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Abstract: Accurate crop mapping is a fundamental requirement in various agricultural applications,
such as inventory, yield modeling, and resource management. However, it is challenging due to
crop fields’ high spectral, spatial, and temporal variabilities. New technology in space-borne Earth
observation systems has provided high spatial and temporal resolution image data as a valuable
source of information, which can produce accurate crop maps through efficient analytical approaches.
Spatial information has high importance in accurate crop mapping; a Window-based strategy is a
common way to extract spatial information by considering neighbourhood information. However,
crop field boundaries implicitly exist in image data and can be more helpful in identifying different
crop types. This study proposes Guided Filtered Sparse Auto-Encoder (GFSAE) as a deep learning
framework guided implicitly with field boundary information to produce accurate crop maps. The
proposed GFSAE was evaluated over two time-series datasets of high-resolution PlanetScope (3 m)
and RapidEye (5 m) imagery, and the results were compared against the usual Sparse Auto Encoder
(SAE). The results show impressive improvements in terms of all performance metrics for both
datasets (namely 3.69% in Overal Accuracy, 0.04 in Kappa, and 4.15% in F-score for the PlanetScope
dataset, and 3.71% in OA, 0.05 in K, and 1.61% in F-score for RapidEye dataset). Comparing accuracy
metrics in field boundary areas has also proved the superiority of GFSAE over the original classifier
in classifying these areas. It is also appropriate to be used in field boundary delineation applications.

Keywords: crop mapping; crop field boundary; deep learning; edge-aware filtering; sparse auto-encoder

1. Introduction

Accurate and timely geographical knowledge of crop types on local, regional, and
global scales provides a valuable source of information for various agricultural, envi-
ronmental, social, and economic applications [1,2]. The new generation of satellite Earth
observation systems (e.g., PlanetScope, RapidEye, and Sentinel 2) provide massive amounts
of data with very high spatial and temporal resolutions. These data and a robust classi-
fication framework can be used for accurate crop mapping applications at regional and
national scales [3,4].

Crop types experience high levels of spectral, spatial, and temporal dynamics during
their growth period from farming activities, local climate, soil fertility, pest and disease, and
the phenological stage [5–7]. Consequently, high intra-class and low inter-class variability
problems arise when classifying crop types [8]. As a result, pixels of a class with high spec-
tral heterogeneity may be classified as different classes, which shows the salt-and-pepper
effect in the resulting classification maps. Using multitemporal and multispectral data
and powerful classification frameworks to exploit spatial information appropriately can
mitigate these problems. Traditional machine learning methods such as Linear Discrimi-
nant Analysis (LDA) [9,10], Maximum Likelihood (ML) [11–13], Support Vector Machine
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(SVM) [6,13–15], and Random Forest (RF) [16–19] have been primarily used for crop type
mapping. Pena et al. assessed the potential of Spectro-temporal indices derived from
satellite image time series in improving the fruit-tree crop classification accuracy [9]. They
used LDA on a Landsat-8 time series of nine images from the 2014–2015 growing season.
Arvor et al. presented two successive classifications based on Moderate Resolution Imaging
System (MODIS)/Enhance Vegetation Index (EVI) time series first to determine agricultural
areas and then classify five different crop types [11]. They used ML as the classifier after a
feature selection/extraction process. Ashourloo et al. provided an automatic canola map-
ping framework using sentinel-2 image time series. They presented a new spectral index
to discriminate canola from other crop types during its flowering date [20]. Wang et al.
proposed an automatic large-scale cotton mapping technique based on LDA using the
white bolls index (WBI) extracted from the cotton canopy at the bolls opening stage [10].
They demonstrated the potential of the proposed approach using Sentinel-2 image time
series. Niazmardi et al. presented three multiple kernel representations of satellite image
time series to extract the most classification-related information from these data [6]. The
validity of the proposed representations was evaluated on 10 RapidEye imageries of an
agricultural area using an SVM classifier. Song et al. presented an in-season crop-type map-
ping technique using object-based spectral/textural features and vegetation indices [19].
The mapping strategy was evaluated on multi-temporal GaoFen satellite data with a spatial
resolution of 16-m. The results showed that an object-based image analysis integrated
with RF has considerable potential for in-season crop mapping. All traditional machine
learning methods use pre-defined features, such as spectral and vegetation indices, which
are extracted manually from satellite imagery. Therefore, the success of these methods is
highly dependent on the choice of input features.

In the last decade, Deep Learning (DL) has been successfully applied in a wide range
of applications in the remote sensing community. DL methods are trained in an end-to-
end manner, which means they are trained to extract features and perform classification
simultaneously. This eliminates the need for manual feature extraction and selection for the
traditional machine learning methods that require the user’s knowledge and experience
and a robust method. The other advantage is extracting features that are optimized for the
task. In recent years, DL techniques have also been noticed in crop mapping. Kussul et al.
proposed multi-level Convolutional Neural Networks (CNN) architecture to map crop
types from multi-temporal Landsat-8 and Sentinel-1A images [21]. Cué La Rosa et al.
applied three types of DL methods, including auto-encoder (AE), CNN, and fully-CNN
(FCNN), for crop-type mapping in multi-temporal Sentinel-1 images of tropical regions [22].
They used prior knowledge about crop dynamics in the post-processing step, which im-
proved classification accuracy. Qu et al. implemented a depth-wise separable convolution
recurrent neural network (DSCRNN) for cop mapping from polarimetric Sentinel-1 time-
series data [23]. The results were compared to the classical random forest method and
proved the superiority of DL algorithms. Adrian et al. fused multi-temporal Sentinel-1
Radar data with multi-temporal optical Sentinel-2 data using a DL approach (3D U-Net)
for crop mapping application using the Google Earth Engine framework [24]. Ge et al.
proposed a DL-based crop mapping model, which can be transferred through location
based on the phenological matching principle [25]. They exploited Landsat data in the
experiments. Ofori-Ampofo et al. performed crop-type mapping from Sentinel-2 optical
and Sentinel-1 Radar time series using attention-based DL strategies [26]. Turkoglu et al.
developed a crop classification framework based on a convolutional Recurrent Neural
Network (convRNN), which can produce multi-scale label hierarchies [27]. The model was
validated on multi-temporal Sentinel-2 image patches, and significant improvements were
observed in mapping rare crop types. Chen et al. proposed stacking of two-dimensional
(2D) gridded spectral features as input to 2D CNNs for crop mapping from Hyper-Spectral
Imagery (HSI) [28]. Chen et al. developed a deep learning model based on Bidirectional
Long Short-term Memory network (BiLSTM) to jointly impute missing data in time series
and crop classification [29]. They have tested their model on the Sentinel-2 image time



