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Abstract: The possibility of using industrial and poultry wastes as an ameliorant/fertilizer for erosion-
prone soils was investigated. We studied the impact of phosphogypsum (PG) and turkey litter (TL)
application on the physicochemical properties of weakly eroded agrochernozem in conditions of a
5-year field experiment in the South Ural region, Russia. In particular, we examined the effect of
treatments on the soil moisture reserves, soil structure, microaggregate composition and particle
size distribution, aggregate stability (water resistance), organic carbon content (Corg), ammonium,
nitrate and alkaline hydrolysable nitrogen, available phosphorus (Pav), exchange potassium (Kex),
and potato productivity/ecological quality. Treatments included the application of the PG at 5, 10,
and 20 t ha–1, the TL at 40 and 60 t ha–1; and in mixes of PG and TL at ratios of 1:10, 1:5, and 1:2.
The obtained results indicated that the introduction of PG and TL increased (compared to control)
the moisture reserves (by 10–17%), resistance of soil aggregates to water (8–15%), the content of
Corg (6–10%), available nitrogen (two orders of magnitude), Pav (3–6 times) and Kex (2–3 times), and
improved, as well, soil structure. In general, years factor had a significant effect on soil water-physical
properties; its influence was 44–67%, while the effect of treatments was 21–30%. The agrochemical
properties (Corg and Pav) were dependent on treatments factor (77 and 95%, respectively), while the
content of all forms of nitrogen depended on the year factor (34–57%). The obtained results suggest
the application of PG and TL to improve agrochernozem fertility status and minimize its erodibility
without soil and plant contamination.

Keywords: eroded agrochernozem; phosphogypsum; turkey litter; physical and chemical soil properties;
erosion resistance; potato yield/ecological quality

1. Introduction

Water erosion is one of the principal factors of soil loss and reducing fertility of
agricultural lands, worldwide [1–3] and especially, in the South Ural region of Russia [4,5].
The introduction of soil ameliorants and fertilizers, in particular, of substances having a
complex effect on physicochemical and biological soil properties is important for restoring
and improving the fertility of eroded soils.

One of the soil amendments/conditioners is phosphogypsum (PG), that consists
mainly of CaSO4·2H2O, and is an industrial byproduct of phosphoric acid and other chemi-
cals derived from apatite and sulfuric pyrites. The production of one ton of phosphoric acid
generates up to 5 tons of PG, which is frequently stocked near the production units [6]. The
global production of PG, according to various authors [7,8], ranges from 100 to 280 million
tons per year. For example, in a country as small as Tunisia, more than 10 million tons
of PG are produced annually [9]; near the city of Huelva (Spain) about 100 million tons
of PG are stored in stacks on salt marshes near the mouth of the Tinto River, covering
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an area of about 1000 hectares [10]. Almost over 40 million tons of PG is produced in
China [11], and in Russia about 15 million tons of PG is formed annually at the enterprises
producing mineral fertilizers. It is noteworthy that the storage duration of PG in dumps
and accumulators exceeds 50 years [12]. In this regard, there arises the problem of its
utilization and rational use, in agriculture as well, especially on saline and alkaline/sodic
soil [13–18] and solonized soils [19–22].

In addition, it is advisable to use the PG for the reclamation of technologically salinized
and solonized soils [23–27]. Besides, as PG is able to dissolve better in soil solution, it does
not require reprocessing, thus, it is cheaper and more effective than gypsum.

Many research works showed that PG can be used as an ameliorant to improve a
number of soil properties, especially in conditions of moisture deficiency. The PG in-
troduction resulted a significant improvement of soil chemical [18] and water-physical
properties in the arid southern regions of the African continent, in the countries such as
South Africa, Botswana, Namibia, Swaziland, Zimbabwe, and Ethiopia [28]. A decrease
of the bulk density and the structuring of soil horizons was also noted in response to PG
application [29,30].

The practice of using PG together with carbon-containing wastes of the agro-industrial
complex such as manure, litter, various plant residues, is widespread in many countries [31–34],
including the production of nutrients-enriched biochar [35]. In the South Ural region, where
poultry farming is rapidly developing, thousands of tons of litter are formed annually and there
exists a problem of its utilization [36,37]. To date, the volume of PG in the dumps of South Ural
region is more than 10 million tons, and its related using is small. Such a situation enforces to
research the impact of industrial and agricultural wastes, required for their disposal, on possible
ecological recycling and improving of degraded soils properties. Moreover, no similar research
was conducted earlier in the South Ural region. Thus, the purpose of this study is to consider
using PG and turkey litter (TL) as an ameliorant and organomineral fertilizer for improving
soil fertility and increasing erosion resistance of agrochernozem. Specifically, the work will
investigate the following: i) the effect of various ratios (1:10, 1:5, 1:2) and application doses of
PG (3.6–20 t ha−1) and TL (33–60 t ha−1) on water-physical properties and erosion resistance of
the soil; and ii) the effect of the same ratios and doses of PG and TL application on the dynamics
of soil nutrients content and potato yields.

2. Materials and Methods
2.1. Study Site Description

The research was carried out at the experimental farm “Water-Balance Station” (54◦ 50′

23′ ′ N, 55◦ 44′ 55′ ′ E; 170 m a.s.l.), located in the Ufimsky district, Republic of Bashkortostan,
Russia (Figure 1). According to the natural zonal climatic characteristics, the study area
belongs to the South Ural region. The climate of the study area is characterized as moderate
continental with average humidity or as warm-summer humid continental (Dfb) according
to the Köppen climate classification [38]. According to the long-term meteorological data
obtained by employers of the Water-Balance Station [39] and from automatic weather
station WXT530 (Vaisala, Vantaa, Finland) installed in 2000 at the study site, the average
annual air temperature is +3.8 ◦C; and the mean annual precipitation is 590 mm, about
1/3 of which falls in the form of snow. The total annual precipitation during the 5-year
(2015–2019) field experiment was determined at 461−606 mm, and the average monthly air
temperature was 3.4–5.1 ◦C. The vegetation period (May–August) of 2016 was extremely
arid with only 120 mm of precipitation. That was almost two times lower than the average
annual values (227 mm). The average temperature during the same time was 19.1 ◦C, while
in other years of research it was 16.1–17.2 ◦C (Table 1).
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Table 1. Meteorological data in study area during research period.

Years Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Avg.
(Jan.–Dec.)

Average monthly air temperature, ◦C

2015 –12.1 –7.7 –4.6 4.9 14.7 21.2 17.5 15.5 13.8 2.4 –2.5 –5.0 4.8
2016 –12.0 –4.5 –1.2 9.1 14.3 17.8 21.0 23.2 12.3 2.9 –6.1 –15.2 5.1
2017 –12.4 –11.6 –3.8 4.1 11.5 15.4 19.1 18.7 11.8 3.7 –0.2 –6.9 4.1
2018 –12.5 –11.6 –10 4.2 12.7 15.9 21.4 17.7 12.5 5.7 –4.6 –10.1 3.4
2019 –12.1 –9.8 –0.5 5.9 14.6 17.5 19.2 15.9 9.4 7.2 –3.9 –6.6 4.7

Average
annual –12.3 –11.8 –5.1 5.2 13.2 18.1 19.7 17.2 11.3 4.6 –4.2 –10.7 3.8

Average monthly precipitation, mm

2015 29 24 20 48 107 21 49 44 36 97 74 57 606
2016 50 41 30 45 25 58 18 19 62 37 74 49 507
2017 78 60 22 33 54 166 104 12 62 78 45 26 740
2018 22 25 46 48 62 43 16 51 47 46 40 15 461
2019 50 42 50 6 75 40 39 76 67 53 14 43 553

Average
annual 48 39 32 33 47 67 55 58 51 58 52 51 590

The soil at the study area and experimental plots are represented by weakly eroded
leached agrochernozem (Luvic Chernozem (Clayic, Aric, Pachic) [40]). The water-physical
and agrochemical properties of the soil are given in detail at “Sections 3 and 4”.

