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Abstract: The widespread use of nitrogen chemical fertilizers in modern agricultural practices has
raised concerns over hazardous accumulations of nitrogen-based compounds in crop foods and in
agricultural soils due to nitrogen overfertilization. Many vegetables accumulate and retain large
amounts of nitrites and nitrates due to repeated nitrogen applications or excess use of nitrogen
fertilizers. Consequently, the consumption of high-nitrate crop foods may cause health risks to
humans. The effects of varying urea–nitrogen fertilizer application rates on VOC emissions from
cucumber fruits were investigated using an experimental MOS electronic-nose (e-nose) device based
on differences in sensor-array responses to volatile emissions from fruits, recorded following different
urea fertilizer treatments. Urea fertilizer was applied to cucumber plants at treatment rates equivalent
to 0, 100, 200, 300, and 400 kg/ha. Cucumber fruits were then harvested twice, 4 and 5 months after
seed planting, and evaluated for VOC emissions using an e-nose technology to assess differences
in smellprint signatures associated with different urea application rates. The electrical signals from
the e-nose sensor array data outputs were subjected to four aroma classification methods, including:
linear and quadratic discriminant analysis (LDA-QDA), support vector machines (SVM), and artificial
neural networks (ANN). The results suggest that combining the MOS e-nose technology with QDA
is a promising method for rapidly monitoring urea fertilizer application rates applied to cucumber
plants based on changes in VOC emissions from cucumber fruits. This new monitoring tool could be
useful in adjusting future urea fertilizer application rates to help prevent nitrogen overfertilization.

Keywords: electronic nose; fertilizer application monitoring; quadratic discriminant analysis (QDA);
quality controls; nitrogen overfertilization; volatile organic compounds (VOCs)

1. Introduction

Fresh market produce, such as raw fruits and vegetables, are popular nutritional
foods, because they are rich in important vitamins, minerals, antioxidants, and nutrients
that provide positive benefits to human health [1,2]. Cucumber (Cucumis sativus L.), a
member of the Cucurbitaceae plant family, is an economically important crop cultivated
throughout the world. Cucumbers are widely consumed as edible fruits served in a variety
of ways, including freshly sliced in salads, cooked, canned, processed (pickled or salted),
or fermented to make pickles [2,3]. Various parts of cucumber plants also may be used in
traditional medicine within some cultures [4,5]. Cucumbers are particularly popular in
North American, Asian, and European countries, where their consumption is highest [6,7].
The demand for fresh produce is growing worldwide as consumers increasingly recognize
the nutritional value and health benefits provided by these foods, but this situation may be
contributing to higher rates of consumption of produce with excessive levels of nitrates
due to the overapplication of nitrogen fertilizers [8,9].

Agronomy 2022, 12, 35. https://doi.org/10.3390/agronomy12010035 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy12010035
https://doi.org/10.3390/agronomy12010035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-2176-1725
https://orcid.org/0000-0002-0654-6149
https://orcid.org/0000-0003-2352-5232
https://doi.org/10.3390/agronomy12010035
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy12010035?type=check_update&version=2


Agronomy 2022, 12, 35 2 of 20

Urea is one of the most common forms of nitrogen fertilizers applied to agricultural
fields to enhance crop production. Using urea fertilizer as an already-reduced, readily
available form of nitrogen for plant uptake has been shown through research to significantly
improve crop yields. However, the total amount and rate of urea fertilizer applied (per
hectare) to agricultural fields should be adjusted according to soil test analysis results,
indicating current soil-nitrate levels, to optimize the nitrogen applied at quantities known
to be most appropriate for the growth of specific crops [10,11]. In addition to soil pollution,
chemical fertilizers may affect human health. Excessive use of organic and chemical nitro-
gen fertilizers often leads to the accumulation of nitrates in fruits and vegetables [12–14].
Leafy vegetables and fruits that contain higher levels of nitrates account for up to 85% of
the dietary intake of nitrates in many world societies [15–17]. Nitrates consumed through
produce may contribute to important human health risks and harmful effects associated
with serious diseases [18–20].

