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Abstract: Leaf senescence is strictly regulated by multiple internal factors and external environmental
signals, with the epigenetic modification being an important element among them. However, the
epigenetic mechanism of leaf senescence is largely unknown in horticultural crops, especially the leaf
vegetable pak choi, which easily senesces, and becomes yellow post-harvest. In this study, we found
that the expression of DNA methyltransferases (BcMET1, BcSUVH4, BcDRM2, BcRDR2, and BcCMT3)
of pak choi decreased during storage. The preliminary results showed that its senescence process was
accompanied by DNA methylation changes. Moreover, treatment with 500 µM 5-Azacytidine (5-Aza)
(DNA methylation inhibitor) can promote the senescence of pak choi leaves by (1) increasing the
degradation of chlorophyll (Chl) and its derivatives, (2) increasing the activities of Mg-dechelatase
(MDCase), pheophytinase (PPH) and pheophorbide a oxygenase (PAO), and (3) inducing the expres-
sion of senescence-related genes (BcSAG12, BcNYC1, BcSGR1, BcSGR2, BcPPH1, BcPPH2, BcPAO, and
BcRCCR), thereby accelerating the senescence of the pak choi leaves. Further studies showed that
DNA demethylation occurred in the promoter regions of BcSGR2 and BcSAG12 during storage, with
the bisulfite sequencing detection showing that their degrees of methylation decreased. Therefore,
our findings help us understand how epigenetic modifications affect the storage tolerance of leafy
vegetables, which is highly significant for cultivating anti-senescent vegetable varieties.
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1. Introduction

Pak choi (Brassica rapa subp. chinensis) is widely grown in southern China. It is a
crisp and delicious vegetable rich in vitamins, carotene, carbohydrates, proteins, and other
nutrients. However, it has tender leaves with a large leaf surface area which promotes
vigorous respiration [1]. Therefore, wilting easily occurs during postharvest storage and
transportation, which directly affects their shelf life and causes nutrient loss [2].

The yellowing of postharvest vegetable leaves is often accompanied by the degradation
of macromolecules like Chl [3]. The pathway of Chl degradation has been elucidated using
functional analysis of Chl catabolic genes [4]. Chl in higher plants mainly comprised chloro-
phyll a (Chl a) and chlorophyll b (Chl b) [5]. First, Chl b is reduced to 7-hydroxymethyl
Chl a (HCA) under the action of NON-YELLOW-COLORING 1 (NYC1) and NYC1-LIKE
(NOL), followed by the reduction of HCA to Chl a via 7-hydroxymethyl Chl a reductase
(HCAR) [5,6]. Then the magnesium ion of Chl a is chelated via magnesium chelatase
(MCS) to generate pheophytin a (Phein a) [7]. Under the action of pheophytinase (PPH),
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Phein a transforms into pheophorbide a. Pheophorbide a is degraded into an unstable red
Chl metabolite (RCC) via the PAO enzyme, which finally results in a colorless primary
fluorescent Chl metabolite (PFCC) [8,9].

Current studies have found that DNA modifications and histone modifications are
important in plant senescence [10,11]. In eukaryotes, DNA methylation is epigenetically
regulated by an important form of DNA cytosine methylation which is often accompanied
by gene silencing [12]. In plants, DNA methyltransferases mediate cytosine methylation.
For example, MET1 (METHYLTRANSFERASE 1) mostly mediates CG methylation, while
CMT3 and CMT2 mediate CHG methylation, whereas DRM2 directly mediates CHH
methylation [13]. Studies have shown that since DNA methylation and demethylation are
dynamic processes, some demethylation enzymes like ROS1, DME (DEMETER), DML2
(DEMETER-LIKE), and DML3 [14] may be involved. Although DNA methylation is a
key epigenetic mechanism regulating gene expression, previous studies have found that
histone-specific modifications of lysine or arginine are also involved in epigenetic regula-
tion [15]. For example, histone H3K9me2 methylation is particularly important in DNA
methylation, especially CHG methylation catalyzed by CMT3 [16]. Since DNA methy-
lation and demethylation are vital in the transcriptional regulation of many genes, they
help regulate many important life processes and inevitably affect plant senescence. DNA
hypomethylation and developmental defects, including delay in leaf senescence, were due
to the temporal and spatial downregulation of MET1 activity in Arabidopsis [17]. The
transcriptomic analysis found that with increasing plant senescence, the expression levels
of genes responsible for methylation (CMT3 and MET1) continued declining, whereas
those of genes responsible for demethylation (DME, DML2, and DML3) continued in-
creasing [18]. Methylation levels in the plant aerial parts were reduced when plants were
senesced [19]. Recent studies have also found that the DML3 gene knockout in Arabidopsis
thaliana increased the genomic DNA methylation level, thereby inhibiting the expression
of senescence-associated genes (SAGs), which delayed leaf senescence [20]. However, the
epigenetic mechanism of postharvest leaf senescence in pak choi is still unclear.