Agronomy 2022, 12, 2615 3 of 21

series. In this study, we will consider Sparse Auto-Encoders (SAE) as a successful type of
DL methods and will focus on improving its performance in crop mapping applications.

As we mentioned earlier, considering spatial information in the classification frame-
work is of great importance to alleviate high intra-class and low inter-class variability
problems when the classification of crop types is the issue. Spatial data can be extracted
in two stages: feature extraction and post-processing. Classification methods that exploit
spatial information in the feature extraction phase can be divided into object-based and
pixel-based categories. Object-based methods use multi-resolution segmentation to find
homogenous image segments or parts having the same class label. Various spatial features
are then extracted manually from each segment and then fed to a classifier to provide class
labels, which are then associated with all pixels of that segment [30]. Despite its excellent
results and popularity, there is a conceptual problem in the definition of this method. It
tries to find image segments of pixels having the same class labels while no information
about the classes is available. Accordingly, the classification results depend highly on the
segmentation’s hyper-parameters [12]. Window-based algorithms use spatial information
in pixel-based methods to use neighborhood information around pixels. Spatial features
are extracted from each window and then fed to a classifier to find the class labels allocated
to the window’s center pixel. This commonly used method in remote sensing applications
can improve performance to some degree. However, according to its smoothing nature it
will produce classification maps which are over-smoothed in object boundary areas.

The post-processing of classification maps is another commonly used method for
spatial information included in the classification process. Conditional Random Fields
(CRFs) are widely used for correcting classification maps (especially in object border areas)
using spatial information when very high spatial resolution data are available [31–34].
Wei et al. proposed a crop classification model based on CRF for Unmanned Aerial Vehicle
(UAV)-borne hyperspectral remote sensing imagery [32]. They tested their method on
two datasets with 10- and 40-cm spatial resolutions and 270 spectral channels. Pan et al.
proposed a CRF-based model to correct the resulting map of high-resolution remote sensing
image semantic segmentation in urban areas where the images had a 9 cm spatial resolu-
tion [31]. However, CRF models have difficulties when applied to remote sensing images,
and overcorrection phenomena may occur [31,32].

The main objective of this study is to improve the classification performance of crop
mapping using deep neural networks and field boundary information extracted from
multitemporal and multispectral imagery. The proposed framework can use spatial infor-
mation to improve classification results in a post-processing step. More precisely, we use
the edge-aware filtering process [35], which can filter the classification probability maps,
transferring the guidance image’s structures to filtered maps. We generate a guidance
image with the structure of all images in time series as much as possible. Hence, the filtered
classification maps are aware of structures latent in image data and produce more accurate
maps in field boundary areas. Moreover, the filtering process is very fast in computations.

2. Materials and Methods
2.1. Study Area and Data

We examined the performance of the proposed method over two agricultural areas
in Canada.

Dataset 1: The first study area was located at the Central Experimental Farm (CEF)
in the central part of the City of Ottawa, Ontario, Canada. It covered about 330 ha of
agricultural fields (Figure 1a). The image dataset was a 6-date time series of multispectral
PlanetScope ortho-scene analytic products (Level 3-B) acquired over three months during
the 2018 growing season (2 June, 15 June, 3 July, 12 July, 29 July, and 16 August) in an
approximately two-week time intervals. The true color composite image of the July 3th date
is displayed in Figure 1a. PlanetScope ortho-scene products are corrected for radiometric,
sensor-related, spacecraft-related, and geometric effects and projected to a cartographic
map projection system [36]. The images used here have the horizontal datum of WGS 84
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with the map projection of UTM-Zone 18N. They are orthorectified with a pixel size of 3 m
and have four spectral bands (i.e., blue, green, red, and near-infrared).
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Figure 1. Study area and the true color composite images of (a) CEF (acquired on 3 July 2018) and
(b) Winnipeg (14 July 2012) datasets, along with distributions of training, validation, and test sets.

The ground reference map was obtained in two steps. In the first step, field observa-
tions were performed to identify the cultivated crop types in each field, and the results
were manually inscribed on a freehand sketch. In the second step, the multi-temporal high-
resolution georeferenced image datasets were manually digitized. This step was performed
with the previously obtained freehand drawing utilizing the ArcMap 10.4.1 software. As a
result, accurate field boundaries were obtained with the specific crop type attended to each
field. This area covers nine major crop types, including corn, soybean, oat, barley, spring
wheat, winter wheat, sunflower, hay/pasture, and grass, in the 2018 period.

Dataset 2: The second study area was an agricultural region in the City of Winnipeg,
southwest Manitoba state in Canada, covering about 5500 ha (Figure 1b). A time series of
RapidEye sensors with a 5 m spatial resolution and five spectral bands (blue, green, red,
red-edge, and near-infrared) were used as image data. The images were atmospherically
corrected, orthorectified, and acquired during the 2012 growing season (14 May, 5 July,
14 July, and 19 August). The 14 July image is displayed in Figure 1b.