A critical goal of the food industry is to ensure the safety and quality of foods through
multiple stages of the crop production process. A variety of crop harvesting practices,
testing methods, and procedures are employed to evaluate and verify the quality of consum-
able plant products sold in commercial markets. One noninvasive method for evaluating
produce and fruit quality is to assess the aroma characteristics based on VOC emissions
derived directly from samples of each crop. As a result of the complexity of aromas in
most foods, it is difficult and expensive to effectively sample and evaluate the quality
of plant products using conventional human smell and taste testers or chemical analysis
techniques, such as using gas chromatography (GC) and mass spectroscopy (MS). This
is due to the long analysis times required for chemical assessments and the large daily
volume of produce that must be evaluated [21,22].

The development of advanced technologies borrowed from various applied science
disciplines, including sensor architecture, electronics, biochemistry, and artificial intelli-
gence, has made it possible to design practical electronic-sensing tools, e.g. electronic noses
(e-noses) and electronic tongues (e-tongues), for measuring such produce quality factors as
aroma, taste, and chemical constituents of various products in the food industry [23–25].
For development of these devices as effective tools for maintaining and monitoring food
quality controls, they must be sufficiently sensitive, relatively cheap, and operate rapidly
with short sensor recovery times for repeated analysis with high-throughput capabilities
for routinely assessing large volumes of produce in commerce. An olfactory machine
(electronic nose) is one modern tool that has been used effectively for determining the
food quality [26,27]. These devices are comprised of a multiple-sensor array capable of
detecting complex mixtures of volatile organic compounds (VOCs) in the ambient air or
headspace volatiles captured from organic samples (plant products), which are converted
by transducers from electrical signals into digital signals from the sensor array and col-
lectively assembled to form a smellprint signature uniquely representative of the sample
VOC composition. The resulting e-nose output signals are transmitted to a computer and
analyzed by software using pattern recognition algorithms [21,24]. Moreover, e-noses
may be easily trained to identify different types of aromas from specific plant sources (to
maintain food quality controls) using various algorithms and statistical programs.

Electronic noses are particularly useful for analyzing and detecting VOCs due to
the cross-reactivity of e-nose multisensory arrays and sensitivity to a diversity of volatile
compounds from a wide range of organic chemical classes [24,27]. These gas-sensing
devices have a long history of effective use with many applications previously devel-
oped in numerous industries, including agriculture and forestry [27], food quality and
safety [28–31], biomedical and forensic sciences [32,33], pharmaceutical and drug develop-
ment [24], human health and disease diagnoses [34–36], and environmental protection [37].
In agriculture, electronic noses are useful in assessing quality controls for foods by virtue
of electronic aroma detection (EAD) technologies that can rapidly and repeatedly detect,
classify, and characterize complex VOC emissions from food products in a relatively short
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time. Baietto and Wilson [31] provided a thorough review demonstrating the ability of
e-nose devices to detect plant VOCs in many different types of fruits and vegetables.

We propose the hypothesis that the rates of urea fertilizers applied to cucumber
plants affect the changes in VOC emissions from cucumber fruits that can be detected and
monitored using e-nose devices. The objectives of this study were to: (1) determine the
effects of different rates of urea fertilizer applications on cucumber fruit VOC emissions
based on measured differences in the collective responses of an experimental MOS e-
nose sensor array; (2) determine whether differences in the e-nose smellprint signatures or
sensor array output data may be used as a tool to discriminate and classify cucumbers fruits
derived from plants receiving varying rates of urea fertilizer; and (3) evaluate four statistical
aroma classification methods (including linear and quadratic discriminant analysis (LDA
and QDA), support vector machines (SVM), and artificial neural networks (ANN), for
being capable of classifying volatile emissions from cucumber fruits based on e-nose data
associated with the amount of urea fertilizer applied to individual cucumber plants.

2. Materials and Methods
2.1. Sample Preparation

A suitable plant cultivation bed was prepared using soil, animal manure, and sand
in a 2:1:1 ratio mixture. Each plot in the cultivation bed was divided into five parts with
an equal area of 1.8 m2. Appropriate amounts of urea fertilizer were mixed into the soil
mixture at 0, 100, 200, 300, and 400-kg urea/ha equivalent application rates before seed
sowing. Cucumber seeds (cultivar Beta Alpha F1) were planted uniformly within each
cultivation plot located within Razi University’s research greenhouse and irrigated every
two days. Urea fertilizer was the only treatment variable used in this study. Cultivation
and watering treatments were performed equally and uniformly for all plants in all five
treatment plots. The levels of urea fertilizer applied to cucumber plants were assumed to
directly affect the nitrate levels in the fruits, which we hypothesized could be indirectly
detected by changes in VOC emissions from cucumber fruits that would be reflected by
differences in the e-nose sensor array output (smellprint) patterns. Following the flowering
and fruit set, cucumber fruits were harvested within approximately the same size range
(10–12 cm in length) and weight range (50–60 g) and were tested by VOC analysis using an
experimental e-nose instrument for two harvests 30 days apart (Figure 1). The cucumber
samples harvested were labeled with the numbers “1” (for the first harvest 4 months after
planting seeds) and “2” (for the second harvest 5 months after planting seeds), indicated in
the following text as the first and second harvests, respectively.

