37].
A meta-analysis based on 268 literature findings showed a 13% increase in maize yields
with the CC mixture compared to the control [15]. Therefore, Vojnov et al. [38] suggest that
it would be beneficial to include CCs in maize management practice through a strategic
concept that would foresee subsidies, which would enable all the positive effects of this
important ecological measure on farming in general.

The artificial neural network (ANN) was recently recognized as an attractive math-
ematical method for exploring maize production from the subsequent sowing period
systems [39–41]. The ANN model does not need concrete model parameters but still em-
braces a capacity to obtain results from the experimental data, handle the complex system
with nonlinearities and elaborate on the synergies between variables [42]. The uses of ANN
models cover numerous investigations of agricultural production studies [43]. Agricul-
tural production expenses are not low; therefore, they need to be predicted numerically
as much as possible. One of the ways of cost reduction is using fitting tools that predict
agricultural production and variations in crop properties through breeding. Moreover, the
involved agro-technology level in the cultivation, particularly fertilization with nitrogen,
influences crop features and is challenging to prognosticate. The multi-objective optimiza-
tion (MOO) for adjusting the parameters of agricultural production in order to maximize
the yields was presented in the study by [44]. In that study, 13 ANN models coupled
with ant colony optimization were developed to optimize the parameters of the biodiesel
production process.

In accordance with this study, the MOO analysis combined with ANNs and genetic
algorithm (GA) was implemented in the maize production, keeping in mind that there
might not be a unique solution due to the contradictory objective functions [39,45,46]. As a
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part of this study, the solution of the MOO was estimated by introducing a Pareto optimal
method [39].

Based on all of the above, the goal of this study was to examine the possibility of
predicting morphological traits, grain yield and yield components, and some crop perfor-
mance of maize; i.e., the following 13 variables: the plant height (H), number of leaves
(NL), number of internodes (NI), plant density (PD), number of ears (NE), grain yield (GY),
1000-grain weight (TGW), hectolitre weight (HW), dry matter harvest residue (DMHR),
harvest index (HI), leaves percentage (L), stems percentage (S) and ears percentage (E); as a
function of cover crops type (CC), way of using cover crops (WUCC), N fertilization (NF),
and year of maize production (YEAR) under semiarid conditions of the experimental site.

2. Materials and Methods
2.1. Experimental Site Description—Location, Climate and Soil Characteristics

The research was carried out in the period from 2016 to 2020, at the Rimski Šančevi
experimental station (45◦19′ N; 19◦50′ E; 80 m a.s.l.) of the Institute of Field and Vegetable
Crops in Novi Sad; the National Institute of the Republic of Serbia (in Vojvodina, Northern
Province of Serbia), in the typical chernozem zone of the southern part of the Pannonian
Plain (Figure 1). According to the WRB classification (2014), the soil type is medium-deep
chernozem, formed on loess and loess-like sediments; is classified as Calcareous Chernozem
(aric, loamic, pachic), abbreviated as CH-cc-ai.lo.ph.

The climate is characterized as a moderate continental climate with extreme seasonal
variability in temperature and precipitation. Based on long-term data (1970–2017), the
mean annual air temperature is 11.4 ◦C and the total annual precipitation sum is 640.5 mm.
Monthly precipitation and temperature data were collected from the weather station at
Rimski Šančevi experimental field (Figure 1).

Weather Conditions during the Research Period

During the investigated period, temperatures, and precipitation showed differences
among investigated growing seasons and deviations from the long-term averages (LTA)
(Figure 2). At the beginning of the experiment, from December 2016 to March 2017, the
lower precipitation was recorded compared with the LTA (1970–2017). That caused a
shortage of water in the soil, and drought continued in summer 2017 (July–August), while
in autumn 2017 precipitation increased. Temperatures in the period October–September
2017/18 were higher by 1.4 ◦C compared with LTA. The amounts of precipitation during
the winter period compensated for the lack of soil moisture in 2017 and provided sufficient
soil moisture during the spring season of 2018. Total precipitation in the hydrological year
2017/18 (753.4 mm) was above the average values for the experimental site. The small
amount of precipitation (7.4 mm) at the beginning of the hydrological year 2018/19 (Octo-
ber) resulted in decreased soil moisture in autumn 2018. In February and March, a period
with a lower amount of precipitation continued, and from the spring the precipitation
increased, particularly in May (147.6 mm). Total precipitation for the hydrological year
2018/19 was lower by 42.9 mm than the LTA. Based on the meteorological conditions,
2019 was the warmest in the last 50 years, with an average annual temperature of 13.4 ◦C.
During the hydrological year of 2019/20, the amount of precipitation was 72.5 mm higher
than LTA. In June and August, the amount of precipitation (163 and 138 mm, respectively)
was significantly above the average values. Significant deviations from the monthly tem-
peratures were recorded in November and December 2019, as well as in February 2020.
The warmest month in 2020 was August, with an average monthly temperature of 24.1 ◦C.
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Figure 1. Location of the trail and experimental design showing the main analyzed factors: cover
crops (CC) type and way of using CC (PT: winter pea + triticale, for green manure and for forage;
P: winter pea as a sole crop, for green manure, and for forage; Ø: control treatment-without CC), and
N fertilization treatments (N50: with N fertilizer of 50 kg ha−1, NØ: without N fertilizer application).
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Figure 2. Long-term average (LTA) and total monthly precipitation (P) and average monthly
air temperature (T) for hydrological years (A) 2016−2017, (B) 2017−2018, (C) 2018−2019,
and (D) 2019−2020. Bars and left y−axis represent precipitation, and right y−axis and lines represent
temperature data.