2.2. The Description of Field Experiment and Laboratory Analyzes

The field experiment was established to test the effect of PG, TL, or in combination at
different ratios on soil characteristics. The PG was taken from the dumps of a mineral fertil-
izer factory (Meleuzovsky District, Republic of Bashkortostan, Russia). The compositions
of PG in terms of oxides were the following: CaO – 30.9%; SO3 – 48.12%; P2O5 – 2.05%;
Al2O3 – 0.05%; K2O – 0.04%; Fe2O3 – 0.09%; TiO2 – 0.08%; MgO – 0.01%; and traces of other
elements. The TL before its application into the soil was treated with a microbial substance
according to the technology patented by Chetverikov et al. [41]. Details of the application
rate of each treatment are provided in Table 2.
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Table 2. The different treatments with PG, TL, and their combined application ratio.

№ Treatment Description

1 C Control—without PG or TL
2 PG5 5 t PG ha−1

3 PG10 10 t PG ha−1

4 PG20 20 t PG ha−1

5 PG3.6TL36.4 PG+TL, 1:10, 40 t ha−1

6 PG5.5TL54.5 PG+TL, 1:10, 60 t ha−1

7 PG6.7TL33.3 PG+TL, 1:5, 40 t ha−1

8 PG10TL50 PG+TL, 1:5, 60 t ha−1

9 PG13.3TL26.7 PG+TL, 1:2, 40 t ha−1

10 PG20TL40 PG+TL, 1:2, 60 t ha−1

11 TL40 TL, 40 t ha−1

12 TL60 TL, 60 t ha−1

At the spring 2015, the PG and TL were applied on soil surface of experimental
plots and to ensure uniform mixing, the soil was plowed to a depth of 20 cm with a 2-
wheel tractor. Then, the potato seeds (“Snegir” sort) were planted by a traditional method
(20 tubers about 5–8 cm deep and 40–50 cm apart) on each experimental plot. The area
of each plot was 6 m2 (2×3 m), with three field replicates for each treatment. The potato
was cultivated for the first three years (2015–2017); before each planting potatoes, the soil
was plowed to a depth of 20 cm. In 2018, the mixture of perennial grasses (27 kg h−1)
alfalfa (Medicago sativa) – 25%, fescue (Festuca arundinacea) – 40%, and timothy grass (Phleum
pretense) – 35% was sown.

Soil samples were taken from each plot using a JMC hand-driven core sampler (Clements
Associates Inc., Newton, MA, USA; inner diameter: 4.5 cm) a month after the beginning
of the experiment—in the spring of and autumn 2015, as well in 2016 from topsoil layer
(0–20 cm), then sampling was carried out annually in the autumn. The soil samples were
dried (at 90 ◦C) in oven to constant weight, then grounded in a mortar, and passed through
a 2 mm sieve for further laboratory analyses. The water-physical properties in soil samples
were determined according to the methods described in Vadyunina and Korchagina [42].
In particular, the soil moisture was determined by the gravimetric method; the particle size
distribution and microaggregate composition (for fractions <0.25 mm) were measured by
standard sedimentation (pipette) method; the aggregate composition (dry sieving) and soil
aggregate stability (SAS) (wet sieving) were determined using a 0.25-, 0.5-, 1-, 3-, 5-, 7-, and
10-mm sieves. The microaggregate analysis was used for an agronomic assessment of soil
microstructure, the indicator of which is the Kachinsky dispersion coefficient (Equation (1)):

Kd = (Pm / Pt) ×100%, (1)

where, Kd – Kachinsky dispersion coefficient, Pm and Pt – clay content under microag-
gregate and soil texture analysis proceeding. Remark: decreasing of Kd value means the
improving of soil microstructure.

The SAS coefficient was calculated from the Equation (2):

Ksas= Σw / Σd, (2)

where Σw – sum of aggregates > 0.25 mm under wet sieving (water-stable aggregates),
Σd – sum of aggregates > 0.25 mm under dry sieving.

The content of agronomically valuable aggregates (AVA) Σ (0.25–10 mm) and the
structural coefficient (Ks) as the main indicators in assessment/quality of soil aggregate
composition was estimated according to the Equation (3):

Ks = Σ (0.25-10 mm) / Σ (>10, <0.25 mm) (3)
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The agrochemical properties in soil samples were determined according to methods
described in Sokolov [43]. The soil pH was determined in 1 mol L−1 KCl suspension
(1:2.5 soil/solution); the organic carbon content (Corg), with wet combustion by the Orlov
and Grindel method, available phosphorus (Pav) and exchangeable potassium (Kex) were
extracted in 0.5 mol L−1 CH3COOH at a 1:2.5 soil/solution ratio by Chirikov method; the
degree of phosphorus mobility was measured in 0.015 mol L−1 K2SO4 suspension (1:5
soil/solution) by Karpinsky and Zamyatina method; and the ammonium nitrogen content
(NH4

+-N) and nitrate nitrogen (NO3
−-N) were extracted 1 mol L−1 KCl (1:2.5 soil/solution)

and alkaline hydrolysable nitrogen (AH-N) according to Cornfield method. The content
of nitrates in potato tubers was measured with ionometric method using Anion 4100
(Infraspack-Analit, Novosibirsk, Russia), cadmium and plumbum (strontium in soil), with
atomic absorption method using the analyzer Spectrum-5-4 (Soyuztsvetmetavtomatika,
Moscow, Russia).

Soil penetration was measured from the soil surface to a depth of 20 cm with 2.5 cm
intervals by using soil compaction meter FieldScout SC 900 (Spectrum technologies, Aurora,
CO, USA), equipped with a metal rod with a cone (size 1/2 inch).

The PG composition was determined using an Elan-6100 inductively coupled plasma
mass spectrometer, an Optima-4300 DV atomic emission plasma coupled spectrometer
(Perkin Elmer, Waltham, MA, USA). The strontium concentration in the soil was determined
on a S1 Titan portable X-ray fluorescence analyzer (Bruker, Billerica, MA, USA).

2.3. Statistical Analysis

The results discussed here, and the values provided in the tables and figures, rep-
resent the mean values obtained from three replicates. The significance of differences
between treatments (Student’s t-test) and correlation coefficients was determined using
Microsoft Excel 2019 (Microsoft Corporation, Redmond, WA, USA), two-way analysis
of variance (ANOVA) and Tukey's honestly significant difference (HSD)—Statistica 8.0
(TIBCO Software Inc., Palo Alto, CA, USA).

3. Results
3.1. Physical Properties

The soil penetration resistance on all variants increased with depth, and was in the
optimum range for plants (average value for 0–20 cm layer not exceeding 2000 kPa) (Table 3).
In 2015, only PG10 was not significantly lower than the control variant, while in 2016 only
PG5 had a significant difference.

At the beginning of the plant growing season, the soil moisture reserves varied in the
range of 120–180 mm in the 50-cm soil layer (Table 4). The moisture reserves in the dry
2016 were significantly lower than in all other years (tstat ranged from 7.8 to 40.3, p < 0.01).
In 2017 and 2019, the moisture reserves were higher than in the first year of the experiment
(tstat 4.2 and 2.9, p < 0.05).
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Table 3. Effect of treatments and years on the soil penetration resistance, kPa.