Seven different crop classes, including corn, pea, canola, soybean, oat, wheat, and
broadleaf, were considered in the classification scheme. These data were collected to
support the Soil Moisture Active-Passive Mission Validation Experiment (SMAPVEX) 2012
campaign of the National Aeronautics and Space Administration (NASA) [37].

2.2. Problem Statement

Let us suppose we have q high spatial resolution multispectral images (I(i) ∈ Rm×n×s,
i = 1, 2,. . . ,q) acquired on q imaging dates during the growing season from an agricultural
area. Where m, n, and s are the number of rows, columns, and spectral bands of the
image, respectively. Consider T =

{
x(i)t , y(i)t

}
, i = 1, 2, . . . , nT be the train set, where

x(i)t ∈ R(2+ f )×1 is the ith train sample with the first two rows corresponding to its position

in the image (its row and column indices as 1 ≤ r(i)t ≤ m and 1 ≤ c(i)t ≤ n) and the other f
rows corresponding to its extracted features (u(i)

t ∈ R f×1), and y(i)t ∈ N is its corresponding



Agronomy 2022, 12, 2615 5 of 21

class label. Validation set V =
{

x(i)v , y(i)v

}
, i = 1, 2, . . . , nV is defined similarly with its

corresponding features (u(i)
v ∈ R f×1).

Moreover, consider E =
{

z(i), l(i)
}

, i = 1, 2, . . . , nE as the test set, where z(i) ∈
R(2+ f )×1 is the ith test sample associated with the label l(i) ∈ N. Again, the first two rows
of z(i) corresponds to its position in the image (1 ≤ a(i) ≤ m and 1 ≤ b(i) ≤ n) and the
other f rows corresponding to its extracted features (v(i) ∈ R f×1). We want to train a
classifier using the train and validation sets so that the estimated class labels for the test set
(l̂(i) ∈ N, i = 1, 2, . . . , nE) be equal to their true lables (l(i) ∈ N, i = 1, 2, . . . , nE) as much as
possible. The classification accuracy could be obtained by comparing l̂ and l.

2.3. Proposed Method

This study proposes a two-step DL-based framework (Guided Filtered SAE; GFSAE)
that can adequately exploit spectral, spatial, and temporal information of high-resolution
image time series for accurate crop mapping. Firstly, we use a window-based strategy in
the feature extraction phase. This process generates spatial-spectral features, which are
then fed to an SAE for generating class labels. Secondly, we filter the obtained classification
maps utilizing the edge information of the input image data in a post-processing step.
Accordingly, they are related to the boundaries of crop fields and, therefore, can be very
helpful in the classification. The framework of the proposed method is displayed in Figure 2.
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2.3.1. Preprocessing

In the first step, all q images (I(i) ∈ Rm×n×s, i = 1, 2, . . . , q) are stacked consecutively
to obtain an image data cube M ∈ Rm×n×d, d = s× q. This data cube is then normalized
using the maximum and minimum values of each band to obtain a data cube M̃ ∈ Rm×n×d

with values between 0 and 1.



Agronomy 2022, 12, 2615 6 of 21

In the next step, the training, validation, and test samples are selected from the ground
reference map, and their coordinates and also class labels are saved, i.e., [r(i)t , c(i)t , y(i)t ],

i ∈ {1, 2, . . . , nT} for the train set, [r(i)v , c(i)v , y(i)v ], i ∈ {1, 2, . . . , nV} for the validation set,
and [a(i), b(i), l(i)], i ∈ {1, 2, . . . , nE} for the test samples. The sample selection is based on
a patch-wise random selection method which generates data patches with a maximum size
of wp × wp pixels (where wp is patch size and was set to 15 pixels for both datasets).

2.3.2. Feature Extraction

Corresponding features for all samples are extracted using the normalized image
data cube (M̃) to generate T, V, and E sets. The feature extraction process is represented
graphically in Figure 3 for w = 5 pixels. This process extracts spectral-spatial-temporal
features for all pixels. For each pixel i ∈ {1, 2, . . . , nT} in the train set with the image
coordinates of r(i)t and c(i)t , we consider a neighbourhood window of odd size w centered
on it. Then, features associated with that pixel are obtained from the normalized data
cube (M̃) considering all the band values for all of its neighbour pixels reshaped to a
u(i)

t ∈ R f×1, f = w × w × d feature vector. x(i)t vector is then generated, attaching its

positional indices and the extracted features as x(i)t =
[
r(i)t c(i)t u(i)

t,1 . . . u(i)
t, f

]T
. This

process is repeated for all pixels in the validation and test sets.
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The next step is training the classifier using the training and validation data. Validation
data prevents model overfitting to the training data by breaking the training process when
the validation error grows. Unlike the training set error, which decreases steadily over time,
the validation set error increases after some iterations when the model overfits the training
data. The model parameters are saved and returned as the final trained parameters at this
point if, after some successive iterations, for example, 20 or 30, no improvements will be
observed in the validation set error. Otherwise, the new point is considered a new potential
breaking point of the training process, and the steps are repeated. This process is known as
early-stopping and is a well-known generalization strategy in machine learning concepts.
The objective is to increase the model performance on new unseen data, even with the price
of increasing the training data error. Early stopping can also be considered an efficient
hyper-parameter selection technique as it can determine the number of training epochs.
After the training, the test data are used to calculate the quality indices and generate the
probability maps for all classes. According to the high potential of SAE in classifying
complex areas, it is considered the classifier.
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2.3.3. Classification with SAEs

Sparse Auto-Encoders (SAEs) are a specific type of deep network which uses Auto-
Encoders (AEs) as their building blocks [38]. AE is a neural network that is trained so that
it can encode an input x to a latent underlying representation (the encoder part) in a way
such that the input can be reconstructed from that representation (the decoder part). The
encoder and decoder formulas are represented in Equations (1) and (2), respectively:

h = f (W1x + b1), (1)

x̂ = f (W2h + b2), (2)

where, x is the vector of input values, W1, b1, W2, and b2 are the weight and bias parameters
for the encoder and decoder parts, respectively, f is the activation function (usually the
ReLU function), h is the latent representation (activation values of the hidden units), and x̂
is the reconstructed vector.