2.2. Experimental Design

The experimental plots were established using a randomized complete block design
(RCBD) arranged as a split-split-plot, with 3 replicates (Figure 1). Maize was grown
in a 3-year rotation with Sudan grass and soybean. Cover crops (CC) were considered
as the main plots, which consisted of the following: (a) the winter pea (Pisum sativum
ssp. Arvense L.) (P), (b) the mixture of winter pea + triticale (×Triticosecale) (PT), and (c)
control treatment (Ø, without CC). The CC plots were divided into the following two
sub-plots (way of using cover crops, WUCC): in the first sub-plot, winter CC was used
as green manure with plowing, while in the second, the cover crops were mowed and
forage was taken away. Based on above factors, the trial anticipated 5 treatments as
follows: (i) winter pea + triticale (PT) for green manure, (ii) winter pea + triticale (PT) for
forage, (iii) winter pea as a sole crop (P) for green manure, (iv) winter pea (P) for forage,
and (v) control (Ø)-without CC. All sub-plots were additionally divided into two sub-sub-
plots (N fertilization), namely, with nitrogen fertilizer of 50 kg ha−1 (N50), and without N
fertilizer application (NØ). The dimensions of each individual basic plot were 6 × 4 m, i.e.,
24 m2. Winter CC was sown in autumn, in the last week of October/beginning of November,
and cutting for forage and plowing as green manure was performed in May. After plowing
and seedbed preparation, in the first decade of June, maize (hybrid NS-4051) was sown at a
distance of 23 cm between plants in a row and 70 cm between rows, with a seeding rate of
62,000 plants ha−1. Nitrogen (Urea, 46% N) was applied in maize vegetative phase BBCH
34, and the harvest was performed in October. The description of field operations by
analyzed years is shown in Table 1.
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Table 1. Time of field operations during the season 2016–17, 2017–18, 2018–19, and 2019–20.

Field/Year 2016–17 2017–18 2018–19 2019–20

Cover Crops Cover Crop Seeding Rates (kg ha−1)

Winter Pea 120
Winter Pea + Triticale 90 + 30

Field Operation Date

Cover crop sowing 28 October 8 November 7 November 15 November
Cover crops plowing 5 May 18 May 22 May 18 May

Maize sowing 1 June 15 June 11 June 25 May
Fertilization (Urea, 46%) 15 June 1 July 25 June 10 June

Maize harvest 26 October 18 October 23 October 16 October
Soil sampling 29 October 20 October 25 October 20 October

2.3. Measurements and Analytical Determination

The disturbed field moist soil samples (1 kg of soil per plot) were collected from
the topsoil (0–30 cm) in autumn, after maize harvest (Table 2). The pH value of the
soil was determined in the suspension of soil in KCl and H2O, by Metrel MA 3657 pH
meter. Humus content was determined by oxidizing organic matter with potassium
bichromate [47]. Calcium carbonate (CaCO3) content was determined volumetrically using
Scheibler calcimeter. Mineral N in the soil was extracted using 2 M KCl (1:4 soil-to-solution
ratio, on weight basis) and determined by steam distillation [48]. The available phosphorus
(P) and potassium (K) content were measured by the Ammonium-Lactate (AL) method.
The concentration of P2O5 was measured by spectrophotometry, while the concentration of
K2O was measured by flame photometry [49].

Table 2. Average soil chemical characteristics of experimental site after maize crop harvest.

Year pH
(KCl)

pH
(H2O)

CaCO3
(%)

Humus
(%)

N
(%)

(mg 100 g−1 of Soil)

P2O5 K2O

2016 * 7.21 ± 0.10 7.95 ± 0.14 8.57 ± 0.19 2.61 ± 0.19 0.13 ± 0.01 16.65 ± 3.04 20.31 ± 2.01
2017 7.48 ± 0.06 8.14 ± 0.07 8.96 ± 1.42 2.59 ± 0.08 0.19 ± 0.01 17.13 ± 1.05 23.67 ± 0.52
2018 7.43 ± 0.10 8.11 ± 0.06 8.68 ± 2.64 2.53 ± 0.15 0.19 ± 0.01 18.41 ± 3.03 23.43 ± 2.21
2019 7.23 ± 0.03 8.12 ± 0.05 9.48 ± 2.01 2.69 ± 0.19 0.20 ± 0.01 14.54 ± 1.95 23.21 ± 2.05
2020 7.33 ± 0.05 8.21 ± 0.05 9.11 ± 1.73 2.54 ± 0.13 0.18 ± 0.01 14.62 ± 1.88 23.02 ± 1.53

* 2016 was taken as initial soli properties before experimental setup. The data in the table represent the
mean ± standard deviation (SD).