2.2. Electronic Nose System

An electronic-nose or e-nose system detects and differentiates between complex aro-
mas of VOC emissions from biological systems. This analytical device is composed of a
set of sensors in an array that react to volatile gases or vapors produced and released by
vegetative tissues of a biological sample. The e-nose works as a multisensory detector to
sense VOC emissions by measuring the changes in electrical conductivity or resistance of
individual sensors caused by a signal response to adsorption of different chemical classes
of VOCs to the surface sensor coatings due to interactions between the semiconductor and
analyte gas molecules. Changes in electrical conductivity or resistance are received by a
transducer that converts the analog signal into digital values from each sensor. Thus, each
sensor in the array responds to all the VOC components present in the sample analyte
and produces sensor outputs as electrical signals [18]. Sensors within the array respond
differently to sample aromas (VOC emissions) from different volatile sample types. The
output responses from all the sensors are then sent to computer system records and uti-
lize multivariate data analysis methods to distinguish between differences in sensor data
responses to VOCs detected in the plant sample headspace, enabling unknown aromas
to be classified and identified [38,39]. Analysis of the e-nose aroma signature (smellprint)
patterns produced from each sample type are also often compared using pattern recognition
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algorithms. The experimental electronic-nose device, constructed in the Department of
Mechanical Engineering of Biosystems, Razi University, Kermanshah, Iran [40], consisted
of 8 metal oxide (MOS) sensors. The names, gas sensitivity specifications, common gases
detected, and detection ranges (ppm) of the eight sensors used in the experimental e-nose
sensor array in this study are listed in Table 1.
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Figure 1. Research materials utilized. Photos (clockwise) include: (a) greenhouse research plots;
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Table 1. Sensor type, sensitivity, and detection ranges for the MOS experimental electronic nose.

Sensor No. Sensor Type Common Gases Detected Detection Range (ppm)

1 MQ3 Alcohol 10–300
2 TGS822 Organic solvents 50–5000
3 MQ136 Sulfur dioxide (SO2) 1–200
4 MQ9 CO, combustible gases 10–10,000
5 TGS813 CH4, C3H8, C4H10 500–10,000
6 MQ135 Ammonia, benzene, sulfides 10–10,000
7 TGS2602 H2S, sulfides, ammonia, toluene 1–30
8 TGS2620 Alcohol, organic solvents 50–5000
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2.3. Instrument Run Parameters

The sensor array contained eight MOS sensors that have relatively low sensitivity
to moisture and are very resistant to moisture effects. During the data collection process,
the relative humidity and temperature of the VOC sampling chamber environment were
maintained in a narrow range of variability (temperature 20 ± 2.0 ◦C and relative humidity
of 30–40%). The room air temperature also was controlled at 20 ± 0.5 ◦C during the
sample preparation and detection to help minimize changes in the carrier input air relative
humidity prior to input in the VOC sampling chamber. The e-nose system was equipped
with a 12-watt and 12-V (direct current) TYAP127 diaphragm silicon air pump (Gikfun Inc.,
Dongguan, China), producing a reference and sampling air flow rate of 1.3 L per minute
in the VOC sampling chamber. The data recording rate of the e-nose data collection from
the sensor array was 100 data points per second. The total run time for the cucumber fruit
VOC air sample analysis was 551 s for all samples.

2.4. Data Analysis

The results of the sample test were generally collected by sensors and sent to a pat-
tern recognition system that operates using a neural net training system. The aroma data
collected from the cucumber fruit VOC emissions using the 8-sensor MOS e-nose sensor
array were analyzed with artificial intelligence techniques and statistical analysis methods,
including linear discriminate analysis (LDA), quadratic discriminant analysis (QDA), sup-
port vector machines (SVM), and artificial neural networks (ANN). These four data analysis
methods were compared by their performances in discriminating and classifying e-nose
data of fruit VOC emission patterns based on urea fertilizer rates applied in five treatment
classes with two harvests per class, resulting in ten total treatment groups analyzed.