Generally, some constraints are applied to the AE networks to exploit useful structures
from the input data [39], and most of the data variabilities can be modeled [38]. According
to the used constraints, specific types of AEs have been developed. One of the successful
types is sparse AE which enforces a sparsity constraint on the activation values of the
hidden units averaged over the training samples:

ρ̂j =
1
m

(
∑m

i=1 h(i)j

)
, (3)

where, h(i)j is the activation of the jth hidden unit on the ith training sample, and m is the
total number of training samples. The sparsity constraint can be modelled by adding a
penalty term to the optimization function, which penalizes significant differences between
the averaged activation values (ρ̂j) and the sparsity parameter (ρ):

Jsparse(W, b) = J(W, b) + β ∑s
j=1 KL

(
ρ
∣∣∣∣ρ̂j
)
, (4)

where, J(W, b) is the cost function (e.g., squared-error or cross-entropy function [39]), KL
is the Kullback–Leibler divergence function [39], s is the number of hidden units in the
hidden layer, and β is a hyperparameter which controls the level of sparsity.

Training SAEs as deep multi-level networks is a two-step procedure. Each constituent
AE is trained separately in the first step, layer-wise pre-training. In the second fine-tuning
step, the entire network is trained and initialized by the parameter values found in the
pre-training step.

In classification applications, successive latent representations are obtained by stacking
encoder parts of constituent AEs, and a softmax layer is added at the end. The softmax
layer has an n-unit equivalent to the total number of classes. It uses an exponential function
to generate class probabilities based on features obtained from the last hidden layer:

p(i)
k

(
y = k

∣∣∣ x(i)
)
=

eh(i)k

∑n
j=1 h(i)j

, (5)

where, p(i)
k is the probability of the input x(i) being in class k, e is the exponential function,

h(i)j is the activation of the input i on the unit j of the softmax layer, and n is the total number

of the units in this layer. The final class index of the input x(i) is the class which obtained
the maximum probability (i.e., y(i) = argmax

(
p(i)
)

, p ∈ Rn×1).
The probability maps for the image cube are obtained as the output of the network

(Equation (5)), where each map P(i) corresponds to the class i representing the probability
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of classifying belonging pixels into that class. Each probability map i filled with values of 0
and 1, 1 when the specified pixel labelled as the class i, and 0 otherwise.

Although SAE performs well in discrimination between crop types, it does not con-
sider field boundary information. Consequently, we use the boundary information of the
input data to improve classification accuracy. For this purpose, we filter the probability
maps obtained in the previous step, guided by a guidance image that includes the edge
information content of the input imagery as much as possible.

2.3.4. Guided Filtering

The guided filter, proposed in [35], is one of the fastest and most efficient edge-
preserving algorithms. It is a local linear model that involves the content of a guidance
image in the filtering process in a way such that the filtered image inherits edges from the
guidance. Using a guidance image that contains most of the edge information from the
input image data cube, we can filter the probability maps obtained from the classification
process, preserving the edge information of the input imagery. We briefly introduce the
guided filter for our edge-aware filtering application in the following. Interested reader
refers to the original paper [35] for a complete explanation and other applications.

The guided filter assumes that the filtering output O is a linear transform of the
guidance image G in a window ωk. This local linearity is defined as Equation (6) at a pixel i
assuming constant linear coefficients (ak, bk) in ωk:

O(i) = akG(i) + bk, ∀i ∈ ωk. (6)

This local linearity ensures identical edges in O and G because of∇O = a∇G [35]. As-
suming the probability map, P, as the input image, the linear coefficients can be determined
to minimize the following energy function in the window ωk:

E(ak, bk) = ∑i∈ωk

((
akG(i) + bk − P(i)

)2
+ εak

2
)

, (7)

where ε is a regularization parameter to penalize largely ak. This energy function will
minimize the difference between the input (P(i)) and the output (akG(i) + bk) of the filter,
and at the same time, the linear transformation assumption will be assured. The solution is
obtained from linear functions of the input and the guidance images as:

ak =

1
|ω| ∑i∈ωk

(
G(i)P(i) − µkPk

)
σ2

k + ε
, (8)

bk = Pk − akµk, (9)

where, µk and σ2
k are the mean and variance of G in ωk, |ω| is the number of pixels in ωk,

and Pk is the mean of P in ωk.
Considering all windows overlapping pixel i, different values of (ak, bk) will be ob-

tained. The final filtered image could be obtained using the averaged coefficients
(

ai.bi

)
:

Oi = aiGi + bi, (10)

where, ai =
1
|ω| ∑k∈ωi

ak and bi =
1
|ω| ∑k∈ωi

bk. Equations (8)–(10) define the guided filter.
As we see, the guided filter has two hyperparameters, which are needed to be optimized,
including the neighbourhood size z =

√
|ω|, and the regularization parameter ε.

The guided filter has been used in this study utilizing the PCA transformation of the
input image data cube for generating the guidance image. We can use the grayscale PC1
image or the RGB-coloured image from PC1 to PC3 as the guidance image (G). We tested
both choices and obtained slightly better results when using RGB-colored PCs image as (G).
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In the final step, the filtered probability maps are used for class allocation for each pixel
using the arg-max function, and the final quality assessment indices are calculated.

3. Results and Discussion
3.1. Experimental Setup

The validity and superiority of the proposed GFSAE are analysed compared to the
original SAE and two traditional commonly used classifiers, i.e., SVM and RF. All experiments
were implemented using MATLAB v2017.b on a Desktop Server with Intel(R) Xeon(R) CPU
E5-2697 v4 @ 2.30 GHz, 2295 MHz, 18 Core(s), 36 Logical Processor(s), 48-GB RAM.