Treatment Year
Depth, cm t-test

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Average 2015 2016

C
2015 204 377 803 926 926 1238 1448 1605 2500 1114 – –

2016 175 295 288 498 667 912 1347 1376 2435 888 – –

PG5
2015 55 201 491 541 577 717 807 792 1098 586 4.05 ** 1 –

2016 105 225 260 772 1312 1326 1453 1776 2669 1099 – 2.55 *

PG10
2015 30 195 652 878 898 1139 1309 1524 1634 918 2.29 ns –

2016 168 238 470 547 638 653 1029 1319 1951 779 – 1.58 ns

PG20
2015 120 211 1007 431 637 717 662 1068 1233 767 3.07 * –

2016 105 147 197 351 547 884 1179 1403 2898 856 – 0.48 ns

PG3.6TL36.4
2015 100 190 411 606 486 506 451 581 742 452 3.76 ** –

2016 147 190 281 463 927 975 1081 1333 1565 773 – 1.09 ns

PG5.5TL54.5
2015 145 291 386 481 436 426 541 787 942 492 4.01 ** –

2016 301 365 386 941 933 933 1207 1270 1769 900 – 0.12 ns

PG6.7TL33.3
2015 25 176 371 431 421 331 336 526 586 355 4.09 ** –

2016 175 267 295 470 779 1102 1524 2955 3011 1175 – 1.66 ns

PG10TL50
2015 20 115 321 321 326 421 481 687 803 388 4.80 ** –

2016 88 105 123 322 789 782 829 1557 1299 654 – 1.78 ns

PG13.3TL26.7
2015 15 91 161 252 371 442 467 678 883 373 5.27 ** –

2016 70 133 337 576 1229 1453 1748 2070 2435 1116 – 2.13 ns

PG20TL40
2015 5 90 151 321 356 511 561 692 732 379 4.83 ** –

2016 63 64 198 361 637 980 975 1421 2381 787 – 2.23 ns

TL40
2015 5 45 436 792 897 917 927 1674 2075 863 3.91 ** –

2016 99 134 194 713 1450 1736 2107 2157 2368 1217 – 2.21 ns

TL60
2015 5 75 479 769 992 1137 1388 1415 1542 866 2.53 * –

2016 71 105 205 310 643 1029 1480 1784 2579 911 – 0.36 ns

1 * – significant (p < 0.05), ** – significant (p < 0.01), ns – not significant.

Table 4. Effect of treatments and years on the soil moisture reserves (mm) in 0–50 cm layer.

Treatment/Year 2015 2016 2017 2018 2019

C 145 e 1 I 129 e 155 e III 148 d 153 bc
PG5 146 de 124 f 149 e IV 150 cd V 154 bc
PG10 145 e I 118 ef 142 f 150 cd V 152 c
PG20 143 e 127 e 152 de 149 d 159 b VI

PG3.6TL36.4 156 bc 133 cd 158 d II 153 cd 157 bc
PG5.5TL54.5 160 ab 135 cd I 162 cd 160 a 168 a
PG6.7TL33.3 164 a 150 a 180 a 156 bc I 159 b VI

PG10TL50 159 ab I 152 a 182 a 156 bc I 158 bc
PG13.3TL26.7 160 ab 148 a II 178 a 157 b 155 bc

PG20TL40 157 bc 137 c 164 bc 162 a 166 a
TL40 152 cd 142 b 170 b 163 a 167 a
TL60 155 bc 141 bc 165 bc 165 a 169 a

Significance ** 2 ** ** ** **
1 Means followed by the same letters within same column are not statistically different (p < 0.05), by the various
letters – statistically different. 2 **: effect significant at p < 0.01 and of pairs: I – TL40; II – TL60; III – PG5.5TL54.5;
IV – PG10; V – PG13.3TL26.7; VI – PG20TL40 at p < 0.05.

The soil texture was characterized as clay loam for all treatments at the beginning and
end of the experiment (Figure 2A).
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According to Kd, the soil of all variants belonged to the best category (Kd < 15),
i.e., had a “high microstructure” (Figure 3). Here and hereafter the gradation of water-
physical and agrochemical properties of soil on the following categories: “low”, “medium”,
“elevated”, “high”, “very high”, and “excessively high” are made according to the Russian
classification [44].
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Figure 3. Effect of treatments and years on the Kachinsky dispersion coefficient (Kd) at the beginning
and end of the experiment (0–20 cm soil layer). Various letters denote significant differences at
p < 0.01, ns – not significant.

SAS in the experimental area was categorized as “excellent”, the Ksas range was 0.6–0.8
(Table 5).
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Table 5. Effect of treatments and years on the soil aggregate stability coefficients (Ksas, 0–20 cm).

Treatment/Year 2015 2016 2017 2019

C 0.79 b 1 0.78 c 0.78 b 0.83 b
PG5 0.85 a 0.79 c 0.79 b 0.86 b
PG10 0.85 a 0.82 bc 0.78 b 0.87 ab
PG20 0.84 a 0.83 bc 0.83 ab 0.85 b

PG3.6TL36.4 0.82 ab 0.84 b 0.81 ab 0.88 ab
PG5.5TL54.5 0.82 ab 0.86 a 0.82 a 0.87 ab
PG6.7TL33.3 0.83 ab 0.84 b 0.78 b 0.91 a
PG10TL50 0.84 a 0.89 a 0.84 a 0.87 ab

PG13.3TL26.7 0.81 ab 0.89 a 0.78 b 0.86 b
PG20TL40 0.83 ab 0.85 a 0.81 ab 0.85 b

TL40 0.81 ab 0.87 a 0.81 ab 0.87 ab
TL60 0.85 a 0.9 a 0.83 ab 0.88 ab

Significance * 2 * * *
1 Means followed by the same letters within same column are not statistically different (p < 0.05), by the various
letters – statistically different. 2 *: effect significant at p < 0.05.

During the entire experiment, the soil at all variants had the “excellent aggregation”,
i.e., Ks > 1.5 (Table 6).

Table 6. Effect of treatments and years on the soil structural coefficients (Ks, 0–20 cm).

Treatment/Year 2015 2016 2017 2019

C 2.5 b 1 3.1 d 2.6 c 1.7 c
PG5 2.6 b 3.2 d 3.1 b 1.9 c
PG10 2.8 b 4.5 b 2.9 bc 2.0 bc
PG20 2.5 b 5.7 a 2.7 bc 2.2 bc

PG3.6TL36.4 2.9 b 3.7 c 2.7 bc 1.8 c
PG5.5TL54.5 2.8 b 4.2 bc 3.2 b 2.3 bc
PG6.7TL33.3 3.2 ab 4.6 b 3.8 a 1.8 c
PG10TL50 3.6 a 5.5 a 4.0 a 2.8 ab

PG13.3TL26.7 3.4 a 5.3 a 3.8 a 3.2 a
PG20TL40 3.2 ab 4.4 b 3.3 b 2.7 ab

TL40 3.1 ab 4.3 b 2.8 bc 2.6 b
TL60 3.3 ab 4.6 b 2.9 b 2.7 ab

Significance * 2 * * *
1 Means followed by the same letters within same column are not statistically different (p < 0.05), by the various
letters – statistically different. 2 *: effect significant at p < 0.05.

The statistical summarizing of soil water-physical properties data are presented in
Table 7.

3.2. Agrochemical Properties

The soils of the experimental plots were characterized by a moderately acidic pH
(Table 8).