2.5. Linear and Quadratic Discriminant Analysis

The linear discriminate analysis, Fisher linear resolution, variance analysis (ANOVA),
and regression analysis were all combined to find a set of linear equations that could
separate two or more sample (aroma) classes. The LDA analyses were conducted by the
following five steps. The average of the D-dimensional vectors was calculated from the
original data set, which included different sample classes (10 fertilizer treatment groups in
this study). The matrix between and within the class was calculated. The special vectors
and corresponding special values were calculated based on the between- and within-class
matrices. The specific vectors were sorted by reducing the special values, and k-special
vectors were selected with the largest special values. Each sample type was converted into
a new subspace using the special vector matrix. The main data were predicted to minimize
the variance in a group and maximize the distance in different sample groups [41]. The
quadratic discriminate analysis utilized a similar procedure, but the statistical model was
based on quadratic (polynomial) functions rather than linear functions to correlate the
sensor response outputs to different sample classes for multiclass discriminations.

2.6. Support Vector Machine

Data mining models such as SVM are among the most popular statistical methods
used for e-nose data in recent years. This model is an efficient educational system based on
the theory of learning and mathematical optimization using the principle of minimizing
structural errors that leads to an optimal final solution. Various performance indicators
such as sensitivity, specificity, and accuracy, as well as the desirability function, were used
to compare classification systems.

2.7. Artificial Neural Network

An ANN system is an algorithm used to compare the classification of ANN samples
using pattern recognition to find similarities and differences. Eight neurons were considered
for the input layer based on the number of sensors (eight). According to the target output
classes, the hidden layer with the optimal number of neurons, and 10 output neurons
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were considered. From the total dataset, 60% were randomly selected for training, 20%
for testing, and 20% for validation. During the training, educational data were presented
to the networks, and the networks were adjusted based on their errors. The validation
was used to measure the network generalization, as well as to finish the training when
general improvements ceased. Since data testing did not affect the training, independent
measurements of network performance were provided during and after training. Network
training was performed using the Levenberg-Marquardt algorithm, and the errors were
estimated using the mean square error (MSE) [42].

2.8. Statistical Model Evaluation Metrics

Model evaluation metrics were used to evaluate the performance of the algorithm in
supervised learning. Common metrics, including specificity, recall, precision, sensitivity,
accuracy, and F-score, were used to analyze the system performance. A confusion matrix
uses true positive (TP), false positive (FP), true negative (TN), and false negative (FN)
values to calculate metrics [43].

The specificity reflects the proportion of the samples that received a negative result
(true negative rate). The precision, also known as the positive predictive value, provided
an indication of the repeatability of the data, as indicated by the closeness of the data
clustering in the data plots. Recall (R), also known as sensitivity, is defined as the ratio of
TP samples to the total TP and FN samples. The accuracy of (P) is defined as the ratio of TP
samples to total TP and FP samples. The area under the curve (AUC) is the measure of the
ability of a classifier to distinguish between classes and is used as a summary of the ROC
curve. The F-score considers the recall and accuracy and was calculated with the following
equations [44]:

Specificity =
TN

TN + FP
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Accuracy =
TP + TN

TP + TN + FN + FP
(4)

AUC =
Sensitivity + Precision

2
(5)

F =
2 × PR
P + R

(6)

2.9. Software

MATLAB® (ver. 2014a) software (MathWorks, Inc., Natick, MA, USA) was used to
perform the neural network analysis. To analyze the LDA, QDA, and SVM, Unscrambler
software version 10.4 (Camus, Oslo, Norway) was used.

3. Results
3.1. Electronic-Nose Output Responses

The sensor output signals, collectively assembled from all eight sensors in the 8-MOS
experimental e-nose sensor array constituted a full multisensory array output response,
commonly referred to as an aroma signature pattern or smellprint. The unique aroma
signatures patterns, resulting from the e-nose analysis of the VOCs present in the headspace
air samples derived from cucumber fruits harvested from plants receiving different kg/ha-
equivalent application rates of urea fertilizer, are presented in Figure 2.
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Figure 2. Electronic aroma signature pattern output responses (smellprints) from the 8-MOS ex-
perimental e-nose sensor array to the VOC differences in the headspace volatiles detected from
cucumber fruits harvested from plants receiving different levels of urea fertilizer. E-nose output data
derived from fruits of cucumber plants receiving the following equivalent application rates of urea at
(a) 0 kg/ha (no urea), (b) 100 kg/ha, (c) 200 kg/ha, (d) 300 kg/ha, and (e) 400 kg/ha.