For the CEF area, we selected 20, 5, and 5 percent of pixels of the ground reference map
as the training, validation, and test data, respectively. For the Winnipeg dataset, these values
were 4, 1, and 1 percent, respectively. The data selection was performed using a stratified
random patch-based sampling method in which a patch size of 15 pixels is considered for
both datasets. Figure 1a shows the geographical extent of training, validation, and test data
imposed on image data. The number of training, test, and validation samples in each class
is displayed in Tables 1 and 2 for the CEF and Winnipeg datasets.

Table 1. The number of training, test, and validation samples in each class for the CEF dataset.

Corn Soybean Oats Barley S
Wheat

W
Wheat Sunflower Hay/

Pasture Grass Total

Training 13,332 11,383 3543 1210 2825 2058 1164 12,225 4380 52,120
Test 2666 2280 720 240 563 410 235 2455 876 10,445

Validation 2666 2281 722 241 565 423 232 2453 876 10,459

Table 2. The number of training, test, and validation samples in each class for the Winnipeg dataset.

Corn Pea Canola Soybean Oat Wheat Broadleaf Total

Training 9344 864 17,952 17,555 11,168 20,170 270 77,323
Test 2336 224 4497 4400 2790 5048 68 19,363

Validation 2336 224 4496 4400 2802 5040 70 19,368

In the experiments, the classifier’s hyper-parameters were set as follows. After testing
different structures, we selected three network layers, i.e., input, hidden, and softmax.
The number of units in the first layer equals the number of input features (e.g., 24 and
20 for the CEF and Winnipeg datasets, respectively, in the case of the w = 1 setting). The
number of units in the last layer equals the number of classes (i.e., 9 and 7 for the CEF and
Winnipeg datasets, respectively). We have used the Bayesian optimization algorithm for
the other parameters to find optimum parameters. The results of Bayesian optimization are
displayed in Table 3 for each dataset.

Table 3. Optimized parameters for each dataset.

Max Epochs No. of Units L2 Regularization Sparsity Proportion

CEF dataset 36 478 5.74 × 10−8 0.011467
Winnipeg dataset 102 149 1.74 × 10−8 0.091793

Two hyperparameters of the guided filter were optimized as follows. A grid search
method was used for selecting the neighborhood size (z) considering window sizes (i.e., |ω|)
in the range of [2, 35] pixels and evaluating the results on the validation data. Finally,
31 pixels were selected as the best window size, and hence z =

√
31. The regularization

parameter (ε) were set as ε = 5
(

0.01 (diff(range(G)))2
)
= 0.05; where G is the guidance



Agronomy 2022, 12, 2615 10 of 21

image, range (X) is a function that gives the range of values in X, and diff (X) is a function
that calculates differences between adjacent elements of X.

For accuracy analysis, we consider statistical indices, namely the Overall Accuracy (OA),
the Kappa coefficient, class F-scores, and macro-averaged F-score over the classes. We also
compared Omission and Commission errors of different crop types as Producer and User
Accuracies (PA and UA) functions. PA and UA for field boundary areas are also calculated.
Visualizations of crop classification maps and boundary maps are provided as well.

3.2. Results on the CEF Dataset

Accuracy analysis metrics of SAE and GFSAE are displayed in Figure 4 for the CEF
dataset. It shows that using spatial information (either with increasing neighborhood
window size, i.e., w, or guided filtering) improves classification accuracy. Considering
SAE, in the case w = 1, the worst accuracy is achieved, while by increasing neighborhood
size (to 5 pixels), classification accuracy increases more than 1%. However, classification
accuracy decreases when the window size is more significant than 5 pixels because the
over-smoothing effect of huge windows occurs, i.e., including spectral information of
non-related far pixels in the classification of the target pixel.
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Figure 4. Accuracy metrics (OA, K, and F-score) for SAE and GFSAE obtained on the CEF dataset.

Comparing SAE metrics with ones of the GFSAE proves that the proposed method
causes considerable performance improvement in terms of all accuracy metrics. It increases
classification accuracy by up to 5%. The accuracy metrics and training time of the proposed
GFSAE with respect to the conventional SAE and traditional SVM and RF classifiers are
represented in Table 4 for the CEF dataset.

Table 4 shows that increasing window size (w) does not guarantee per-class perfor-
mance improvements. Considering the first part (i.e., SAE), we see that F-scores in some
classes improve with increasing w from 1 to 5 (such as the classes Corn, Soybean, and Oats),
while degradations in class F-scores are observed for other classes (such as Summer Wheat
and Winter Wheat). The second part of the table (i.e., GFSAE) shows the same dissimilar
results for different classes. On the other hand, comparing the results of the GFSAE with
SAE proves the superior performance of the proposed GFSAE method in terms of per-class
F-scores. It has almost equal calculation time to SAE (see the last column) with much better
accuracy. Comparing the accuracy metrics of the GFSAE with the traditional SVM and RF
classifiers also proves the validity and superiority of the proposed method. Even though
the traditional SVM and RF classifiers have produced slightly better results than the original
SAE on the CEF dataset, the GFSAE performs much better than all the compared classifiers.
It also has a comparable calculation time with respect to these traditional methods.
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Table 4. Accuracy metrics and training time obtained on the CEF dataset.