The dry matter yield of aboveground biomass of cover crops (t ha−1) was evaluated
before incorporation by cutting the crop to a stubble height of 5 cm. Samples were collected
from 1 m2 from each basic CC plot and each replicate. Samples were taken from the central
part of each plot. The dry matter yield of cover crops was obtained by drying samples
to a constant mass at 105 ◦C in the oven. The morphological traits and yield components
of maize were measured at the maize-harvesting time (October) by randomly choosing
15 plants from each plot in 3 repetitions. Grain yield was adjusted to a moisture content
of 14%.

The following variables, i.e., performances of maize plants and crops were recorded:
plant height (H; cm), number of leaves (NL), number of internodes (NI), plant density (PD;
number of plants ha−1), number of ears (NE), grain yield (GY; t ha−1), 1000-grain weight
(TGW; g), hectolitre weight (HW; kg HL−1), dry matter harvest residue (DMHR; t ha−1),
harvest index (HI), and leaf (L), stem (S), and ear (E) percentage.
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2.4. ANN Modelling

A multi-layer perception model (MLP), with three layers (input, hidden, and output)
was implemented to construct 13 ANN models for the following output variables: H, NL,
NI, PD, NE, GY, TGW, HW, DMHR, HI, L, S, and E; according to the following factors:
cover crops type (CC), way of using cover crops (WUCC), N fertilization (NF) and YEAR.
This format of the ANN model is approved for its high potential of estimating nonlinear
functions [50–53].

Before the ANN model’s computation, input and output data should be normalized
to enhance the outcome of the ANN [54]. Throughout the ANN model’s building, input
data are repeatedly inserted in the network [55–57]. The training process of the network
was replicated 100,000 times, testing the various structures of the ANN model, includ-
ing a diverse number of neurons in the hidden and the output layers (1–20), alternative
activation functions (such as the following: logarithmic, logistic, tangent hyperbolic, or
identity), and with random starting values of weight coefficients and biases. The ANN
structure optimization was accomplished by achieving the minimal validation error. The
Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) was implemented for resolving the
unconstrained nonlinear optimization problem throughout the ANNs construction [54].

The maize crop performance database, which was employed for the 13 ANN models,
was stochastically segmented into the following: training, cross-validation, and testing data
(70%, 15%, and 15% of experimental data, respectively). The training data set was applied
during the learning cycle of the ANNs calculation and also used to evaluate the optimal
number of neurons in the hidden layer and compute the weight coefficient of individual
neurons in the network [58]. The weight coefficients and biases connected to the hidden
and output layers of the ANN models were recorded in matrices and vectors W1 and B1,
and W2 and B2, individually. The neural network model can be displayed by the following
matrix equation:

Y = f1(W2 · f2(W1 · X + B1) + B2) (1)

where Y is the matrix of the outputs, f 1 and f 2 are transfer functions in the hidden and
output layers, respectively, and X is the matrix of inputs [59]. The elements of matrices
W1 and W2 for each ANN model were computed during the learning cycle, in which
the elements are constantly introduced applying an optimization method to minimize
the disagreement between the data and the models [54,60,61]. The BFGS algorithm was
implemented to enhance the evaluation and stabilize the solution’s convergence [62]. The
coefficients of determination were utilized as parameters to monitor the execution of the
achieved ANN model. The ANN model was created to foresee and optimize the following
parameters: H, NL, NI, PD, NE, GY, TGW, HW, DMHR, HI, L, S, and E, according to the
following treatments (factors): CC, WUCC, NF, and YEAR.

2.5. Global Sensitivity Analysis

The Yoon’s global sensitivity formula for the obtained ANN model was exploited
to evaluate the relative influence of the input parameters on output variables, based on
weight coefficients of the developed ANN models [63].