All eight sensors produced measurable responses when exposed to aroma VOC emis-
sions from all five of the cucumber fruit sample types. When examining the differences in
the smellprint signatures produced from different treatments, the sensor intensity responses
of each sample type generally were compared using the relative position of the sensor inten-
sity responses to the different sample types for each individual sensor. These comparisons
are based on the highest intensity response reached by each sensor during the analytical
runs. Notice that the relative order of magnitude (of the sensor intensity responses) to the
majority of the urea application rate treatments (100, 200, and 400 kg/ha) followed the
sensor intensity order (top to bottom, with the curve color indicated) of sensor 6 (MQ135,
light green), sensor 7 (TGS2602, dark blue), sensor 1 (MQ3, medium blue), sensor 4 (MQ9,
red), sensor 5 (TGS813, dark green), sensor 8 (TGS2620, cyan), sensor 3 (MQ136, gray),
and sensor 2 (TGS822, orange). This predominant 6–7–1–4–5–8–3–2 relative-magnitude
sensor intensity response pattern was significantly different from the no urea (0 kg/ha)
control treatment that contained a different sensor relative magnitude intensity pattern
of 6–7–1–5–4–8–3–2 in which two sensor groups (5–4–8 and 3–2) were much more closely
clustered (in relative intensity) than the sensor responses to the other urea treatments except
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for 300 kg/ha. The sensor relative intensity response pattern to the 300 kg/ha fertilizer rate
was much like that of the 0 kg/ha rate, but sensor group 6–7–1 was more widely separated
for the no urea (0 kg/ha) than for the 300-kg/ha treatment. Subtle differences in the sensor
responses to the cucumber VOC sample types collectively contributed to the significant
overall differences in the e-nose smellprint signatures.

3.2. Linear and Quadratic Discriminant Analysis (LDA and QDA)

VOC emissions from the harvested cucumber fruits were classified using LDA and
QDA based on the amount of urea fertilizer applied. Unscrambler software was initiated
with data from eight sensors (for the cucumber sample, weighted as 1), while all the inputs
were normalized. For LDA, the first two separator functions explained 92% of the total
variance of the data and illustrated that the distribution of samples from the 10 cucumber
harvest categories having different fertilizer levels were classified with relatively good
accuracy, as indicated in Figure 3a. The 10 cucumber harvest categories were defined by,
and corresponded to, ten separate cucumber fruit sub-harvests (one for each of the five
urea treatments, 0–400 kg/ha equivalents) that occurred on two separate harvest dates,
4 months (first) and 5 months (second) after cucumber seed planting, respectively. Out of
the 150 total data points, only 12 were not correctly classified using this method, and the
model had a 92% correct detection rate. The QDA analysis indicated a higher accuracy of
98.67%, presented in Figure 3b. Only two samples were not properly classified.
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(LDA) and (b) quadratic discriminant analysis (QDA) statistical methods. Graph legend symbol
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4 = 400 kg/h; Small letters indicate sequential sub-harvests: a = first sub-harvest (4 months after
planting seeds), b = second sub-harvest (5 months after planting seeds).
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Data clustering within the LDA and QDA two-dimensional aroma map plots provided
the means for determining the urea application rates applied to plants derived from the
e-nose VOC emissions data of harvested cucumber fruit samples from these plants. Thus,
the LDA and QDA aroma map plots served as effective standardized polynomial curves
for quantification, correlating the e-nose sensor array data (from fruit VOC emissions) to
the urea fertilizer application rates, which resulted in different e-nose smellprint signatures
for each urea application rate. Consequently, this information and standard curve models
were useful for determining unknown fertilizer application rates that applied to plants
from (which future cucumber fruit crops are harvested) by plotting new data from fruit
sample unknowns into these standard curves. Comparisons of the LDA and SDA data
plot models indicated that the LDA model yielded tighter (more precise) data clusters for
the higher urea application rates (1400 and 2400 kg/ha) to cucumber plants, yet the QDA
method provided a higher overall accuracy in correctly classifying cucumber fruits based
on urea application rates.