Therefore, since the DNA methylation inhibitor 5-Aza promoted postharvest pak
choi leaf senescence via the Chl degradation pathway, we systematically elucidated the
epigenetic mechanism of senescence in pak choi based on the changes in DNA methylation
levels of senescence-related genes. Meanwhile, this study provides some relevant insights
into the molecular mechanism of postharvest senescence in pak choi.

2. Materials and Methods
2.1. Plant Materials and Treatment

Pak chois were obtained from the experimental field of Jiangsu Academy of Agri-
cultural Sciences, China. After 40 days (d) of sowing, pak choi with uniform size and no
mechanical damage to its leaves was harvested; the samples were quickly transported to
the laboratory. Uniformly sized pak chois were randomly divided into five groups, with
12 in each group. Pak choi was sprayed evenly with the different concentrations of DNA
methylation inhibitor 5-Aza (C8H12N4O5, Sigma-Aldrich, St. Louis, MO, USA) (62.5 µM,
125 µM, 250 µM, and 500 µM). The control group was sprayed with distilled water. Each
group was sprayed with about 100 mL solution and dried at 20 ± 1 ◦C. The processed pak
chois were transferred to porous polyethylene food bags, with each bag containing 4 pak
chois, and each treatment containing three replicates. These were then stored in the dark
at 20 ◦C (relative humidity 80%) for 4 d. Leaves with their primary veins removed from
12 vegetables in each treatment group were randomly selected and the samples were snap
frozen in liquid nitrogen and then stored at −80 ◦C for determination of Chl content in
leaves. The optimal concentration of 5-Aza was 500 µM according to the phenotype and
total Chl content of pak choi leaves. Uniformly sized pak chois with no surface damage
were randomly divided into the treatment and control groups, with 60 in each group. One
group was evenly sprayed with 120 mL distilled water containing 120 µL tween (control
group), while the other group was evenly sprayed with 120 mL 5-Aza (500 µM) containing
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120 µL tween (treatment group), and air dried at 20 ± 1 ◦C. These pak chois were placed
in porous polyethylene food bags, with four per bag, and three replicates per treatment
per day. These were then stored at 20 ± 1 ◦C (relative humidity 80%) for 0, 1, 2, 3, 4 d.
The leaves of the treatment and control groups without their primary vein were randomly
selected every day, quickly froze in liquid nitrogen, and stored at −80 ◦C.

2.2. Surface Color and Chl Analyses

The CR-400 automatic Chroma Meter (Konica Minolta Sensing Americas, Inc., Ramsey,
NJ, USA) was used to measure the color aberration of the pak choi leaves. Chlorophyll
content was determined according to the method of Gao et al. [21]. The rapidly ground
samples (0.2 g) were thoroughly homogenized with 10 mL of 80% acetone and incubated
for 6 h at room temperature in the dark. The filtrate was extracted and the absorbance of
the supernatant was measured at 642 nm and 665 nm using 80% acetone as a blank.

2.3. Chl-Degrading Enzyme Activity

Pak choi leaves (0.5 g) were homogenized in 0.05 M phosphate buffer (pH 7.4, 2 mL)
containing 2.4 g L−1 Triton X-100 (solarbio, Beijing, China) to prepare a crude enzyme
extract. The suspension was thoroughly mixed and centrifuged at 10,000× g for 20 min
at 4 ◦C. The resulting supernatant was used for subsequent experiments. The activities of
MDCase, PPH, and PAO were determined as per the manufacturer’s instructions of Abmart
Kits (Abmart Shanghai Co., Ltd., Shanghai, China) for plant enzyme activity determination.

2.4. Chl-Degradation Derivative Content

The sample preparation was modified as described previously [1]. To 0.5 g sample,
10 mL pre-cooled acetone was added. Ultrasound treatment was subsequently carried out
at 4 ◦C until the sample tissue was colorless and then centrifuged at 10,000× g for 20 min
at 4 ◦C. Five milliliters of the supernatant were transferred into a clean 50 mL tube and
5 mL of 10% (w/v) NaCl was added to it. Then 10 mL of ether was added for extraction,
followed by vigorous shaking, and the lower layer was discarded after stratification. Then
10 mL of pure water was added to the upper layer for washing, and it was subsequently
washed twice. It was then shaken gently and the aqueous phase, left after stratification,
was discarded. Anhydrous sodium sulfate (1 g) was added to absorb water from the
sample, which was then slowly dried with a nitrogen blower (KY-II, Beijing, China). After
blow-drying, 2 mL of pre-cooled acetone was added and left for 20 min to completely
dissolve, followed by filtration through a 0.22 µm membrane. This extract was analyzed on
an Agilent 1260 high-performance liquid chromatography-mass spectrometry (HPLC-MS)
system (Agilent, Santa Clara, CA, USA). Chl derivative standards Pheide a, Phy a, Chlide a,
and Chlide b were determined according to Dissanayake et al. [22].