RIij(%) =

n
∑

k=0
(wik · wkj)

m
∑

i=0

∣∣∣∣ n
∑

k=0
(wik · wkj)

∣∣∣∣ · 100% (2)

where: w—weight coefficient in ANN models, i—input variable, j—output variable, k—
hidden neuron, n—number of hidden neurons, m—number of inputs.
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2.6. Error Analysis

The numerical confirmation of the developed model was investigated applying the
coefficient of determination (R2), reduced chi-square (χ2), mean bias error (MBE), root mean
square error (RMSE), and mean percentage error (MPE). These frequently used parameters
can be obtained according to the following equations [64]:

χ2 =

N
∑

i=1
(xexp,i − xpre,i)

2

N − n
, (3)

RMSE =

[
1
N
·

N

∑
i=1

(xpre,i − xexp,i)
2

]1/2

, (4)

MBE =
1
N
·

N

∑
i=1

(xpre,i − xexp,i), (5)

MPE =
100
N
·

N

∑
i=1

(

∣∣xpre,i − xexp,i
∣∣

xexp,i
) (6)

where xexp,i marks the experimental values and xpre,i present value computed by the model,
N and n are the number of observations and constants, accordingly.

2.7. Multi-Objective Optimization

The obtained ANN models were employed for multi-objective optimization (MOO)
calculation, with the aim to gain the specific set of production parameters, which would
extract the maximal values of PD, GY, TGW, HW, DMHR, and HI. The final result of MOO
was derived using a Pareto front algorithm, which existed in the case of one objective
function improvement without deteriorating the others [39]. The genetic algorithm (GA)
was used to find the solutions to the MOO problem by a stochastic method inspired by
natural evolution applying the mutation, selection, inheritance, and crossover [65]. For the
MOO computation, MATLAB software (version 7.10.0 (2010), The MathWorks Inc., Natick,
MA, USA) was used, and gamultiobj algorithm was used for MOO optimization. The
primary population is formed by chance and then introduced to a set of points in the design
area. The populations of the next generations were determined using distance measures and
non-dominated ranking of the particular points within the existing generation [39,45,46].
Modeling, statistical analysis, and multi-objective optimization of the collected data in this
study were processed statistically using the software package STATISTICA version 14.0.
(TIBCO Software Inc., Palo Alto, CA, USA).

3. Results
3.1. Dry Matter Yield of Cover Crops

The dry matter yield of cover crops differed and depended on a complex interaction of
years and CC. Due to favorable weather conditions, the highest dry matter yield of CC was
achieved in 2020 with the mixture of PT (4.4 t ha−1) and was higher by 0.9 t ha−1 compared
to the sole pea crop (Figure 3). The lowest yield of CC dry matter was achieved in 2017, in
the pea crop (1.2 t ha−1), which differed by 0.5 t ha−1 in relation to the mix PT. In the years
2018, 2019, and 2020, the CC yield was higher than in 2017. The yield of PT was higher by
1.7 t ha−1 in 2018, i.e., by 2.7 t ha−1 in 2020 compared to the yield in 2017.
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3.2. ANN Model

The attained ANN models showed sufficient generalization ability for experimental
data prediction. Based on the ANN models’ performance, the optimal number of neurons
in the hidden layer for calculation of the following selected parameters: H, NL, NI, PD, NE,
GY, TGW, HW, DMHR, HI, L, S, and E, the prediction was between 5 and 10 to attain the
required high values of R2 (in the range from 0.487 to 0.966, for the training period) and as
low as possible sum of squares (SS) values (Tables 3 and 4).

Table 3. ANN models summary (performance and errors), for training, testing, and validation cycles.

Variable Network
Name

Performance Error Training
Algorithm

Hidden
Activation

Output
ActivationTraining Testing Validation Training Testing Validation

H MLP 12-7-1 0.966 0.949 0.953 41.583 41.372 41.244 BFGS 179 Tanh Exponential
NL MLP 12-9-1 0.487 0.495 0.485 0.124 0.121 0.120 BFGS 127 Logistic Identity
NI MLP 12-9-1 0.508 0.501 0.502 0.116 0.114 0.112 BFGS 135 Tanh Tanh
PD MLP 12-5-1 0.793 0.796 0.808 397.146 395.384 389.697 BFGS 315 Tanh Exponential
NE MLP 12-10-1 0.508 0.515 0.518 0.001 0.001 0.001 BFGS 139 Logistic Tanh
GY MLP 12-10-1 0.891 0.902 0.890 0.309 0.305 0.301 BFGS 237 Exponential Exponential
TGW MLP 12-7-1 0.838 0.825 0.828 168.655 171.050 168.741 BFGS 122 Tanh Logistic
HW MLP 12-6-1 0.713 0.710 0.723 7.391 7.516 7.588 BFGS 248 Logistic Identity
DMHR MLP 12-7-1 0.855 0.854 0.841 0.421 0.421 0.414 BFGS 185 Tanh Logistic
HI MLP 12-9-1 0.698 0.689 0.694 0.001 0.001 0.001 BFGS 103 Tanh Tanh
L MLP 12-5-1 0.855 0.850 0.840 3.489 3.439 3.501 BFGS 383 Logistic Tanh
S MLP 12-8-1 0.773 0.764 0.775 3.259 3.214 3.196 BFGS 129 Logistic Exponential
E MLP 12-10-1 0.621 0.628 0.626 8.281 8.370 8.277 BFGS 173 Exponential Tanh

Table 4. The “goodness of fit” tests for the developed ANN models.