A visual assessment of the data point (scatterplot) distribution patterns for the LDA
and QDA models indicates very similar and comparable two-dimensional models that both
provide effective and strong representations of the ten sub-harvests (a and b) for the five
urea treatments (C0 to C4, indicating increasing rates of 0–400-kg/h urea-applied fertilizer
equivalents) from left to right on each corresponding graph (Figure 3a,b). Data clusters by
treatment tended to become tighter and more closely clustered as the urea fertilizer rate
increased. The polynomial (QDA) model provided a better curve fit for the data than the
linear (LDA) model with a higher correlation, indicating a better model for estimating the
urea concentration levels (based on VOC emissions from cucumber fruits) from cucumber
plants receiving unknown levels of urea fertilizer.

The results of the classification accuracy and matrix perturbation for the LDA and QDA
statistical classification methods for cucumber fruits, based on the rate of urea fertilizer
applied, are presented in Table 2. For the confusion matrix, each data column presents the
predicted batch of each sample, whereas each row indicates the actual number of cucumber
fruit samples tested by the electronic nose. These results suggest that the QDA method
was more accurate and effective than the LDA method, since the number of incorrect
classification samples was relatively low.

Table 2. Confusion matrix for the 2-group classification of 10 treatment groups of harvested cucum-
bers (based on the amount of urea fertilizer applied) using the LDA and QDA statistical methods.

Model 1 Fruit Harvest 2
Urea

Fertilizer
Rate (kg/ha)

Cucumber Harvests (by Treatment Group) 3

1 2 3 4 5 6 7 8 9 10

0 0 100 100 200 200 300 300 400 400

LDA

1 0 14 0 0 0 0 0 0 0 0 0
2 0 1 12 2 0 0 0 0 0 0 0
1 100 0 2 13 0 0 0 0 0 0 0
2 100 0 1 0 15 0 0 0 0 0 0
1 200 0 0 0 0 14 0 0 0 0 0
2 200 0 0 0 0 1 15 0 0 0 0
1 300 0 0 0 0 0 0 12 2 0 0
2 300 0 0 0 0 0 0 3 13 0 0
1 400 0 0 0 0 0 0 0 0 15 0
2 400 0 0 0 0 0 0 0 0 0 15

QDA

1 0 15 0 0 0 0 0 0 0 0 0
2 0 0 15 0 0 0 0 0 0 0 0
1 100 0 0 15 0 0 0 0 0 0 0
2 100 0 0 0 15 0 0 0 0 0 0
1 200 0 0 0 0 15 0 0 0 0 0
2 200 0 0 0 0 0 15 0 0 0 0
1 300 0 0 0 0 0 0 14 1 0 0
2 300 0 0 0 0 0 0 1 14 0 0
1 400 0 0 0 0 0 0 0 0 15 0
2 400 0 0 0 0 0 0 0 0 0 15

1 Statistical analysis models used for the data analysis: LDA = linear discriminant analysis and QDA = quadratic
discriminant analysis. 2 Fruit harvests: 1 = first harvest 4 months after planting seeds and 2 = second harvest
5 months after planting seeds. 3 Ten cucumber fruit harvest treatment groups based on two harvests for each of
five urea fertilizer application rates.
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The functional parameters of the LDA and QDA methods in the classification of
cucumbers, based on the rates of urea fertilizer applied, are summarized in Table 3. The
data classification accuracy using the LDA and QDA methods was 92.1% and 98.7%,
respectively. By comparing the data in Tables 2 and 3, the QDA method was shown to have
performed better than the LDA method for cucumber sample classification based on all the
performance parameters, including accuracy, precision, recall, specificity, and AUC values.
The F-scores (of statistical significance) for the QDA model were significantly higher than
for the LDA model for most of the urea fertilizer application rates.

Table 3. Performance parameters of the LDA and QDA models for the ten-group classification.