2.5. RNA Isolation and Transcript Quantification

Trizol reagent (Invitrogen, Waltham, USA) was used to extract the total RNA from
pak choi. According to the Thermo Kit instructions, cDNA was synthesized by reverse
transcription. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) used
specific primers. Ubiquitin and Actin were used as the internal controls (Table 1). qRT-PCR
was conducted in a 20 µL system, including 10 µL Supermix, 2 µL template cDNA, 1 µL
forward and reverse primers (Table 1), and 6 µL sterile water. First, pre-denaturation was
performed at 95 ◦C for 30 s, followed by 95 ◦C for 10 s, 60 ◦C for 30 s, and 40 cycles of
reaction. Finally, a qPCR reaction was performed at 65 ◦C for 5 s and 95 ◦C for 5 s. Reactions
were performed on a Biosystems 7500 Fast Real-Time PCR System (Applied Biosystems,
Waltham, MA, USA) using an iTaq Universal SYBR Green Supermix (Takara TB Green®

Fast qPCR Mix, Shiga, Japan). The expression of each gene was technically replicated thrice.
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Table 1. Primer sequences used for PCR in this study.

Primer Name Forward (5′–3′) Reverse (5′–3′)

qRT-PCR

BcNYC1 GGCTTGGTGGAGTTATCATTGG ACGGATTCAGAACTGCGAGAT

BcNOL ACACAATCTATCGCCTGGAATG AGATACTCAGCAACCACTTCAG

BcSGR1 AGCTTATTCAGACAAACGGGGT TGGTGGATGCTTCTTGTCATCA

BcSGR2 ACAGTGACATAACCGCTAAGC CTCCGCTAATGTGGCAATGAA

BcPPH1 GTGGTCGGTGAGAATGAGGA CGCAGTGAGAAGTAGTGATTCG

BcPPH2 TGTGGTTGGTGAGAATGATGAC TCGCAGTGAGAAGGAGTGATT

BcPAO TCTCTGAAGGAAGGTTGGATGA TGAAGTAGCAGCCTGTGGAA

BcRCCR TCATCGTCAGTCACTCCTCAA AACCTCAAGAACTTGCGTAGC

BcSAG12 CACTGGCGGCTTAACCACTGAA GAAGATTGGCTGTATCCTACGGC

BcMET1 TGGTTTGGTTCTCGACGGAG CGAGTTGTACAGTGCCCAGT

BcSUVH4 ATGATTGGTGACCTGCCAGG ACACCAAGCCCTGAATCTCG

BcDRM2 TTCCAAACGAGCCAGGACTC GACGCTCGGTCCTACTCATG

BcRDR2 AGAGCCTATGTTACGCCTTCA TAGCCTTCCTTGGAGTTCACA

BcCMT3 GCAACTTGTTCGCTCAATCTC GCCACTTCCGCTGTTACTC

BcROS1 TTTGCTGCAGGACTAGCTCC GGTACTGGATACTCCGCAGC

BcActin TCTCTTCCACACGCCATCC GTCTCCATCTCCTGCTCATAGT

BcUbiquitin GAGGTGGAGAGCAGTGACAC GCTGTTTTCCGGCGAAGATC

Primers used for qPCR of enzyme
digestion

BcSGR2-R1 CTCCTTTACCCGAACCAACAAT AGAGTACCCAATCTCCCTAACG

BcSGR2-R2 ATAGATAAGTTCCGACCGAAGC GTAGCGTTGACGAGTTCTCTT

BcSGR2-R3 CACCTCGTCAGAGCGGATT TTGTTGTTTGCGTGTTGGAGT

BcSAG12-R1 TACACCCATACATCAGCATTGT TCAGATTCCAGTAGGCAAAGAT

BcSAG12-R2 GAAGAAGACTGACCAGCGATG GAACAGACGAGCCGATCCT

BcSAG12-R3 TGAACCGAATAAACCGAATTGG AAGCCCGAAGCACAAACTG

BcRCCR-R1 GGTCGGTGGAGAACATGGT TTCATCTGCTCGGTCAAGAAC

BcRCCR-R2 AAGCACGGGATTAGATTTGGT ACGGAAACTACCTACTAATTGC

BcRCCR-R3 CCAATTAAGTCGCTCTTGAGTC TACACTAAACCGAACCCGTTAA

BcNOL-R1 AGACAGCAACCAAGAGGAACA CTACCAACCTGGCAGATCAATG

BcNOL-R2 AGAGATGGCTGAGGCAAGG GCTTCTTCCACACGCTTCC

BcNOL-R3 GTGAAGAGAAGAAGTTGATGGT GAGCAGAAGATGAGGAACAGA

BcNYC1-R1 TTACTTCTCAGTGGTGCCTTCA ATGGTTGCCTGCTGCTCTC

BcNYC1-R2 ACAGCTCTTGCGACCGTAG CGTGGTGGTGTCTCTTGAATC

BcNYC1-R3 CGAGATGAGGTTGCCGTAAC TCGGAGAAGGAAAGAGATGAGG

BcPAO-R1 CAGCGGGACTTAGGTTACAGA GACCAGTTAAGCATCCAACAGT

BcPAO-R2 GGGTTTGGTTCTGATCGGTTT CGCAAAGATCCAAATCGAACTC

BcPAO-R3 TGGATCGGTATCGGTTATGTTC TGGCACTTGGCATAATAAGAAC

BcPPH1-R1 TGTAAGCAGCGTCCATAGAGA TCCGTTCCTGAGCCTAAGC

BcPPH1-R2 TGTCATCGACCTGCTGAAGAA CGGTGAGGATGCGATTGTTAT