The Corg content was categorized as “low” for chernozems and equaled ~ 3.8% in the
control plot (Table 9).
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Table 7. Effect of treatments and years on soil water-physical properties/characteristics.

Treatment/Characteristic
(Average in all Years)

Soil Moisture
Reserves

Soil Aggregate
Stability Coefficients

Soil Structural
Coefficients

C 146.0 c 1 0.80 b 2.5 c
PG5 144.6 c 0.82 b 2.7 c
PG10 141.4 c 0.83 ab 3.1 bc
PG20 146.0 c 0.84 ab 3.3 b

PG3.6TL36.4 151.4 bc 0.84 ab 2.8 bc
PG5.5TL54.5 157.0 ab 0.84 ab 3.1 bc
PG6.7TL33.3 161.8 a 0.84 ab 3.4 ab
PG10TL50 161.4 a 0.86 a 4.0 a

PG13.3TL26.7 159.6 a 0.84 ab 3.9 a
PG20TL40 157.2 ab 0.84 ab 3.4 ab

TL40 158.8 a 0.84 ab 3.2 b
TL60 159.0 a 0.87 a 3.4 ab

Significance * 2 * *

Years (Average of all
Treatments)

2015 153.5 b 0.83 ab 3.0 b
2016 136.3 c 0.85 ab 4.4 a
2017 163.1 a 0.81 b 3.2 b
2018 155.8 ab ND 3 ND
2019 159.8 a 0.87 a 2.3 c

Significance ** * **
1 Means followed by the same letters within same column are not statistically different (p < 0.05), by the various
letters – statistically different. 2 *, **: effect significant at p < 0.05, and p < 0.01, respectively. 3 ND – not defined.

Table 8. Effect of treatments and years on the soil pHKCl at 0–20 cm layer.

Treatment/Year
and Season

2015 2016 2017 2018 2019

Spring Autumn Spring Autumn Autumn

C 4.8 b 1 5.1 b 4.9 b 5.0 b 5.1 ab 5.1 b 5.1 b
PG5 4.9 b 5.1 b 4.9 b 5.0 b 5.0 b 5.2 b 5.1 b
PG10 5.0 b 5.0 b 4.8 b 5.0 b 4.9 b 5.2 b 5.1 b
PG20 4.9 b 5.0 b 4.8 b 4.9 b 4.8 b 5.2 b 5.1 b

PG3.6TL36.4 5.4 ab 5.4 ab 5.1 ab 5.2 ab 5.2 ab 5.2 b 5.2 b
PG5.5TL54.5 5.5 ab 5.2 b 5.1 ab 5.2 ab 5.2 ab 5.2 b 5.4 ab
PG6.7TL33.3 5.8 a 5.2 b 5.2 ab 5.0 b 5.0 b 5.2 b 5.0 b
PG10TL50 6.2 a 5.9 a 5.5 a 5.0 b 5.1 ab 5.7 ab 5.7 a

PG13.3TL26.7 5.9 a 5.7 ab 5.4 a 5.1 ab 5.2 ab 5.9 a 5.8 a
PG20TL40 6.1 a 5.8 a 5.6 a 5.6 a 5.7 a 5.4 ab 5.2 b

TL40 6.1 a 5.5 ab 5.4 a 5.0 b 5.1 ab 5.3 ab 5.1 b
TL60 6.2 a 5.5 ab 5.3 a 5.1 ab 5.1 ab 5.2 ab 5.2 b

Significance * 2 * * * * * *
1 Means followed by the same letters within same column are not statistically different (p < 0.05), by the various
letters – statistically different. 2 *: effect significant at p < 0.05.

In the experiment, the content of NH4
+-N (Table 10) changed by 1–2 orders of magni-

tude during the first year.
The dynamics of NO3

−-N was similar with NH4
+-N (Table 11).
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Table 9. Effect of treatments and years on the content of organic carbon (Corg, %) at 0–20 cm soil layer.

Treatment/Year 2015 2016 2017 2018 2019

C 3.83 c 1 I 3.81 b 3.84 b I, VI 3.79 b 3.82 b
PG5 3.79 c II 3.81 b 3.85 b I, VI 3.83 b 3.85 b V, VII

PG10 3.90 bc 3.90 b V 3.85 b I, VI 3.85 b 3.86 b V, VII

PG20 3.92 bc 3.88 b 3.87 b I, VI 3.85 b 3.85 b V, VII

PG3.6TL36.4 3.99 ab 4.02 ab 3.97 ab 3.95 b IV 3.92 ab
PG5.5TL54.5 4.12 a III 4.15 a 4.09 a 4.07 ab 4.00 a
PG6.7TL33.3 3.97 bc IV 3.99 ab 4.01 ab 4.02 ab 4.00 a
PG10TL50 4.03 ab 4.03 ab 4.07 a 4.05 ab 4.01 a

PG13.3TL26.7 3.92 bc 3.96 b IV 3.98 ab 4.01 ab 3.98 ab
PG20TL40 4.01ab 4.04 ab 4.05 ab 4.07 ab 4.06 a

TL40 4.09 ab 4.11 ab 4.07 a 4.08 ab 4.01 a
TL60 4.18 a 4.18 a 4.12 a 4.15 a 4.05 a

Significance ** 2 ** ** ** **
1 Means followed by the same letters within same column are not statistically different (p < 0.05), by the various
letters– statistically different. 2 **: effect significant at p < 0.01 and of pairs: I – PG10TL50; II – PG3.6TL36.4;
III – PG13.3TL26.7; IV – TL60; V – PG5.5TL54.5; VI –TL40; VII – PG6.7TL33.3 at p < 0.05.

Table 10. Effect of treatments and years on the content of ammonium nitrogen (NH4
+-N, mg kg–1) at

0–20 cm soil layer.

Treatment/Year
and Season

2015 2016 2017 2018 2019

Spring Autumn Spring Autumn Autumn

C 4.20 i 1 1.50 c I, II 2.00 c 1.50 c 2.20 b 1.20 bc 3.70 a
PG5 4.50 i 1.60 c I, II 4.20 b 1.00 c III 1.70 b 0.40 c 4.00 a
PG10 5.20 i 1.50 c I, II 3.00 bc 0.30 d 1.10 b 0.90 bc 3.10 a
PG20 5.10 i 1.60 c I, II 3.50 bc 0.60 cd 1.60 ab 1.80 b 2.90 a

PG3.6TL36.4 145.50 g 13.00 b 4.50 b 2.30 bc 2.50 ab 1.90 b 2.50 a
PG5.5TL54.5 361.90 e 56.50 a 8.30 a 2.40 bc 4.70 a 1.80 b 3.50 a
PG6.7TL33.3 159.80 f 13.70 b 5.80 b 2.40 bc 2.50 ab 2.00 ab 2.90 a
PG10TL50 418.80 c 53.90 a 5.00 b 3.50 b 4.30 a 2.60 ab 3.20 a

PG13.3TL26.7 117.60 h 11.40 b 4.10 b 3.10 b 2.80 ab 1.90 b 2.70 a
PG20TL40 379.90 d 56.80 a 7.20 ab 5.20 ab 4.90 a 4.00 a 3.50 a

TL40 468.10 b 13.30 b 9.10 a 7.70 a 4.10 a 4.20 a 4.00 a
TL60 565.90 a 18.10 b 9.30 a 8.30 a 5.10 a 4.00 a 4.10 a

Significance ** 2 ** ** ** ** ** **
1 Means followed by the same letters within same column are not statistically different (p < 0.05), by the various
letters – statistically different. 2 **: effect significant at p < 0.01 and of pairs: I – PG3.6TL36.4; II – TL40; III – PG10 at
p < 0.05.