Variable χ2 RMSE MPE SSE AARD R2 Skew. Kurt. St.Dev. Var.

H 91.419 9.120 3.695 11,975.867 1075.800 0.966 −0.202 0.916 9.151 83.747
NL 0.272 0.497 3.876 35.588 115.667 0.486 0.124 0.176 0.499 0.249
NI 0.255 0.482 3.729 33.452 132.667 0.505 0.269 0.805 0.484 0.234
PD 8.7 × 106 2.8 × 103 4.662 1.1 × 109 8.2 × 105 0.788 −0.127 −0.197 2.8 × 103 8.0 × 106

NE 0.003 0.053 3.529 0.400 14.667 0.507 0.075 0.788 0.053 0.003
GY 0.679 0.786 12.653 88.940 184.400 0.885 −0.165 1.726 0.789 0.622
TGW 370.784 18.366 6.015 48,572.767 3704.667 0.835 0.169 0.964 18.430 339.670
HW 16.249 3.845 5.155 2128.660 607.000 0.716 −0.075 1.012 3.858 14.886
DMHR 0.925 0.918 13.658 121.240 105.400 0.854 −0.087 0.632 0.921 0.848
HI 0.002 0.040 6.905 0.228 5.287 0.699 −0.199 0.210 0.040 0.002
L 7.671 2.642 7.517 1004.840 197.867 0.853 2.369 26.149 2.651 7.027
S 7.165 2.553 6.873 938.633 287.467 0.773 0.061 0.959 2.562 6.564
E 18.206 4.070 6.482 2384.947 356.467 0.621 −1.929 20.442 4.084 16.678
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The goodness of fit among experimental computations and model estimated outputs,
described as the ANN models’ performance (sum of R2 within measured and calculated
parameters), through training, testing, and validation actions, are displayed in Table 4.

The used ANN models predicted the experimental variables quite well for a wide
range of the process parameters (which can be seen in Figures 4 and 5, where the experi-
mentally estimated and predicted values of the ANN models are shown).
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Figure 5. Comparison of experimentally obtained values of (a) TGW, (b) HW, (c) DMHR, (d) HI,
(e) L, (f) S, and (g) E, with ANN predicted values.

The R2 values within experimental and ANN model outputs for H, NL, NI, PD, NE,
GY, TGW, HW, DMHR, HI, L, S, and E, were 0.966; 0.487; 0.508; 0.793; 0.508; 0.891; 0.838;
0.713; 0.855; 0.698; 0.855; 0.773; 0.621, accordingly, throughout the training period.
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3.3. Global Sensitivity Analysis—Yoon’s Interpretation Method

In this segment, the impact of input variables (i.e., factors CC, WUCC, NF, and YEAR)
on H, NL, NI, PD, NE, GY, TGW, HW, DMHR, HI, L, S, and E, throughout the maize
production, the Yoon’s interpretation method of the generated ANN models were analyzed.
The graphical display of the ANN model results is shown in Figure 6.
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Figure 6. The relative influence (%) of CC, WUCC, NF and YEAR on (a) H, (b) NL, (c) NI, (d) PD,
(e) NE, and (f) GY, determined using Yoon’s interpretation method.

As presented in Figure 6a,f, 2017 is the most negatively influential parameter on H and
GY, with a relative importance of −40.78% and −23.69%, respectively; while the influence
of the year 2018 on the NL was quite the opposite, with a relative influence of +24.23%
(Figure 6b). The arid period during the summer months of 2017 (Figure 2a) affected the
slow growth and development of maize plants, as well as grain yield. The results show that
optimal conditions for maize production can be achieved if winter peas are incorporated
into the soil as green manure, along with nitrogen fertilization (50 kg N ha−1), and in years
with a favorable precipitation distribution; such as in 2018. NI was mainly influenced by
the 2019 year, with a relative importance of −22.64% (Figure 6c), while the year 2020 was
the most significant parameter for plant density (Figure 6d), with a relative influence of
30.68%. On the other hand, according to Figure 6e, the number of ears was negatively
influenced by the mixture of pea and triticale, using cover crops as green manure, and the
year 2020, with a relative importance of −18.36%, −13.11%, and −13.02%, respectively.
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The maize yield dependence on the investigated factors is reflected in 1000-grain
weight and hectolitre weight. According to Figure 7a,c,f, the year 2017 had a negative effect
on 1000-grain weight, dry matter harvest residue, and stem percentage, with a relative
importance of −33.48%, −23.02%, and −26.60%, respectively. The year 2019 had a positive
impact on the hectolitre weight (+16.55%) and ear percentage (+29.14%), while it showed
a negative impact of −23.18% on the harvest index (Figure 7b,d,g). High temperatures
affected the 1000-grain weight due to the rapid ripening in dry years such as in 2017. The
influence of peas as a cover crop on leaf percentage was negative, with a relative importance
of −27.55% (Figure 7e). The result indicates higher effects of the winter pea treatment
on the ear and stem percentage, which is made possible by the greater availability of soil
moisture and nitrogen.
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3.4. Multi-Objective Optimization (MOO) of the Outputs of ANN