BcPPH1-R3 TCTTTCCTCACCGTCCTTGTAA TTCAGATTGCGGATGCTAGAAG

BcPPH2-R1 AATGGAAGGAGGAGGAGGATG CACAGTTGACGGTTAGAGATTG

BcPPH2-R2 GCAACGGGTCTTTCAAATTGG GCTGGCTTGGCTAACTTCTC

BcPPH2-R3 ACTTGGCTCTTACTGTCTGTGA TTGTTAAGGTTGACGCACGAAT

BcSGR1-R1 TGATAACAGTGGACGGTCTTCT GGTGGATGCGGTCATTGGA

BcSGR1-R2 TCTCTTCGAGTTTGCTCTGTTC CAATCATACACCGTGACCTCAA

BcSGR1-R3 ACGCATCATCAGAAGAAGAACC CTTTACCGAGGCTTGGAAACC

BcActin TCTCTTCCACACGCCATCC GTCTCCATCTCCTGCTCATAGT

BcUbiquitin GAGGTGGAGAGCAGTGACA CAAGGTACGACCGTCTTCAAG

Primers for disulfite qPCR
BcSGR2 ATGTAGTGAAGAAGTTGGATATTAA ATCAAAAACTAAAAACCCTTAAAAA

BcSAG12 AATTAATAGAGAAGAAGATTGATTAG TAAACTAAATCAAATAAAAACAAAC
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2.6. DNA Methylation-Sensitive Restriction Enzyme Test

DNA methylation was detected by McrBc (methylation sensitive restriction endonucle-
ase) enzyme digestion combined with qRT-PCR to extract the control group and treatment
group of DNA at 0 d and 3 d. Then the McrBc restriction enzyme (New England Biolabs,
Waltham, MA, USA) was used to digest each sample for 16 h. The reaction system was: 1 µL
McrBc (10 U), 5 µL 10 × NEB Buffer, 0.5 µL 100 × GTP, 0.5 µL 100 × BSA, and 1 µg sample
DNA, while the volume was adjusted with sterile water to 50 µL. It was then incubated at
37 ◦C for 16 h, followed by inactivation at 65 ◦C for 20 min, and finally diluted with sterile
water to 100 µL after the experiment. The obtained enzyme digested product was used
for detection of the expression level of each gene fragment in the sample via qRT-PCR. All
results required at least two independent biological replicates and two independent diges-
tion reactions. Quantitative results were obtained by normalized pak choi reference genes
Ubiquitin and Actin (Table 1) and then compared with the DNA of undigested samples to
calculate the ratio.

2.7. Bisulfite Sequencing Detection

According to Zhong et al. [23], the control group and treatment group of DNA at 0 d
and 3 d were treated with the ZYMO EZ DNA methylation-Gold Kit (ZYMO Research,
Waltham, MA, USA). The product was amplified by PCR, followed by cloning the purified
target fragment into the vector (pEASY®-T1 Simple Cloning Kit, TransGen, Beijing, China)
and then transformed into E. coli. The target gene methylation-specific primers (Table 1)
were used for bacterial liquid PCR screening. Twenty positive clones of each of the two
genes were selected, and sent to Tsingke Biotechnology Co., Ltd., (Beijing, China) for
sequencing. BiQ Analyzer (http://biq-analyzer.bioinf.mpi-inf.mpg.de, accessed on 1 June
2021) was used to analyze the methylation level of the methylation sites after removing the
sequences of the target fragments.

2.8. Statistical Analysis

A completely random design was used in this experiment. Three replicates were set
for each treatment, with all data in this study being analyzed using SPSS 24.0 (version 24
for Windows, SPPS Inc., Chicago, IL, USA). One-way ANOVA and the LSD test were used
for data in this experiment. Differences of the experimental results with * p < 0.05 and
** p < 0.01 were considered significant and extremely significant, respectively.