Classifier w Per-Class F-Scores (%)
F-Score (%) OA (%) K (%) Time (m)Corn Soybean Oats Barley S Wheat W Wheat Sunflower Hay/Pasture Grass

SAE

1 92.01 93.97 76.20 86.58 97.00 97.02 97.87 97.57 97.14 92.82 93.51 92.24 5.51
3 92.08 93.14 81.16 94.85 93.89 89.81 99.36 98.84 98.36 93.5 93.85 92.65 28.33
5 93.53 95.13 83.49 85.44 94.17 95.67 99.79 98.23 98.8 93.81 94.78 93.73 9.23
7 94.10 95.54 80.61 92.03 94.12 94.58 87.71 97.93 97.15 92.64 94.46 93.35 60.17

GFSAE

1 99.64 97.76 93.21 92.66 99.91 100 100 98.89 99.54 97.96 98.47 98.13 5.56
3 94.8 93.97 86.8 100 94.77 92.76 100 99.88 99.89 95.87 95.82 94.96 28.39
5 97.18 94.72 93.16 89.85 94.27 98.09 99.79 99.94 99.83 96.31 97.01 96.37 9.29
7 97.06 95.21 94.42 96.97 95.06 99.88 97.7 99.92 99.94 97.35 97.42 96.86 60.21

SVM 1 93.01 95.52 86.50 92.86 91.21 97.63 96.02 98.32 95.47 94.06 94.76 93.66 12.74

RF 1 95.72 94.54 87.80 96.79 92.76 93.93 96.05 97.02 96.21 94.54 95.08 94.07 1.43
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Figure 5 shows commission and omission errors of different classes obtained from
SAE and the proposed GFSAE classifiers for the CEF dataset. These errors are calculated
from the UA and PA as:

Commission error = 1−UA,

Omission error = 1− PA. (11)
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Figure 5. Omission (a) and Commission (b) errors of different crop types for the CEF dataset.

Omission error represents the number of pixels in a certain class that the algorithm
wrongly classified as other crop classes. Conversely, commission error refers to the pixels
classified in a certain class but do not truly belong to that class type. These errors arise from
high intra-class and low inter-class variability problems in crop mapping from multispectral
imagery. As we see, superior performance of the proposed GFSAE framework is observed
in reducing both omission and commission errors of different crop types. In other words,
the proposed GFSAE could better deal with the aforementioned high intra-class and low
inter-class variability problems.

The edge-aware filtering process is represented graphically in Figure 6. This figure
shows the process for corn in the case of the w = 1 setting for the CEF dataset. Figure 6a
shows the guidance image (G), (b) is the ground reference map for this class, (c) is the
initial probability map for the class corn, i.e., P (1), (d) is the initial class map (i.e., the
result of SAE), (e) is the probability map, P (1), after the guided filtering, and (f) is the
final class map (i.e., the result of GFSAE). As we see, a more accurate map is obtained
after the guided filtering process, removing isolated wrongly classified pixels from the
class map. To describe precisely, non-corn pixels inside non-corn fields that were wrongly
classified as corn class (commission error) and corn pixels inside corn fields that were
wrongly classified as other classes (omission error) are corrected after the proposed filtering
process. This could also be observed in Figure 5 for corn class numerically. The filtering
process is performed for all classes separately, and the final classification map is generated
by merging the per-class classification maps.

Classification maps obtained from SAE and GFSAE for all w settings and SVM and RF
classifiers are displayed in Figure 7 for the CEF dataset, along with its ground reference
map. As we see, in the case of SAE increasing spatial window size from 1 to 5 pixels has
somewhat improved the final crop map. However, the classification maps obtained from
GFSAE show more accurate field maps with less confusion with other classes compared to
other classifiers. Specifically, GFSAE with w = 1 and 3 settings have performed best among
all classifiers.
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3.3. Results on the Winnipeg Dataset

Accuracy metrics for the Winnipeg dataset are represented in Figure 8. The results
confirm that increasing spatial neighborhood window size (i.e., w from 1 to 3 pixels)
increases the classification accuracy of SAE in all accuracy metrics (about 1%). Here, setting
the window size larger than three pixels (about 15 m spatial extent), the accuracy decreases
because of the over-smoothing effect. Specifically, for the broadleaf class, which has a
minimal spatial extent, the algorithm could not identify any pixels correctly (See per-class
F-score for the broadleaf class of w = 5 settings in Table 5). This is due to involving many
non-broadleaf pixels in classifying target broadleaf pixels.

Table 5. Accuracy metrics and training time obtained on the Winnipeg dataset.

Classifier w
Per-Class F-Scores (%) F-Score

(%) OA (%) K (%) Time (m)
Corn Peas Canola Soybeans Oats Wheat Broadleaf

SAE
1 98.22 99.55 99.37 97.61 85.11 90.16 86.18 93.74 94.32 93.01 26.67
3 98.81 100 99.52 98.51 87.85 92.27 82.09 94.15 95.54 94.49 17.67
5 98.79 93.65 97.06 97.57 85.35 90.81 0 80.46 93.81 92.39 26.50

GFSAE
1 99.57 100 99.91 99.74 98.03 99.00 74.07 95.76 99.25 99.06 26.79
3 99.57 100 99.93 99.61 97.46 98.56 76.36 95.93 99.03 98.78 17.78
5 99.57 100 99.87 99.56 94.98 96.99 0 84.42 98.13 97.65 26.62

SVM 1 94.32 47.1 95.57 96.78 81.62 89.21 16.22 74.4 91.63 89.73 10.58

RF 1 98.37 99.1 99.43 98.15 85.39 91.11 95.45 95.29 94.79 93.58 0.64

Confirming the CEF dataset results, the proposed GFSAE resulted in considerable
performance improvement compared to the original SAE on the Winnipeg dataset. It
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increases classification accuracy by up to 5%. Accuracy metrics and training time are
represented in Table 5 for the Winnipeg dataset.

The first part of Table 5 (i.e., SAE results) shows that all per-class F-scores increase by
increasing w to 3 pixels for the Winnipeg dataset except the broadleaf class, which has a
minimal spatial extent. The second part proves the higher performance of the proposed
GFSAE in terms of all per-class F-scores (except the narrow broadleaf class) and the mean
F-score with comparable calculation time. The superiority of the proposed GFSAE is also
proved by comparing accuracy metrics displayed in Table 5. Both the original SAE and
the proposed GFSAE have produced better results than the traditional classifiers (SVM
and RF) on the Winnipeg dataset, and the GFSAE has much superior performance than
all the compared methods. It also has a comparable calculation time with respect to these
traditional classifiers.
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Figure 8. Accuracy metrics (OA, K, and F-score) for SAE and GFSAE obtained on the Winnipeg dataset.