At the same time, the soil enrichment with AH-N, the nearest reserve of nitrogen
supply to agricultural plants, remained at a high level (Table 12).

The studied soil was characterized by low phosphate reserves, which increased with
any applied treatment (Table 13).

The content of Kex was ranged from 135–500 mg kg–1 and categorized as “high” for
all years of the experiment (Table 14).
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Table 11. Effect of treatments and years on the content of nitrate nitrogen (NO3
−-N, mg kg–1) at

0–20 cm soil layer.

Treatment/Year and
Season

2015 2016 2017 2018 2019

Spring Autumn Spring Autumn Autumn

C 10.5 i 1 4.2 f 8.6 e 10.1 d 7.8 ab 5.5 b VI 4.1 c
PG5 14.8 h 4.8 f 10.5 e 11.1 d 7.5 ab 3.9 b 2.4 c
PG10 21.2 g 7.6 f II 9.4 e 13.1 d 6.9 ab 4.1 b 3.1 c
PG20 23.4 g 12.4 e 8.1 e 8.9 d 4.9 b 3.7 b 5.6 c

PG3.6TL36.4 109.8 c 54.1 d 20 d 19.8 c 4.8 b 4.9 ab 7.0 bc
PG5.5TL54.5 123.5 a 111.8 a 43.1 ab 27.0 bc 10.0 a I, II 6.4 ab 11.3 a I

PG6.7TL33.3 77.8 f 64.1 c 22.5 d 23.5 c 9.1 a 5.0 ab 6.7 bc
PG10TL50 117.2 b 108.8 a 40.1 b III 36.3 a 9.8 a I, II 9.1 ab 9.3 ab

PG13.3TL26.7 88.3 e 62.6 c 18.8 d 14.8 d I 10.5 a 9.2 ab 11.9 a
PG20TL40 117.1 b 98.7 b 45.1 a 30.2 b IV, V 7.2 ab 3.9 b 5.1 c

TL40 96.4 d I 61.2 c 33 c 30.3 b IV, V 10.6 a 9.6 a 5.3 c
TL60 104.6 c 63.9 c 38.8 b 36.4 a 11.6 a 8.8 ab 10.1 ab

Significance ** 2 ** ** ** ** ** **

1 Means followed by the same letters within same column are not statistically different (p < 0.05), by the various
letters – statistically different. 2 **: effect significant at p < 0.01 and of pairs: I – PG3.6TL36.4; II – PG20; III – PG20TL40;
IV – PG10TL50; V – TL60; VI – TL40 at p < 0.05.

Table 12. Effect of treatments and years on the content of alkaline hydrolysable nitrogen (AH-N,
mg kg–1) at 0–20 cm soil layer.

Treatment/Year and
Season

2015 2016 2017 2018 2019

Spring Autumn Spring Autumn Autumn

C 168 g 1 168 b 168 b 119 b 120 b 168 ab 154 ab
PG5 168 g 168 b 154 b 154 a 154 ab 154 ab 147 b
PG10 154 g 196 ab 140 b 168 a 154 ab 140 b 147 b
PG20 154 g 196 ab 147 b 154 a 152 ab 168 ab 154 ab

PG3.6TL36.4 448 f 196 ab 224 a 147 ab 150 ab 175 a 161 ab
PG5.5TL54.5 560 d 224 a 224 a 154 a 152 ab 168 ab 168 ab
PG6.7TL33.3 504 e 196 ab 196 a 161 a 154 ab 182 a 175 ab
PG10TL50 1064 b 224 a 196 a 154 a 152 ab 182 a 182 a

PG13.3TL26.7 420 f 196 ab 196 a 154 a 151 ab 168 ab 168 ab
PG20TL40 896 c 192 ab 196 a 154 a 154 ab 168 ab 168 ab

TL40 1092 b 210 a 196 a 161 a 160 a 168 ab 168 ab
TL60 1148 a 224 a 224 a 175 a 172 a 168 ab 175 ab

Significance * 2 * * * * * *

1 Means followed by the same letters within same column are not statistically different (p < 0.05), by the various
letters – statistically different. 2 *: effect significant at p < 0.05.

Table 13. Effect of treatments and years on the content of available phosphorus (Pav, mg kg–1) at
0–20 cm soil layer.

Treatment/Year
and Season

2015 2016 2017 2018 2019

Spring Autumn Spring Autumn Autumn

C 50 f 1 I 44 d 39 e I 49 e I 50 d 53 f III 50 e
PG5 74 e 52 d 53 de 60 de 60 d 74 e 72 d
PG10 70 e 57 d 62 d 70 d 65 d 80 e 75 d
PG20 96 d 94 c 89 c 100 c 99 c 106 d 103 c

PG3.6TL36.4 217 c 179 b 181 a 159 a II 154 ab 154 c IV 159 b
PG5.5TL54.5 267 b 195 ab 190 a 164 a 162 a 168 bc 165 b
PG6.7TL33.3 204 c 176 b 172 a 159 a II 160 a I 174 b V 180 ab
PG10TL50 281 ab 193 ab 177 a 172 a 172 a 179 ab 175 b VI

PG13.3TL26.7 280 ab 177 b 193 a 169 a 170 a 173 b 168 b
PG20TL40 291 a II 206 a 181 a 169 a 171 a 182 ab 195 a

TL40 270 b 179 b 148 b 139 b 140 b 164 bc 158 b
TL60 282 ab 212 a 174 b 175 a 172 a 195 a 184 ab

Significance ** 2 ** ** ** ** ** **
1 Means followed by the same letters within same column are not statistically different (p < 0.05), by the various
letters – statistically different. 2 **: effect significant at p < 0.01 and of pairs: I – PG10; II – TL40; III – PG5;
IV – PG6.7TL33.3; V – TL60; VI – PG20TL40 at p < 0.05.
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Table 14. Effect of treatments and years on the content of exchangeable potassium (Kex, mg kg–1) at
0–20 cm soil layer.

Treatment/Year 2016 2017 2019

C 150 f 1 155 d 165 d
PG5 170 f 175 cd 170 d
PG10 135 f 160 d 160 d
PG20 150 f 160 d 155 d

PG3.6TL36.4 255 e 210 b 165 d
PG5.5TL54.5 310 d 200 b I 210 bc
PG6.7TL33.3 225 e 200 b I 160 d
PG10TL50 440 b 235 ab 275 a

PG13.3TL26.7 360 c 270 a 280 a
PG20TL40 500 a 250 a 190 cd

TL40 225 e 200 b I 185 cd
TL60 300 d 275 a 235 b

Significance ** 2 ** **
1 Means followed by the same letters within same column are not statistically different (p < 0.05), by the various
letters – statistically different. 2 **: effect significant at p < 0.01 and of pair: I – PG5 at p < 0.05

The statistical summarizing of soil agrochemical properties data are presented in Table 15.

Table 15. Effect of treatments and years on soil agrochemical properties/characteristics.