3. Results
3.1. Expression of DNA Methyltransferase

Promoter hypermethylation of SAGs in the Arabidopsis atdml3 mutant causes delayed
plant senescence, thus suggesting that DNA demethylation occurs during plant senes-
cence [20]. For exploring the relationship between DNA methylation and senescence in pak
choi, we detected the expression of DNA methyltransferase in pak choi. The expression of
the methyltransferase genes, BcMET1, BcSUVH4, BcDRM2, BcRDR2, and BcCMT3, showed
a downward trend with increasing storage period (Figure 1A–E). However, the expression
of DNA demethylation related genes (BcROS1) remained unchanged (Figure 1F). Therefore,
these results preliminarily suggest that the senescence of pak choi leaves may be closely
related to the DNA methylation.

http://biq-analyzer.bioinf.mpi-inf.mpg.de
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Figure 1. The expression of the DNA methyltransferase genes (BcMET1, BcSUVH4, BcDRM2, BcRDR2,
and BcCMT3) (A–E) and the demethyltransferase gene (BcROS1) (F) in the control group during
storage. The data in the figure are the mean ± SD of three biological replicates. The bar in the figure
represents the standard deviation. The asterisks in the figure indicate significant differences between
the mean values expressed for different storage days in the control group (* p < 0.05).

3.2. Treatment with Different Concentrations of 5-Aza on the Phenotypic Characteristics and Total
Chl Content

5-Aza is a DNA methylation inhibitor, which can bind to the DNA methyltransferase
to inhibit DNA methylation. Therefore, we used it to study the effect of DNA methylation
on the senescence of pak choi leaves. We used different concentrations of 5-Aza (62.5 µM,
125 µM, 250 µM, and 500 µM) to treat pak choi, while we used sterile water as the control
group. Although there was little change during the two days of storage, the leaves started
yellowing on the third day. With the increasing storage period, the degree of leaf yellowing
in control groups was similar to that in 62.5 µM and 125 µM of 5-Aza treatment groups.
Compared with the control group, leaf yellowing degree in 250 µM and 500 µM treatment
groups were higher, and the yellowing degree in the 500 µM treatment group was higher
than that in 250 µM treatment group (Figure 2A).

The results showed that the total Chl content in the 500 µM treatment group on
the fourth day of storage was the lowest (Figure 2B). Therefore, these results indicate
that methylation inhibitor 5-Aza can accelerate the yellowing of pak choi leaves, in a
concentration-dependent manner. Therefore, we selected the 500 µM of 5-Aza for analyzing
how DNA methylation affects the senescence mechanism of pak choi leaves.
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3.3. Surface Color and Total Chl Content

Yellowing of the leaf is the most noticeable symptom of senescence. The leaves of the
control group turned yellow on day 4 of storage, as compared to the 5-Aza treatment group
(500 µM) which started to yellowing on day 3, with most of the Chl being lost on day 4
(Figure 3A). The color difference index L* represents the leaf brightness, while h* represents
leaf color. During storage, the L* values of both the control and 5-Aza treatment groups
increased. On the third and fourth day of storage, the L* value of the 5-Aza treatment
group was about 9.0% and 13.7% higher than the control group, respectively. The h* value
during the storage period of the control and the treatment groups gradually decreased,
with the h* value on days 3 and 4 of the 5-Aza treatment groups was about 3.5% and 5.0%
lower than the control group, respectively (Figure 3B,C). Chl is also an important indicator
of leaf senescence. Total Chl, Chl a, and Chl b also decreased gradually with the storage
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time. On the third day of storage, Chl a, Chl b, and total Chl in 5-Aza treatment group
were about 35.6%, 57.0%, and 36.2% lower than those in the control group, respectively.
However, they decreased by 57.0%, 59.4%, and 57.2%, respectively, on the fourth day of
storage (Figure 3D–F). It further shows that 5-Aza may promote the senescence of pak
choi leaves.
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3.4. Activity of Chl-Degrading Enzymes

MDCase activity gradually increased during the first three days of storage, with the
5-Aza treatment group showing about 11.3%, 13.8%, and 18.2% higher activity than the
control group, respectively (Figure 4A). PPH and PAO are two of the most important
enzymes involved in Chl degradation. The PPH activity of the 5-Aza treatment group
increased gradually during storage. On the third and fourth days of storage, the 5-Aza
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treatment group showed about 9.8% and 9.0% higher activity than that of the control group
(Figure 4B). However, PAO activity was higher in the middle and late stages of storage. On
the second and fourth days of storage, the PAO activity of the 5-Aza treatment was about
29.2% and 37.4% higher than that of the control group, respectively (Figure 4C).
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3.5. Chl-Degradation Derivative Content