Model 1 Treatment Group 2
Urea

Fertilizer
Rate (kg/ha)

Accuracy Precision Recall Specificity AUC F-Score

LDA

1 0 0.993 1.000 0.933 1.000 1.000 0.966
2 0 0.960 0.800 0.800 0.978 0.889 0.800
3 100 0.973 0.867 0.867 0.985 0.926 0.867
4 100 0.993 0.938 1.000 0.993 0.965 0.968
5 200 0.993 1.000 0.933 1.000 1.000 0.966
6 200 0.993 0.938 1.000 0.993 0.965 0.968
7 300 0.967 0.857 0.800 0.985 0.921 0.828
8 300 0.967 0.813 0.867 0.978 0.895 0.839
9 400 1.000 1.000 1.000 1.000 1.000 1.000
10 400 1.000 1.000 1.000 1.000 1.000 1.000

Average per class 0.984 0.921 0.920 0.991 0.956 0.920

QDA

1 0 1.000 1.000 1.000 1.000 1.000 1.000
2 0 1.000 1.000 1.000 1.000 1.000 1.000
3 100 1.000 1.000 1.000 1.000 1.000 1.000
4 100 1.000 1.000 1.000 1.000 1.000 1.000
5 200 1.000 1.000 1.000 1.000 1.000 1.000
6 200 1.000 1.000 1.000 1.000 1.000 1.000
7 300 0.987 0.933 0.933 0.993 0.963 0.933
8 300 0.987 0.933 0.933 0.993 0.963 0.933
9 400 1.000 1.000 1.000 1.000 1.000 1.000
10 400 1.000 1.000 1.000 1.000 1.000 1.000

Average per class 0.997 0.987 0.987 0.999 0.993 0.987
1 Statistical analysis models used for the data analysis: LDA = linear discriminant analysis and QDA = quadratic
discriminant analysis. 2 Fruit harvest treatment groups (two harvests each for five urea application
rate treatments).

3.3. Support Vector Machine

The support vector machine (SVM) model was used in this study to classify the
samples based on the C-SVM and Nu-SVM methods, mainly consisting of four functions,
including the linear, polynomial, radial, and SVM core types, having either C or Nu penalty
coefficients and a γ core coefficient, used by an exponentially growing sequence with a grid
search method. Then, the optimal combination of parameters was determined according to
the distinction of the calculated hyperplane [45]. Among the total e-nose cucumber sample
data collected, 70% were used for training, and 30% were used for testing. The input
weighting for all the data inputs was one. The SVM results are summarized in Table 4.
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Table 4. Results and comparison of the Nu-SVM and C-SVM statistical models 1 subjected to kernel
functions.

Kernel Function
C-SVM Nu-SVM

c γ Training Validation Nu γ Training Validation

Linear 10 1 95.33 94 0.225 1 98.67 92.66
Polynomial 0.1 10 88 82 0.255 1 90.67 92

Radial 10 10 90 90 0.255 10 98 94.67
Sigmoid 0.01 0.01 90 89.33 0.255 0.1 96.67 92.66

1 Statistical analysis models and parameters used for data analysis: Nu-SVM = Nu Support Vector Machine
classification, and C-SVM = C Support Vector Machine classification. Coefficient parameter symbols: c = C-SVM
penalty coefficient; Nu = Nu-SVM penalty coefficient; γ = core coefficient.

The C-SVM method showed the highest accuracy for the training and validation of the
10 cucumber harvest groups based on the rates of urea fertilizer applied by a linear function
with 95.33% and 94% accuracy, respectively. Additionally, for the same parameters, the
Nu-SVM method illustrated the highest accuracy of a radial function by 98% and 94.67%,
respectively.

The results of the classification accuracy and perturbation matrix are presented for
two methods of C-SVM with a linear function model and Nu-SVM with a radial function
model that had higher accuracy (Figure 4).
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Figure 4. Classification of cucumber fruits. E-nose data using the (a) Nu-SVM (radial function model)
and (b) C-SVM (linear function model) methods. Graph legend symbol combinations (for individual
fruit harvests): C = cucumber fruit harvest; Numbers indicate urea fertilizer equivalent application
rates: 0 = 0 kg/h, 1 = 100 kg/h, 2 = 200 kg/h, 3 = 300 kg/h, 4 = 400 kg/h; Small letters indicate
sequential sub-harvests: a = first sub-harvest (4 months after planting seeds), b = second sub-harvest
(5 months after planting seeds).
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The Nu-SVM method with the radial function model performed better than the C-SVM
method with a linear function model, such that only three cucumber fruit samples were
misclassified, according to the urea application rate applied (Table 5).

Table 5. Confusion matrix for 10 groups of cucumbers based on the amount of urea fertilizer
classification using the SVM statistical methods.