Treatment/Characteristic
(Average in all Years

(Seasons))
pHKCl Corg NH4

+-N NO3−-N AH-N Pav Kex

C 5.0 b 1 3.82 c 2.3 e 7.3 c 152 f 48 e 157 f
PG5 5.0 b 3.83 c 2.5 e 7.9 c 157 f 64 d 172 e
PG10 5.0 b 3.87 bc 2.2 e 9.3 c 157 f 68 d 152 f
PG20 5.0 b 3.87 bc 2.4 e 9.6 c 161 f 98 c 155 f

PG3.6TL36.4 5.2 ab 3.97 b 24.6 d 31.5 b 214 e 172 b 210 d
PG5.5TL54.5 5.3 ab 4.09 ab 62.7 c 47.6 a 236 d 187 a 240 c
PG6.7TL33.3 5.2 ab 4.00 ab 27.0 d 29.8 b 224 de 175 b 195 d
PG10TL50 5.6 a 4.04 ab 70.2 b 47.2 a 308 b 193 a 317 a

PG13.3TL26.7 5.6 a 3.97 b 20.5 d 30.9 b 208 e 190 a 303 a
PG20TL40 5.6 a 4.05 ab 65.9 c 43.9 a 275 c 199 a 313 a

TL40 5.4 a 4.07 ab 72.9 b 35.2 b 308 b 171 b 203 d
TL60 5.4 a 4.14 a 87.8 a 39.2 ab 327 a 199 a 270 b

Significance ** * ** ** * * *

Year (Season)
(Average of all Treatments)

2015 (spring) 5.6 a ND3 219.7 a 75.4 a 565 a 199 a ND
2015 (autumn) 5.4 ab 3.98 20.2 b 54.5 b 199 b 147 b ND
2016 (spring) 5.2 b ND 5.5 c 24.8 c 188 b 138 b ND

2016 (autumn) 5.1 b 3.99 3.2 c 21.8 c 155 c 132 b 268
2017 5.1 b 3.98 3.1 c 8.4 d 152 c 131 b 208
2018 5.3 ab 3.98 2.2 c 6.2 d 167 bc 142 b ND
2019 5.3 ab 3.95 3.3 c 6.8 d 164 bc 140 b 196

Significance * 2 ns ** ** * * **

1 Means followed by the same letters within same column are not statistically different (p < 0.05), by the various
letters – statistically different. 2 ns, *, **: effect not significant or significant at p < 0.05 and p < 0.01, respectively.
3 ND – not defined.

3.3. Potato Yield and Quality

Potato was cultivated in the experimental plots for the first three years (2015–2017), and
over the years, the harvest declined (Table 16). Chemical analysis of potato tubers showed
that the content of Pb and Cd was significantly lower than the maximum permissible
concentration (MPC) defined by the Russian government (Table 16).
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Table 16. Effect of treatments and years on potato yield (t ha–1); content of nitrates, lead and cadmium
in potato tubers (mg·kg–1 dry weight).

Treatment/Parameter
and Year

Potato Yield Nitrates (NO3
—) Lead (Pb) Cadmium (Cd)

2015 2016 2017 2015 2016 2015 2015

C 13.3 f 2 11.9 c 8.4 c 29.2 g 30.0 e 0.06 0.018
PG5 15.5 f 13.3 bc 9.8 c 29.2 g 30.0 e 0.04 0.018
PG10 16.0 f 12.1 c 9.8 c 42.0 f 32.8 de 0.06 0.020
PG20 23.0 e 11.7 c 8.2 c 68.5 e 40.5 d 0.06 0.017

PG3.6TL36.4 27.0 d 15.2 bc 15.8 a 119.0 d 91.2 c 0.04 0.016
PG5.5TL54.5 38.0 b 18.3 a 16.5 a 182.0 c 140.0 b 0.07 0.014
PG6.7TL33.3 32.7 c 17.5 ab 16.4 a 222.0 b 160.9 b 0.07 0.015
PG10TL50 36.8 b 20.4 a 16.0 a 368.0 a 220.3 a 0.07 0.020

PG13.3TL26.7 29.0 d 14.2 bc 14.1 ab 372.5 a 220.3 a 0.06 0.020
PG20TL40 34.8 bc 18.8 a 13.0 b 377.0 a 220.3 a 0.07 0.026

TL40 43.2 a 17.7 ab 15.8 a 191.0 bc 142.2 b 0.07 0.024
TL60 39.5 b 18.3 a 16.3 a 367.0 a 218.4 a 0.07 0.018

MPC 1 250 0.5 0.03
Significance * 3 * * ** ** ns ns

1 MPC: maximum permissible concentration. 2 Means followed by the same letters within same column are not
statistically different (p < 0.05), by the various letters – statistically different. 3 ns, *, **: effect not significant or
significant at p < 0.05 and p < 0.01, respectively.

4. Discussion
4.1. Physical Properties

In the first year, 2015, the significant reduction in soil penetration resistance was
observed for most experimental plots with amendments (Table 3). The maximum reduction
occurred in the treatments with the joint application of PG and TL, where it amounted
for 759–622 kPa, while it was 1114 kPa in the control variant. In 2016, the difference
between the variants of the experiment with control became not significant. A decrease in
soil penetration with the introduction of both PG and poultry litter was also noted in the
works [45,46]. The similar tendency, that the penetration resistance is lower in the top layer
and increases in the deep layer, gradually was found in a laboratory test by Tang et al. [47].

At the beginning of the experiment, the introduction of only PG in doses from 5 to
20 t ha–1 did not affect soil moisture reserves significantly (Tables 4 and 7), although some
researchers [48,49] have noted that PG treatments increased the moisture storage in the
plant root zone. However, a significant increase of soil moisture reserves (by 10–17%) was
observed with the introduction of TL and PG+TL. In all these variants, the soil moisture
reserves were significantly higher than only PG treatment. The effectiveness of TL was
especially notable in the arid 2016, with the aftereffect also observed in 2017. The differences
between the treatments in soil moisture reserves decreased in the 4th and 5th years of the
experiment. In these years, the variants with high doses of TL (PG5.5TL54.5, PG20TL40,
TL40, TL60) were significantly higher than the variants with PG only. In general, weather
conditions had a greater influence on the soil moisture reserves than treatments. The two-
way ANOVA showed that the influence of years factor was 54, the treatments factor – 30,
and the interaction effect (years-treatments) – 15%.

The particle size distribution of the agrochernozem changed in the first year after the
addition of the PG. A tendency towards the decreasing of clay (<0.001 mm) fraction content
was observed, with a significant (p < 0.05) decrease only after the largest dose – PG20
(Figure 2B). However, there were not-so-noticeable changes in clay fraction content after
the joint application of PG+TL. After 5 years, clay fraction content in the soil of the control
variant fell from 39 to 36% (tstat = 3.84, p < 0.05), and the sand (0.01–1 mm) content
increased from 29 to 34% (tstat = 5.58, p < 0.01). It is well known that clay and silt particles
are preferentially transported by overland flow [50,51]. On the site of the experiment, a
washout of fine particles from topsoil and an increase of silt+clay fraction in the sediments
were found during snowmelt, rainfalls, or sprinkling irrigation [52,53]. The introduction of
amendments resulted in the significant increase of clay (< 0.001 mm) fraction content in
2019 when compared to 2015 (tstat = 4.23, p < 0.01). This fact indicates the increase of soil
resistance to water erosion.
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The introduction of PG5 and PG10 in the first three years did not lead to a significant
change in SAS, and only at the highest dose (PG20) was there a significant increase of
SAS in comparison with the control. The water resistance of the soil aggregates increased
significantly (by 8–15%) with the addition of high doses of TL (≥ 36.4 t ha–1) with PG as
well as TL60 (tstat from 3.70 to 5.67, p < 0.05). In general, the introduction of amendments
led to the change of SAS from “excellent” (2015) to “excessively high” gradation by 2019,
i.e., Ksas became more than 0.8 (tstat = 6.01, p < 0.01) (Tables 5 and 7). The increasing of SAS
and soil resistance to water erosion under the introduction of PG [54,55] and manure [56,57]
or broiler litter [46] has also been noted for other soil types.