One of the main goals of this research was to optimize PD, GY, TGW, HW, DMHR, and
HI throughout different field management practices and years, synchronously, employing
the ANN models and varying input variables. These numerical assignments were solved for
the ANN models by applying the MOO computation in Matlab. The MOO method was set
to obtain the best combinations of different parameters by maximizing the output variables
in the ANN models. The optimization method’s constraints were used in the experimental
series of parameters. The number of generations achieved was 723 for the ANN models,
while the population dimension was set to 200 for all input variables. Thus, the number of
points on the Pareto front was 69 for the ANN models. The computed maximums of H, NL,
NI, PD, NE, GY, TGW, HW, DMHR, HI, L, S, and E were the following: 232.3 cm; 9.7; 10.2;
54.340 plants ha−1; 0.9; 9.8 t ha−1; 272.4 g; 67.0 kg HL−1; 9.2 t ha−1; 0.52; 18.9%; 36.0%, and
45.1%, respectively. The optimal result was obtained with the following parameters: peas
used as green manure, with an application of 50 kg N ha−1, and in the climatic conditions
of 2018.
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4. Discussion

Our study showed that climatic conditions significantly modified overall cover crop
performance while increasing the sensitivity of the main crop to weather conditions
(Figure 3). This is particularly noticeable in 2017, when the lack of precipitation (first
during the winter period, and later during the spring) suppressed their growth, and de-
creased the yield. During the four years of research, the average dry matter yield of cover
crops was higher in the mixture of pea and triticale (3.4 t ha−1) compared to peas as a sole
crop (2.1 ha−1) (Figure 3). Similar to our results, Ref. [66] states that mixed cover crops have
a higher forage yield and a better nutrient balance for ruminant feed than sole cropping.
On the other hand, the plowing of a cereal/legume mixture results in a larger amount of
dry matter incorporated into the soil as green manure [67], which affects the soil’s physical
properties and soil air regime [68].

The selection of proper cover crops and timely incorporation of winter CCs can in-
crease or adversely affect the crop yield of the subsequent crop in rotation. Chen et al. [69]
registered an increased maize yield from 1.60 to 2.43 t ha−1 following CC, which is con-
sistent with the results of our study. Increased maize yield was also obtained in the
research of [70], in which a mean increase of grain yield was 78, 91, and 66% with the
inclusion of cowpea, pigeon pea, and hemp, compared with the fallow system. On the
contrary, Ref. [71] reported a decrease in the yield of cash crops (maize and sunflower) by
0.5–3.0 t ha−1. In our study, the sowing of maize was performed after the recommended
date to give CCs more time to produce higher biomass. Currently, there is a lack of infor-
mation on crop cultivation in the subsequent sowing period in the temperate conditions of
Vojvodina province. Nevertheless, the assumption is that hybrids of shorter FAO maturity
groups can be established significantly later than the optimal term with acceptable risks.
Mahama et al. [70] confirm that the sowing delay of main summer crops is related to the
necessity to provide time for winter CCs growth and higher biomass production, and in the
case of legumes, to accumulate N. However, in this study, it was shown that this practice
could be successfully implemented for the winter cover crops. Out of four years of research;
only in 2017 arid periods were recorded in July and August with 29.4 mm of precipitation
(90 mm less than the LTA).

Consequently, the yield components of maize were lower and affected the yield
accomplishment. In conditions with uncertain amounts of precipitation necessary for the
plants’ growth and development, it is essential to make a trade-off between the benefits
provided by CCs and the possibility of obtaining a reduced yield of the main crop. Given
that the average maize yield in our experiment is not considerably lower than the average
grain yield of the recommended sowing dates, this approach could be a crucial point in
designing future cropping systems in semiarid conditions.