Figure 9 shows commission and omission errors for the Winnipeg dataset. As we see
again, the superior performance of the proposed GFSAE framework is proved in reducing
both commission and omission errors of different crop types except the broadleaf class. The
broadleaf class has a minimal spatial extent, and hence filtering process mixes its information
with other classes. Its lower amount of training data compared to other classes (see Table 2)
aggravates this crop class’s challenging situation, leading to its higher omission error.



Agronomy 2022, 12, 2615 16 of 21
Agronomy 2022, 12, x FOR PEER REVIEW 16 of 21 
 

 

  
(a) (b) 

Figure 9. Omission (a) and Commission (b) errors of different crop types for the Winnipeg dataset. 

The ground reference map and final classification maps obtained from SAE and 
GFSAE for all w settings and traditional SVM and RF classifiers are displayed in Figure 10 
for the Winnipeg dataset. As we can see, in the case of SAE increasing spatial window size 
did not have a considerable change in the result maps. However, the classification maps 
obtained from GFSAE significantly improve the original SAE method. They show more 
accurate field maps with less confusion with other classes compared to SAE results. Specifically, 
GFSAE with w = 1 and 3 settings perform best. Comparing SAE- and GFSAE-obtained 
crop maps with ones of the traditional SVM and RF methods also proves the superiority 
of the proposed method. Specifically, more accurate and homogenous crop maps are ob-
tained with GFSAE. This again proves the superior performance of the proposed GFSAE 
method in crop mapping compared to the original SAE and traditional methods. 

   
(a) SAE, w = 1 (b) SAE, w = 3 (c) SAE, w = 5 

   
(d) GFSAE, w = 1 (e) GFSAE, w = 3 (f) GFSAE, w = 5 

0.00

0.10

0.20

0.30

0.40

SAE w = 1 SAE w = 3

GFSAE w = 1 GFSAE w = 3

0.00

0.05

0.10

0.15

0.20

SAE w = 1 SAE w = 3

GFSAE w = 1 GFSAE w = 3
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The ground reference map and final classification maps obtained from SAE and GFSAE
for all w settings and traditional SVM and RF classifiers are displayed in Figure 10 for the
Winnipeg dataset. As we can see, in the case of SAE increasing spatial window size did not
have a considerable change in the result maps. However, the classification maps obtained
from GFSAE significantly improve the original SAE method. They show more accurate
field maps with less confusion with other classes compared to SAE results. Specifically,
GFSAE with w = 1 and 3 settings perform best. Comparing SAE- and GFSAE-obtained crop
maps with ones of the traditional SVM and RF methods also proves the superiority of the
proposed method. Specifically, more accurate and homogenous crop maps are obtained
with GFSAE. This again proves the superior performance of the proposed GFSAE method
in crop mapping compared to the original SAE and traditional methods.
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3.4. Accuracy Analysis in Boundary Areas

To evaluate the quality of obtained field boundaries, edge detection based on the Sobel
operation was performed on classification maps from SAE and GFSAE (w = 3) and the
ground truth data (Figure 11).
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Figure 11. Field boundaries from (a) SAE, (b) GFSAE, and (c) ground truth for the CEF dataset.

Visual interpretation of Figure 11 proves the high ability of the proposed method in field
boundary extraction. Although SAE applies spatial features in the classification process, there
are still some issues in its boundary map. It loses some edges and creates extra edges. The
obtained boundary map was compared to the real one (from GT) for accuracy assessment
as a binary classification result. For this purpose, edges and non-edge pixels in a 30 m
neighborhood of real boundaries were compared to the corresponding ones in SAE and
GFSAE boundary maps. Figure 12 shows the confusion matrices for SAE and GFSAE.

Comparing Figure 12a,b shows that using a guided filter in the post-process step can
restore 42% of missing edges in SAE and also remove 62% of extra pixels. Table 6 presents
accuracy metrics obtained from confusion matrices.

Table 6 shows that 86.68% of pixels belonging to the field boundaries are assigned
correctly in the proposed method. It improves the producer’s accuracy of edge class by
more than 9% compared to the SAE method. Moreover, 98.58% of the assigned pixels to
the edge class were truly in the edge class, up to 2% better than the SAE results. Generally,
classification accuracy and Edge class F-score increase by approximately 7% and 6% when
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a guided filter is performed. Figure 13 depicts the boundary maps of SAE and GFSAE
(w = 3) compared to the ground truth for the Winnipeg dataset.
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Table 6. Accuracy metrics of boundary areas for SAE and GFSAE for the CEF dataset.

Classifier PA (%) UA (%) F-Score (%) OA (%)

SAE 77 95.92 85.43 86.86
GFSAE 86.68 98.58 92.25 92.72
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Comparing the boundary maps of SAE and GFSAE with ground truth proves the high
potential of the proposed method in field boundary extraction. Similar to the CEF dataset,
applying a guided filter in the Winnipeg dataset eliminates redundant edges in the SAE
map and adds missing edges. Figure 14 shows the proposed method’s confusion matrix
compared with SAE.

Agronomy 2022, 12, x FOR PEER REVIEW 18 of 21 
 

 

 Predicted 

  Edge Non-Edge 

Re
fe

re
nc

e 

Edge 9478 2831 

Non-Edge 403 11,906 
 

 Predicted 

  Edge Non-Edge 

Re
fe

re
nc

e 

Edge 10,670 1639 

Non-Edge 154 12,155 
 

(a) (b) 

Figure 12. Confusion matrix from (a) SAE (b) GFSAE for the CEF dataset. 