The Chl a and Chl b contents decreased gradually during storage. As compared with
the control group, the Chl a content in the 5-Aza treatment group decreased by 26.2%
and 46.1% on the third and fourth days, respectively (Figure 5A). Contrastingly, the 5-Aza
treatment group showed about 45.1% and 61.1% lower Chl b content on the third and fourth
days of storage, respectively (Figure 5B). During the storage period, the chlorophyllide
(Chd) a content in the 5-Aza-treated leaves first decreased, then increased, and then again
gradually decreased. However, those in the leaves of the control group decreased gradually.
On the third and fourth day of storage, as compared with the control group, the Chd a
content of the 5-Aza treatment reduced by about 12.4% and 36.1%, respectively (Figure 5C).
The trend change of Chd b is similar to that of Chd a. After 3 and 4 d of storage, the Chd b
content in the pak choi treated with 5-Aza was about 29.1% and 57.7% lower than that in
the control group (Figure 5D). As shown in Figure 5E, the Phb a content in the treatment
during storage was always lower than that in control group. The Phb a content in the
treatment group was about 23.0%, 19.6%, and 35.3% lower than that of the control group
on days 1, 3, and 4, respectively, but there was little difference in the content on 2 d. On
the first day of storage, the Pheo a content in both the treatment and the control groups
showed a decreasing trend. By comparing with the control group, the Pheo a content in the
treatment group did not change (Figure 5F).
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Figure 5. Chl a (A), Chl b (B), Chd a (C), Chd b (D), Phb a (E), Pheo a (F) contents of pak choi in
the treatment and control groups at 20 ± 1 ◦C. The data in the figure are the mean ± SD of three
biological replicates. The asterisks in the figure indicate significant differences between the mean
values of treatments and controls (* p < 0.05; ** p < 0.01).

3.6. Expression of Senescence-Related Genes

Leaf senescence is closely related to the expression of senescence-related genes (Chl
degradation and senescence marker genes). We used qRT-PCR to analyze the expression
level changes of Chl catabolism genes during storage. The expression of BcNYC1 increased
on the first, second, and fourth days of storage. After the 5-Aza treatment, its expression
level on the third and fourth day of storage was about 1.7 and 2.3 times that of the control
group, respectively (Figure 6A). BcNOL expression increased during the first and fourth
days of storage (Figure 6B). With increasing storage period, the expression of both BcSGR1
and BcSGR2 in both the control and the treatment groups was gradually up-regulated. The
BcSGR1 expression on the third and fourth days of storage was about 1.6 and 1.5 times
higher than that of the control group, respectively (Figure 6C). Furthermore, on the third
day of storage, the expression of BcSGR2 in the treatment group was about 3 times higher
than in the control group (Figure 6D). The expression of BcPPH1 in the 5-Aza treatment
group was about 1.5 and 1.4 times of that in the control group on the third and fourth day
of storage, respectively (Figure 6E). With increasing storage time, the BcPPH2 expression
increased slightly, with those in the treatment group being about 3 and 1.3 times than in
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the control group on the third and fourth days of storage, respectively (Figure 6F). The
BcPAO expression increased slightly with increasing storage time, which increased after
5-Aza treatment as compared with the control group (Figure 6G). As shown in Figure 6H,
the BcRCCR expression decreased with the increasing storage time, with it being about
3.4 times in the 5-Aza treatment group than in the control group on the third day of storage.
The expression pattern of BcSAG12 was similar to that of BcSGR1 during storage. The
expression level of BcSAG12 in the treatment group was about 12.7 and 3.7 times of that in
the control group on the third and fourth days of storage, respectively (Figure 6I).
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Figure 6. The detected expression levels of the eight Chl degrading genes (BcNYC1, BcNOL, BcSGR1,
BcSGR2, BcPPH1, BcPPH2, BcPAO, and BcRCCR) (A–H) and the senescence marker gene (BcSAG12)
(I) in pak choiat 20 ± 1 ◦C. The data in the figure are the mean ± SD of three biological replicates.
The bar in the figure represents the standard deviation. The asterisks in the figure indicate significant
differences between the mean values of treatments and controls (* p < 0.05).

3.7. DNA Methylation of Senescence-Related Genes

To explore the relationship between the expression level changes of senescence-related
genes and DNA methylation, we further studied the genes (BcNYC1, BcSGR1/2, BcPPH1/2,
BcPAO, BcRCCR, and BcSAG12) whose expression were induced by DNA methylation
inhibitors. Methylation changes in the promoter regions of the above eight genes were
preliminarily verified by the methylation sensitive restriction endonuclease McrBC method.
We designed three pairs of methylation specific primers (R1, R2, R3) according to the CpG
enriched regions of the BcPPH1/2, BcSGR1/2, BcNYC1, BcPAO, BcRCCR, and BcSAG12
promoters on MethPrimer online website (http://www.urogene.org/cgi-bin/methprimer/
methprimer.cgi, accessed on 25 June 2021). According to their phenotypic characteristics,
we found that pak choi leaves started yellowing from the third day of storage. Therefore, we
selected the DNA of pak choi of the control group stored on the 0 d and 3 d for subsequent