ANN models can help predict maize behavior under our experimental setup. In
most cases, the predicted values were approaching the desired R2 value for the ANN
models. The SS achieved by the ANN models is of the same order of magnitude as ex-
perimental errors for H, NL, NI, PD, NE, GY, TGW, HW, DMHR, HI, L, S, and E, which
were also observed in similar studies [54,62,72]. The ANN protocols are challenging
(71–141 weights-biases) due to the high nonlinearity of the studied system [54,73]. Never-
theless, the character of the ANN models fit as observed in Table 4, where χ2, MBE, RMSE,
and MPE were lower [64]. The residual analysis of the developed model was additionally
conducted to provide insight into maize response to key variables and the limitations of
ANN analyses. In addition, skewness was used to estimate the deviation of the distribu-
tion from regular symmetry. Skewness showed different values for some variables (NI,
L, H, HI, E, etc.), indicating asymmetrical distributions, although normal distributions
are ideally symmetrical. Accordingly, these indicators are developed as a consequence
of complex interactions between the observed parameters. The data set was checked for
kurtosis (the “peakeness” of a distribution). In our study, leaf and ear percentages are
distinct in kurtosis values compared with other parameters, indicating heavier tails than
normal distribution, with high peaks and outliers. This can be explained by the occurrence
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of smaller maize plants in which sudden maturation occurs in specific years. A high R2

is suggestive that the variation was estimated, and that the data fitted satisfactorily to
the suggested model [74,75]. Marcillo and Miguez [15] in a meta-analysis of maize yield
dependence on intercrops, concluded that CC from the Poaceae family neither positively
nor negatively affected maize yield, while leguminous plants and their mixture showed
a significant impact. Similar results were observed in our experiment as CC and years
showed positive effects on the yield of subsequent maize crops.

In our study, the smaller number of ears of maize can be explained by the soil’s
lower moisture content on the plots with the combined sowing of winter peas and triticale.
However, this is contrary to the study of [76], who determined higher soil moisture after
legume CCs compared with the mixture with cereal, while the lowest moisture content
was in the soil after triticale. As shown in Figure 6, nitrogen fertilization had the lowest
impact on the plant height, number of leaves and internodes, plant density, number of
ears, and grain yield, while years were the most influential. The assumption is that
fresh biomass mineralization can be sufficient for the N-demand of latter-sown maize.
Refs. [77,78] found that plant density (the number of plants per unit area) is a decisive
factor in maize production, but the optimal plant density is not always the same, but
rather varies depending on the year. In recent decades, maize grain yield has become
increasingly dependent on climatic conditions during plant growth and development [79].
Therefore, predicting optimal plant density represents a challenging task. The maize yield
in the subsequent sowing directly depends on the water spent by the winter CCs and
precipitation distribution during subsequent crop cultivation [80,81]. According to [82],
CCs may have a more significant potential to reduce drought stress in maize after long-
term use in systems with less soil disturbance. Rosa et al. [83] found that CCs in semi-arid
conditions did not contribute to the increase in maize grain yield, and most CC types
are associated with a reduction in maize yield. The same authors relate this consequence
to the lack of soil moisture and nitrogen availability during the maize growing season.
Despite many benefits, ref. [84] points out that the benefits of CCs in practice are still limited
because the effects on productivity and economic return are variable. In addition to that, for
conclusive CCs assessment and compliance with main crops, it requires multi-location trials
and ideotype selection of both CC and crop sequence. In the work of [85], ANN was used
to predict the role of individual nutrients on various parameters of rice plants. Contrary
to our results, the authors determined that nitrogen is the most limiting nutrient among
the studied nutrients in terms of obtaining the maximum grain yield of rice, regardless of
the season and variety. They observed an improvement in plant height, number of tillers,
and dry matter, indicating an important role of N in vegetative growth. According to
Figure 2, there are differences in the amount of precipitation and their distribution during
the growing period of maize, with 2018 and 2020 being higher in precipitation for the
period June-September. The authors [85,86] point out that environmental variables, such as
air temperature, total precipitation, insolation, and soil properties, significantly influence
plant parameters and crop performance prediction using ANN models.

The main limitations of this and similar studies are that, although each of the analyzed
treatments (factors) in ANN models has a specific role in the growth and development
of plants, complex interactions among them often make it difficult to understand the
separate actions of individual factors. Moreover, it is almost impossible to fully assess the
individual effects of input parameters on the final performance of plants and crops. This is
particularly pronounced in field conditions, where crop performance is subjected to a very
complex environment, with sudden variations in climatic parameters such as temperature,
precipitation, relative air humidity, etc. In addition, statistical models are often criticized
for failing to provide a scientific understanding of the processes being studied.