Comparing Figures 12 a and b shows that using a guided filter in the post-process 
step can restore 42% of missing edges in SAE and also remove 62% of extra pixels. Table 
6 presents accuracy metrics obtained from confusion matrices. 

Table 6. Accuracy metrics of boundary areas for SAE and GFSAE for the CEF dataset. 

Classifier PA (%) UA (%) F-Score (%) OA (%) 
SAE 77 95.92 85.43 86.86 

GFSAE 86.68 98.58 92.25 92.72 

Table 6 shows that 86.68% of pixels belonging to the field boundaries are assigned 
correctly in the proposed method. It improves the producer’s accuracy of edge class by 
more than 9% compared to the SAE method. Moreover, 98.58% of the assigned pixels to 
the edge class were truly in the edge class, up to 2% better than the SAE results. Generally, 
classification accuracy and Edge class F-score increase by approximately 7% and 6% when 
a guided filter is performed. Figure 13 depicts the boundary maps of SAE and GFSAE (w 
= 3) compared to the ground truth for the Winnipeg dataset. 

   
(a) (b) (c) 

Figure 13. Field boundaries from (a) SAE (b) GFSAE (c) ground truth for the Winnipeg dataset. 

Comparing the boundary maps of SAE and GFSAE with ground truth proves the 
high potential of the proposed method in field boundary extraction. Similar to the CEF 
dataset, applying a guided filter in the Winnipeg dataset eliminates redundant edges in 
the SAE map and adds missing edges. Figure 14 shows the proposed method’s confusion 
matrix compared with SAE. 

  Predicted 

  Edge Non-Edge 

Re
fe

re
nc

e 

Edge 32,070 10,151 

Non-Edge 1863 40,358 
 

  Predicted 

  Edge Non-Edge 

Re
fe

re
nc

e 

Edge 37,939 4282 

Non-Edge 569 41,652 
 

(a) (b) 
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Type I error in the SAE method is 1863, meaning these pixels are incorrectly assigned to
the edge class. By implementing a guided filter, 70% of those pixels are removed. Moreover,
analyzing type II errors in both confusion matrices shows that the proposed method can
restore 58% of edge pixels that are not detected in the SAE algorithm. Table 7 presents
accuracy metrics obtained from confusion matrices on the Winnipeg dataset.
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Table 7. Accuracy metrics of boundary areas for SAE and GFSAE for the Winnipeg dataset.

Classifier PA (%) UA (%) F-Score (%) OA (%)

SAE 75.96 94.51 84.22 85.77
GFSAE 89.86 98.52 93.99 94.26

Table 7 shows that the proposed method increases the producer’s accuracy of edge
class to 89.86%, which is approximately 14% higher than the SAE algorithm. Moreover,
98.52% of pixels assigned to the edge class were indeed in the edge class, which increases
the user’s accuracy by 4% compared to SAE results. According to F-score and overall
accuracy metrics, the field boundary detection accuracy of the proposed method is 94%,
approximately. It shows that using a guided filter improves boundary detection by 9%
compared to the SAE method.

4. Conclusions

Field boundary information can be used as auxiliary information in the classification
framework, which helps to separate pixels from different crop fields and improve crop
mapping accuracy. However, these valuable data sources, which implicitly exist in image
data, are usually ignored in most classification frameworks. This study presents a novel
classification framework based on DL methods that can successfully involve field boundary
information in accurate crop mapping applications. The proposed framework can exploit
input data’s spectral, spatial, and temporal information and utilize field boundaries to
improve mapping accuracy. We stacked multi-temporal image data to generate a data cube
with spectro-temporal feature vectors. Spatial information is included in the classification
framework via window-based feature extraction and a post-processing step that employs
the guided filter as an edge-aware filtering method. It filters the classification maps using a
guidance image extracted from the input data and maintains most of its edge information.

The proposed framework was evaluated using two time series of high-resolution
PlanetLab’s PlanetScope and RapidEye images over two agricultural sites. The experiments
were conducted to observe the performance of GFSAE in comparison to SAE and two
traditional SVM and RF classifiers. Firstly, the efficiency of spatial information inclusion
strategy considering different neighbourhood sizes and the effect of the post-processing
step for filtering classification maps were evaluated.

The experimental results were conducted based on classification accuracy and field
boundary accuracy. It showed that increasing window size in spatial feature extraction
could increase the classification accuracy of SAE until a specific size and decrease. However,
applying a guided filter improves classification accuracy by up to 5% compared to the
SAE results. The experiments also demonstrated the superior performance of the GFSAE
compared to the traditional SVM and RF methods. Moreover, field boundary extraction
accuracy is evaluated. The obtained results prove the proposed method’s ability to reach
92.72% and 94.26% accuracy in field boundary extraction of two datasets, respectively.

Although the effect of the edge-aware filtering on the classification performance was
higher than the window-based feature extraction method, using the two strategies together
produced better results. The window-based strategy improved the overall accuracies by
generating more homogeneous regions. In contrast, the filtering-based strategy reduced
the commission and omission errors and improved the classification accuracy in boundary
areas. The proposed GFSAE improved class scores from 0.44 to 17.01%. The proposed
method showed its potential and efficiency in crop classification, specifically when available
high-resolution satellite imagery.

The study results demonstrated the applicability and high performance of the pro-
posed edge-aware crop mapping framework, GFSAE, in terms of accuracy and calculation
time. It can improve final crop maps needing no additional data and with almost no in-
crease in calculation time compared to the original SAE. Although we used SAE as the base
classifier here, the guided filtering process could be used for any other classifier that can
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estimate class probabilities (DL-based or traditional classifiers). In addition, the proposed
framework is extendable to all types of remote-sensing imagery. Hence, it introduces a
general framework to improve crop mapping accuracy with no additional time or data
(and therefore no additional cost). For future works, we will investigate using an edge-
aware filtering process localized to consider field sizes in the filtering process. We will also
experiment with applying this filter during the feature extraction phase.
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