Ksas depended not only on treatments but also on meteorological conditions. The
influence of years and treatments factors on SAS were 45 and 24%, respectively, and the
interaction effect was – 29%. The increase in SAS for all the treatments of the experiment
in the last two years (tstat = 7.24, p < 0.01) was apparently associated with the cessation of
plowing practice [58] and cultivation of perennial herbs [59,60].

The use of amendments has a considerable impact on the microaggregate composition
of the soil. Kd decreased after the introduction of PG, in accordance with the increase of
its dose. This fact indicated an improvement in soil microstructure. Similar results were
reported in the investigations by Semendyaeva and Elizarov [61] and Efremova et al. [49]. The
addition of TL did not lead to significant changes in Kd in 2015, but it significantly decreased
by 2019 (tstat = 13.46 p < 0.01). On the contrary, the efficiency of PG worsened by the end of
the experiment, but compared to the control it was significantly better even in 2019 at PG10
and PG20 doses. This is due to the washouting (by surface erosional runoff and/or lessivage
process) of the clay fraction and the concomitant deterioration of the soil microstructure. The
aftereffect of PG without introduction of organic additives was not prolonged.

The effect of PG on soil structure is controversial. A positive effect of PG appears for
alkaline soils [62,63]. According to Vyshpolsky et al. [48] the effect of PG in irrigated areas
was negative. The separate application of PG and TL during the entire experiment did not
have a significant effect on the content of AVA. At the same time, their joint application led
to a significant improvement of soil structure in comparison with the control (tstat from 4.49
to 9.92, p < 0.05). An increase in the content of the 1–2 mm fraction with the introduction
of PG and poultry manure is also shown in the work by Xue et al. [64]. It is interesting
to note that this fact was most clearly manifested in the second year of the experiment
after the severely arid growing season. In general, meteorological conditions had a higher
influence on the AVA content than treatments and their interaction effect (51%, 22% and
23%, respectively).

On average throughout the five years, the content of AVA correlated closely (r = 0.84)
with the Ks. Wherein, the higher effect on Ks was revealed with the introduction of the
increased dose of TL (Tables 6 and 7). The effect of the years factor was 67, while treatments
–19 and their interaction – 11%.

Thus, the introduction of TL, both separately and together with PG, improves the
water-physical properties and anti-erosion resistance of eroded agrochernozem, especially
in arid year. The two-way ANOVA showed that years had a significant effect on the water-
physical properties of the soil; the influence of this factor was 44–67, while the effect of
treatments was 21–30%.

4.2. Agrochemical Properties

In the first year after the introduction of the PG+TL, alkalization from “moderately
acidic” to a “slightly acidic” and “neutral” categories was observed (Tables 8 and 15).
This increase in pHKCl was due to high NH4

+-N content in TL; since PG, when applied
separately, did not have a significant effect on soil acidity at any doses. The impact of PG
on pH depends on the initial soil acidity. The addition of PG to alkaline soils contributed
to their acidification, for example, pH was reduced from 7.9 in the control to 5.1 in the
treatment with 20% PG [65]. In our earlier studies [23,24], the neutralization of the alkalinity
of technogenic solonized soils was shown. At the same time, the addition of PG to the
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strongly acidic Rhodic Ferralsol (pHCaCl2 in the 0–15 cm layer was 4.0–4.7) at a dose of
2100 kg ha–1 contributed to the neutralization of acidity to 4.2–5.1 [66]. In the subsequent
years of the experiment, some acidification occurred, but the pHKCl values remained in the
“slightly acidic” category. The percentage of treatments effect was 43, years – 20, interaction
effect – 31%. Similar results were obtained when high doses (40–120 t ha-1) of chicken
manure were applied into the same soil [36].

The introduction of PG did not contribute to an increase of Corg [67,68], although
it could affect the carbon of microbial biomass [69], the content of various carbon frac-
tions [70], and organic carbon concentrations in soil aggregates [71]. In contrast to PG, the
TL application produced significant increasing trends in Corg [72]. In the present study, the
application of sole PG did not significantly impact the Corg content, however, its significant
increase was observed in all the treatments that included TL (Tables 9 and 15). Corg content
in the variants with the highest TL doses (54-60 t ha–1) was significantly higher than in PG
treatments. The maximum Corg content was noted in the 2nd year after the application of
TL at 60 t ha–1, where the content of Corg was higher by 0.37%, when compared with the
control. In PG+TL treatments, the greatest increases in Corg were at the dose of 60 t ha–1

in all the ratios. In the fifth year of the experiment, the maximum Corg content was also
preserved in these treatments. This indicates the deposition of TL carbon in the composition
of soil organic matter, and not mineralization with the release of CO2 into the atmosphere.
The t-test showed a significant increase in the Corg content compared to the control when
TL was applied (tstat from 8.16 to 18.45, p < 0.01). The influence of treatments factor was
77%, and the factor of years and interaction effect did not have a significant impact (1%
and 6%).

Significant changes occurred in the soil nitrogen content, primarily in all the treatments
that included TL (spring 2015). The NH4

+-N increased by two orders of magnitude
depending on the dose of TL (Tables 10 and 15). However, by the autumn of 2015, NH4

+-N
significantly declined, as follows: i) 6–8 times with the application of PG+TL at a dose of 60
t ha–1, ii) 10–12 times with a dose of 40 t ha–1 PG+TL, and iii) 31–35 times with TL only. This
change in NH4

+-N indicates the ability of PG to fix NH4
+-N and reduce its loss. PG ability

to reduce significantly total nitrogen loss was shown by Lim et al. [73] and Li et al. [74]. In
2016, there was a further reduction in NH4

+-N, but only after the 3rd year the leveling and
stabilization of NH4

+-N took place. The influence of years factor on the NH4
+-N dynamics

was 34, treatments – 17, interaction effect – 49% (only the autumn season was taken into
account, as well in calculations for NO3

−-N, AH-N, and Pav).
The content of NO3

−-N also significantly increased up to ten times with the intro-
duction of TL, either separately or together with the PG (Tables 11 and 15). The NO3

−-N
dynamics generally corresponded to NH4

+-N, as the NO3
−-N amount decreased with time

but to a lesser extent. The two-way ANOVA showed that years had a significant effect; the
influence of this factor was 52, while effect of treatments −16, interaction effect −32%.

The dynamics of the content of AH-N (Tables 12 and 15) correlated (p < 0.001) with
the dynamics of NH4

+-N (r = 0.98) and NO3
−-N (r = 0.71). The content of AH-N greatly

increased immediately after the TL addition into the soil (from 168 to 1148 mg kg–1). Later,
the AH-N decreased to the control level possibly as a result of the plant nutrition and
intensive development of denitrification. The years effect was 57, while treatments −20,
and their interaction −16%.