5. Conclusions

This study indicates that empirical artificial neural network models could be success-
fully utilized to predict plant-examined parameters. The prediction of those variables
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using parameters such as cover crops, way of using cover crops, N fertilization, and year
showed high accuracy in estimating with the artificial neural network model. The ob-
tained models provided a good fit to experimental data and were adequate to predict the
output variables successfully, showing a reasonably good predictive capability (overall
R2 for plant height, number of leaves, number of internodes, plant density, number of
ears, grain yield, 1000-grain weight, hectolitre weight, dry matter harvest residue, harvest
index, leaf percentage, stem percentage, and ear percentage were 0.791; 0.791; 0.878; 0.960;
0.818; 0.700; 0.843; 0.691, accordingly). The computed maximums of plant height were
232.3 cm, number of leaves 9.7, number of internodes 10.2, plant density 54,340 plant ha−1,
number of ears 0.9, grain yield 9.8 t ha−1, 1000-grain weight 272.4 g, hectolitre weight
67.0 kg HL−1, dry matter harvest residue 9.2 t ha−1, harvest index 0.52, percentage of leaf
18.9%, stem 36%, and ear 45.1%, respectively. Our study implies that subsequent maize pro-
duction in rainfed conditions can be performed with winter pea cover crops used for green
manure, supplementary nitrogen addition of 50 kg ha−1, and under a rainfall amount of
>330 mm (June-September). The developed mathematical models give satisfactory accuracy
for potential practical application in maize production and enable the proper selection of
cropping management for the farmers. Given the scope of this work, it would be essential to
suggest cover crops as necessary agroecological measures that would amplify the positive
outcomes of other field management practices in field crop production.
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dynamics of soil mineral nitrogen and yield and quality of Sudan grass (Sorghum bicolor (L.) Moench). Aust. J. Crop Sci. 2011, 5,
839–845.
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storage, total forage production, and quality of silage corn. Eur. J. Agron. 2021, 130, 126366. [CrossRef]

81. Rosa, A.T.; Creech, C.F.; Elmore, R.W.; Rudnick, D.R.; Lindquist, J.L.; Fudoling, M.; Butts, L.; Werle, R. Implications of cover crop
planting and termination timing on rainfed maize production in semi-arid cropping systems. Field Crops Res. 2021, 271, 108251.
[CrossRef]

82. Hunter, M.C.; Kemanian, A.R.; Mortensen, D.A. Cover crop effects on maize drought stress and yield. Agric. Ecosyst. Environ.
2021, 311, 107294. [CrossRef]

83. Rosa, A.T.; Creech, C.F.; Elmore, R.W.; Rudnick, D.R.; Lindquist, J.L.; Fudoling, M.; Butts, L.; Werle, R. Contributions of individual
cover crop species to rainfed maize production in semi-arid cropping systems. Field Crops Res. 2021, 271, 108245. [CrossRef]

84. Wittwer, R.A.; van der Heijden, M.G. Cover crops as a tool to reduce reliance on intensive tillage and nitrogen fertilization in
conventional arable cropping systems. Field Crops Res. 2020, 249, 107736. [CrossRef]

85. Shankar, T.; Malik, G.C.; Banerjee, M.; Dutta, S.; Praharaj, S.; Lalichetti, S.; Mohanty, S.; Bhattacharyay, D.; Maitra, S.;
Gaber, A.; et al. Prediction of the Effect of Nutrients on Plant Parameters of Rice by Artificial Neural Network. Agronomy
2022, 12, 2123. [CrossRef]

86. Hara, P.; Piekutowska, M.; Niedbała, G. Selection of independent variables for crop yield prediction using artificial neural network
models with remote sensing data. Land 2021, 10, 609. [CrossRef]

http://doi.org/10.1016/S0167-7012(00)00201-3
http://doi.org/10.1057/jors.1993.6
http://doi.org/10.1016/j.clay.2015.07.030
http://doi.org/10.1002/agj2.20647
http://doi.org/10.2134/agronj2017.09.0544
http://doi.org/10.1002/agg2.20105
http://doi.org/10.1016/j.still.2011.08.001
http://doi.org/10.2134/agronj15.0136
http://doi.org/10.1016/j.eja.2021.126416
http://doi.org/10.1016/j.inpa.2014.04.001
http://doi.org/10.1002/jsfa.9601
http://www.ncbi.nlm.nih.gov/pubmed/30663055
http://doi.org/10.1016/j.jhydrol.2009.08.018
http://doi.org/10.2298/JSC200404029S
http://doi.org/10.3390/atmos9120492
http://doi.org/10.2134/agronj14.0522
http://doi.org/10.1038/s41598-018-23362-x
http://doi.org/10.1016/j.eja.2021.126366
http://doi.org/10.1016/j.fcr.2021.108251
http://doi.org/10.1016/j.agee.2020.107294
http://doi.org/10.1016/j.fcr.2021.108245
http://doi.org/10.1016/j.fcr.2020.107736
http://doi.org/10.3390/agronomy12092123
http://doi.org/10.3390/land10060609

	Introduction 
	Materials and Methods 
	Experimental Site Description—Location, Climate and Soil Characteristics 
	Experimental Design 
	Measurements and Analytical Determination 
	ANN Modelling 
	Global Sensitivity Analysis 
	Error Analysis 
	Multi-Objective Optimization 

	Results 
	Dry Matter Yield of Cover Crops 
	ANN Model 
	Global Sensitivity Analysis—Yoon’s Interpretation Method 
	Multi-Objective Optimization (MOO) of the Outputs of ANN 

	Discussion 
	Conclusions 
	References