http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
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experimental verification. The results showed that the promoter region of BcSGR2 was
methylated at 0 d, while DNA demethylation occurred in the R3 region after 3 d of storage
(Figure 7A). The promoter region of BcSAG12 was highly methylated, with the DNA
demethylation also occurring in the R3 region after storage for 3 d (Figure 7B). However,
there was little change in the methylation of the promoter regions of BcPPH1/2, BcNYC1,
BcPAO, BcRCCR, and BcSGR1 (Figure 8A–F). In order to further verify the reliability of
McrBC method, we used disulfite PCR to further verify the results. The results showed
that the degree of methylation of the R3 region of BcSGR2 promoter was 23.07% at 0 d
and 11.53% after 3 d of storage. The degree of methylation of the treated group was 2.00%
after 3 d of storage (Figure 7A). However, the degree of methylation of the R3 region of the
BcSAG12 promoter was about 31.03% at 0 d and 10.34% at 3 d after storage. The degree
of methylation of the treated group was 3.25% after 3 d of storage (Figure 7B). Therefore,
these results suggest that the postharvest pak choi may control their gene expression by
reducing methylation in the SAGs promoter region, thus regulating leaf senescence.
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Figure 7. The degree of methylation of the Chl degradation gene (BcSGR2) (A) and the senescence
gene (BcSAG12) (B) in the promoter regions R1, R2, and R3, and the methylation levels of BcSGR2 (A)
and BcSAG12 (B) in the promoter R3 region at 0 d, 3 d, and 3 d (5-Aza) of storage. The data in the
figure are the mean ± SD of three biological replicates. Different letters means statistically significant
difference in the same same gene region (p < 0.05).
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Figure 8. The methylation levels of the chlorophyll degradation genes (BcPPH1, BcPPH2, BcSGR1,
BcRCCR, BcNYC1, and BcPAO) in the promoter regions R1, R2, and R3, at 0 d, 3 d, and 3 d (5-Aza) of
storage (A–F). The data in the figure are the mean ± SD of three biological replicates. Different letters
means statistically significant difference in the same same gene region (p < 0.05).

4. Discussion

DNA methylation/demethylation is an epigenetic mechanism that regulates genomic
stability and gene expression, and is also involved in defense responses to environmental
stresses [24,25]. In plants, dynamic methylation/demethylation occurs mainly on cyto-
sine of the CG dinucleotide [16]. However, the current understanding of the epigenetic
mechanisms associated with postharvest senescence (e.g., leaf yellowing) in pak choi is
very limited. This study provided some evidence regarding the relationship between DNA
demethylation, gene expression, and senescence in pak choi leaves after harvest.

Senescence is a critical stage in plant growth and development process, which requires
simultaneous extensive reprogramming of the expression of diverse genes and multiple
levels of regulation [26]. Studies have shown that besides gene reprogramming being a key
factor in plant senescence, higher-level mechanisms like transcription factors and DNA
methylation are also key factors in age-related genes [27–29]. In this paper, we explored the
relationship between DNA methylation and postharvest senescence of pak choi. According
to previous reports, the expression of DNA methyltransferase and DNA demethylase
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decreased and increased in Arabidopsis thaliana during senescence [19]. The expression
levels of DNA methyltranferases like BcMET1, BcCMT3, BcSUVH4, BcDRM2, and BcRDR2
decreased with the increasing storage period (Figure 1A–E). DNA methylation is a dynamic
process, the generation, maintenance, and demethylation are happening at any time [30].
However, we found that the demethyltransferase BcROS1 expression level hardly changed
with increasing storage time (Figure 1F). In conclusion, we can preliminarily speculate that
postharvest leaf senescence of pak choi may be closely related to the level of genome-wide
global DNA hypomethylation regulated by DNA methyltransferases.

To further study the relationship between postharvest senescence and DNA methyla-
tion of pak choi, 5-Aza, which is commonly used in plants, was used to inhibit the degree
of DNA methylation. It is an analog of cytosine that irreversibly binds to DNA methyl-
transferases, thereby making it difficult for the genome to maintain a methylated state, thus
causing DNA demethylation [23,31]. For example, 50 µM of 5-Aza reduced the level of
DNA methylation in wheat genome and improved its salt tolerance [32]. To explore the
optimal concentration of 5-Aza for affecting the senescence of postharvest pak choi, we
used different concentrations of 5-Aza to treat postharvest pak choi. Compared with the
control group, the leaves in the 500 µM 5-Aza treatment group showed the highest degree
of yellowing, along with the lowest total Chl content during the entire storage process
(Figure 2A,B). Therefore, we selected 500 µM of 5-Aza for follow-up experiments. We also
found that on the third and fourth days of storage, the 5-Aza treatment group promoted the
yellowing of pak choi leaves (Figure 3A). The surface color and Chl content also confirmed
this conclusion (Figure 3B–F), thereby preliminarily confirming that the DNA methylation
inhibitor 5-Aza may accelerate the senescence of pak choi leaves by reducing the DNA
methylation level of their genome.