The introduction of PG contributed to the increase in the Pav content (Tables 13 and 15),
however, even with the highest dose (20 t ha–1) the Pav enrichment did not exceed the
“medium” category. Obviously, this is due both to the low content of phosphorus in PG and
its difficult solubility. One of the effective ways to release the phosphorus from PG is using
of phosphate-solubilizing fungi [75]. A slight increase in the content of mobile phosphorus
was observed in the chernozems of Northern Kazakhstan [76]. In other soil types, the
authors [77–80] noted a more noticeable increase in the content of Pav. The addition of TL,
either alone or together with PG, in all the ratios, led to an increase in the Pav content to a
“very high” category. However, in the 2nd and 3rd years, the Pav amount in the soil of these
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treatments gradually lessened, but the enrichment of soil with Pav remained high until the
end of experiment in 2019. With the introduction of TL, the content of Pav was higher in all
variants than of PG alone. It should be noted that the degree of phosphorus mobility with
the addition of PG5 and PG10 increased but remained in the “low” category, and only with
the addition of PG20 it became “medium”. On the other hand, the addition of PG+TL and
TL contributed to a significant increase in the degree of phosphorus mobility (“elevated”
and “high” categories), which persisted throughout the experiment. The t-test showed a
significant increase in Pav content compared to the control in all variants of the experiment
(tstat from 6.17 to 50.87, p < 0.01). The percentage of treatment effect was 95, while years
−1, their interaction −2%.

The content of Kex did not change significantly with the addition of all doses of PG
(Tables 14 and 15). The similar results were obtained by Nayak et al. [65]. The addition
of PG+TL contributed to an increase of the enrichment of Kex by one level (to a “very
high” category – 450–500 mg kg–1). By the autumn of the 3rd year, the content of Kex
slightly changed, especially in PG+TL and TL treatments. The maximum concentrations
remained at the level of 250–275 mg kg–1. In the subsequent years, the enrichment of Kex
remained “high” and “very high”, although the degree of potassium mobility did not
exceed the “medium” category (20 mg L–1). The percentage of treatments effect was 56,
while years −16, their interaction −26%.

4.3. Potato Yield and Ecological Quality

The first year of the experiment (2015) was an average in terms of meteorological
conditions of this natural-climatic zone, with a sufficient level of heat and moisture supply.
Potato yields increased with the application of amendments up to 3.2 times, as the max-
imum increase, after the application of TL40 (Table 16). The application of PG increased
the potato yield, growing gradually with increasing the dose. Joint application of PG and
TL at any ratio also had a significant (p < 0.01) effect on potato productivity, especially at
a dose of 60 t ha–1 where the yield was higher. In all variants with TL introduction, the
potato yield was significantly higher than with PG. The 2nd year of the study turned out to
be arid, which had a strong negative impact on potato yield, but the main patterns were
the same as in 2015. However, it should be noted that with a high dose of PG, potato yield
was almost same with control variant in 2016–2017. In all other variants, the increase in
yield was significant (p < 0.01). The meteorological conditions had a higher influence on the
potato yield than treatments and their interaction effect (55%, 30%, and 14%, respectively).
The applying of PG into other soils contributed to an increase in the yield of potato [6] and
various other crops [66,76,81] and depended both on dose and weather conditions during
plant development.

Being able to cause negative environmental consequences, the addition of PG into soil
in order to improve its properties must be done with caution. Many heavy metals (HMs)
are present as impurities in the PG composition, thus, the content of HMs total and soluble
forms in the soil can increase due to PG application. In some cases, the addition of PG was
reported to result in a dangerous increase in the activity of the Pb2+ in the soil solution [82].
Nevertheless, mobile and water-soluble forms of Ca, Ba, Sr, S, and Na increases soil
toxicity [83]. One of the most important indicators of soil pollution when using PG is
Sr content, since its ions are capable of replacing Ca2+ in the tissues of living organisms.
According to the Russian guidelines, the concentration of more than 600 mg kg–1 of Sr in
the soil is considered dangerous [84]. Taking this element into account, the permissible PG
application should not exceed 6.8% for agricultural land [85]. When soil bulk density is
1.1 g cm–3 and at a layer of 20 cm, the PG dose should be not more than 150 t ha–1. In the
composition of PG used in the experiment, Sr concentration was 14691 mg kg–1; while Sr in
the untreated control soil was 130 mg kg–1. Thus, in the highest dose (PG20TL40), the Sr
concentration was 260 mg kg–1, indicating that the applied doses of PG are environmentally
safe. Moreover, organic additives could reduce the risk of Sr contamination [86]. Despite a
slight increase in the content of water-soluble salts immediately after the addition of PG,
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the soil remained in the category “non-saline”. Al-Hwaiti and Al-Khashman [87] found
that concentrations of Cd, Cr, Pb, and Zn were below what are considered as acceptable
limits for food production in soil and vegetables (tomatoes and green peppers) under PG
applying in Jordan.

An important indicator of the ecological quality of agricultural crops is the assessment
of content of HMs and nitrates in their composition. Chemical analysis of potato tubers
showed that the content of Pb and Cd was significantly lower than the MPC defined by
the Russian government (Table 16). However, the addition of high doses of TL, either
alone or jointly with PG, in the first year, caused an increase in the content of nitrates in
potato tubers to 1.5—the MPC guidelines adopted in Russia [88]—however, in the 2nd year,
nitrate content in tubers gradually decreased and did not exceed the MPC. The correlation
between potato yield and nitrates content was strong both for two years (r = 0.72) and
separately (r = 0.75 at 2015, r = 0.82 at 2016). Obviously, in the first year it is more advisable
to cultivate industrial crops.

In the 4th year, the experimental plots were seeded with perennial herbs, a mixture of
alfalfa, fescue, and timothy grass; their hay productivity in the 5th year ranged 2.5–3.9 t ha–1.
The maximum increases were observed in the treatments with the joint addition of PG+TL
at a ratio of 1:5.

5. Conclusions

A 5-year long field experiment (in South Ural, Russia) demonstrates that the joint
application of phosphogypsum (PG) and turkey litter (TL) to weakly eroded agrocher-
nozem improves water-physical properties, as follows: significantly increases soil moisture
reserves, especially in the dry years, and the content of clay fraction and agronomically
valuable aggregates; and improves aggregate stability and soil microstructure. These factors
contribute to the increasing of soil resistance to water erosion. The statistical analyses show
that weather conditions of different years have a significant effect on soil water-physical
properties; the influence of this factor was 44–67%, while the effect of treatments was
21–30%.

The application of amendments also leads to the improvement of the soil agrochemical
properties. The content of soil organic carbon (Corg) increases with the introduction of TL
and remains stable until the end of the experiment. The ammonium nitrogen (NH4

+-N) and
nitrate nitrogen (NO3

−-N) content increases sharply at the beginning of the experiment
according to the dose of the TL, but then in the autumn, it noticeably decreases. The use of
PG helps to fix NH4

+-N, and reduces its loss by leaching from soil. The dynamics and the
content of NO3

−-N and alkaline hydrolysable nitrogen in general corresponds to NH4
+-N,

with time their amount decreases but to a lesser extent. The introduction of PG helps to
increase the content of available phosphorus (Pav) from a “low” to a “medium” level, and
the addition of TL to a “very high” Pav level, which gradually decreases but remains in this
category until the end of the experiment. The soil of the control plot is characterized by
a “high” content of exchangeable potassium, which increases less noticeably than other
nutrients and does not change significantly in subsequent years. The content of Corg and
Pav is more dependent on treatments factor (77 and 95%, respectively), and the content of
all nitrogen forms depend on the year factor (34–57%).

The amendments, especially TL increase potato yields in two to three times compared
to control. The high doses of PG only at years with a lack of soil moisture do not lead to
an increase in potato yield. Only in the first year an excess in the maximum permissible
concentration of nitrate was observed in some cases, but with no presence of Pb and Cd.

Thus, the wastes from the phosphorus fertilizers production (PG) and poultry farming
(TL) are advisable to use not only to increase fertility, but also for soil anti-erosion resistance.
The wider use of these amendments will lead to an improvement of the ecological situation
and will give an economic benefit for the agriculture in the region. The proposed techniques
can also be useful on other soil types and climatic conditions.
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