The degradation of Chl components during leaf senescence involves multiple Chl
degradation and SAGs, including BcNYC1, BcNOL, BcSGR, BcPAO, BcPPH, BcRCCR, and
BcSAG12 [5]. SAG12 is a plant senescence-associated marker gene, which can largely reflect
the process of plant senescence [33]. In this study, BcSAG12 responded rapidly to senescence
and 5-Aza exacerbated this phenomenon (Figure 6I). NYC1 and NOL are vital in converting
Chl b to Chl a [34]. The expression of NYC1 in Chinese flowering cabbage was up-regulated
during storage and also increased by MeJA [35]. We found that 5-Aza treatment promoted
the increased expression of BcNYC1 in pak choi (Figure 6A). The MDCase encoded by
chloroplast SGR gene participates in Chl degradation by chelating Mg2+ from Chl a [36].
The expression of BcSGR1/2 in Chinese flowering cabbage was also found to be induced by
MeJA [35]. Similarly, we observed that 5-Aza treatment up-regulated both the MD enzyme
and BcSGR1/2 expression (Figures 4A and 6C,D). The enzymes PPH and PAO hydrolyze
Phy a into RCC [37]. Treatments like MeJA increased the expression of BcPPH in untreated
Chinese flowering cabbage, thus accelerating senescence [38]. The expression pattern of
BcPPH1/2 also shared similarity with Tan et al. [36] (Figure 6E,F). PPH activity was also
found to be promoted by 5-Aza (Figure 4B). The final two reactions of color loss in Chl
were catalyzed by PAO and RCCR [37]. 5-Aza increased the expression of both BcPAO and
BcRCCR (Figure 6G,H). Similar expression patterns of BcPAO and BcRCCR was observed
in stored Chinese flowering cabbage post MeJA treatment [35]. 5-Aza also increased the
activity of PAO (Figure 4C). Overall, with increasing storage period, the expression of
the Chl degradation genes and the activity of Chl degrading enzymes were up-regulated.
5-Aza treatment increased these phenomena, thus promoting pak choi leaf senescence.
As a result, 5-Aza reduced the accumulation of Chl a, Chl b, and Chl cycle intermediate
metabolites like Chd a, Chd b, and Phb a (Figure 5A–E).

DNA methylation can regulate the expression of target genes, which varied with
the location of DNA methylation [38,39]. DNA methylation in plants occurred in both
the promoter and the transcribed gene ontology, with only 5% Arabidopsis genes be-
ing methylated in their promoter region, but many higher plants contain relatively large
genomes and also have higher transposon content and more transposon adjacent genes.
The methylation of the promoter region is more common, with the effect of methylation
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changes on the whole plant being more noticeable [40,41]. DNA hypermethylation in
promoter regions usually represses gene transcription [42–44]. Previous studies have found
that DNA methylation levels gradually decreased during tomato ripening, whereas DNA
methylation levels increased during citrus fruit growth [23,45]. It was found that during
the cold storage of sweet orange, the methylation level of promoters of the anthocyanin
biosynthesis-related genes, DFR and Ruby, decreased significantly in the high-pigmented
(HP) areas and increased in not/low pigmented (NP) areas [46]. To clarify the relationship
between postharvest leaf senescence and DNA methylation in pak choi, combined with
phenotypic and physiological analysis, we analyzed the changes in DNA methylation in
the promoter regions of senescence-related genes in pak choi at 0 and 3 d of storage period.
We used McrBC digestion method in this study [47] to analyze the methylation patterns of
senescence-related genes (BcNYC1, BcSGR1/2, BcPPH1/2, BcPAO, BcRCCR, and BcSAG12).
The results showed that DNA demethylation occurred in the BcSGR2 and BcSAG12 pro-
moter regions after 3 d of storage, which was further verified by the bisulfite sequencing
(Figure 7A,B). Therefore, our results suggest that postharvest leaf senescence of pak choi
may be mediated, at least partly, by DNA demethylation of senescence-related genes.

5. Conclusions

5-Aza treatment (1) promoted the degradation of Chl and its derivatives, (2) increased
the activity of Chl degradation pathway related enzymes (MDCase, PPH, and PAO), (3) in-
creased the expression of senescence related genes (BcNYC1, BcPPH1/2, BcSGR1/2, BcPAO,
BcRCCR, and BcSAG12), and thereby promoted the senescence of postharvest pak choi.
Additionally, McrBC digestion and bisulfite sequencing showed that the promoter of the
Chl degradation related gene (BcSGR2) and senescence marker gene (BcSAG12) underwent
DNA demethylation during the senescence process. In conclusion, the senescence of the
postharvest pak choi may be caused by DNA demethylation of senescence-related genes.
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