Model 1 Fruit
Harvest 2

Urea
Fertilizer

Rate (kg/ha)

Cucumber Harvests (by Treatment Group) 3

1 2 3 4 5 6 7 8 9 10

0 0 100 100 200 200 300 300 400 400

Nu-SVM
(Radial)

1 0 15 0 0 0 0 0 0 0 0 0
2 0 0 15 0 0 0 0 0 0 0 0
1 100 0 0 15 0 0 0 0 0 0 0
2 100 0 0 0 15 0 0 0 0 0 0
1 200 0 0 0 0 14 0 0 0 0 0
2 200 0 0 0 0 1 15 0 0 0 0
1 300 0 0 0 0 0 0 14 1 0 0
2 300 0 0 0 0 0 0 1 14 0 0
1 400 0 0 0 0 0 0 0 0 15 0
2 400 0 0 0 0 0 0 0 0 0 15

C-SVM
(Linear)

1 0 15 0 0 0 0 0 0 0 0 0
2 0 0 15 1 0 0 0 0 0 0 0
1 100 0 0 14 0 0 0 0 0 0 0
2 100 0 0 0 15 0 0 0 0 0 0
1 200 0 0 0 0 14 1 0 0 0 0
2 200 0 0 0 0 1 14 0 0 0 0
1 300 0 0 0 0 0 0 13 2 0 0
2 300 0 0 0 0 0 0 1 13 0 0
1 400 0 0 0 0 0 0 1 0 15 0
2 400 0 0 0 0 0 0 0 0 0 15

1 Statistical analysis models used for the data analysis: Nu-SVM = Nu penalty coefficient support vector machine
and C-SVM = C penalty coefficient support vector machine. 2 Fruit harvests: 1 = first harvest 4 months after
planting seeds and 2 = second harvest 5 months after planting seeds. 3 Ten cucumber harvest treatment groups
based on two harvests for each of the five urea fertilizer application rates.

The functional parameters of C-SVM with the linear basis function and Nu-SVM with
the radial nucleus function for the classification of cucumber fruits based on the rates of
urea fertilizer applied are provided in Table 6. High levels of significance were observed for
all five performance parameters and the F-score for all the urea fertilizer application rates,
both for the Nu-SVM (radial-function) model and the C-SVM (linear function) model.

3.4. Artificial Neural Network

The lowest entropy error recorded during the training period was 0.526%. The training
was stopped only when the output data from the electronic nose indicated an entropy error
of just less than 1%. The preliminary study results indicated that during CE training, if
allowed to proceed above 1%, the system will begin to retrain and add more samples until it
reaches the required entropy error. The confusion matrix in Table 7 shows how cucumbers
are classified based on the amount of fertilizer applied. In the perturbation matrix, only six
samples were improperly classified, and the accuracy of the classification was 96.2%.
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Table 6. Performance parameters of the SVM models for the 10-group classification.

Model 1 Fruit
Harvest 2

Urea
Fertilizer

Rate (kg/ha)
Accuracy Precision Recall Specificity AUC F-Score

Nu-SVM
(Radial)

1 0 1.000 1.000 1.000 1.000 1.000 1.000
2 0 1.000 1.000 1.000 1.000 1.000 1.000
1 100 1.000 1.000 1.000 1.000 1.000 1.000
2 100 1.000 1.000 1.000 1.000 1.000 1.000
1 200 0.993 1.000 0.933 1.000 1.000 0.966
2 200 0.993 0.938 1.000 0.993 0.965 0.968
1 300 0.987 0.933 0.933 0.993 0.963 0.933
2 300 0.987 0.933 0.933 0.993 0.963 0.933
1 400 1.000 1.000 1.000 1.000 1.000 1.000
2 400 1.000 1.000 1.000 1.000 1.000 1.000

Average per class 0.996 0.980 0.980 0.998 0.989 0.980

C-SVM
(Linear)

1 0 1.000 1.000 1.000 1.000 1.000 1.000
2 0 0.993 0.938 1.000 0.993 0.965 0.968
1 100 0.993 1.000 0.933 1.000 1.000 0.966
2 100 1.000 1.000 1.000 1.000 1.000 1.000
1 200 0.987 0.933 0.933 0.993 0.963 0.933
2 200 0.987 0.933 0.933 0.993 0.963 0.933
1 300 0.973 0.867 0.867 0.985 0.926 0.867
2 300 0.980 0.929 0.867 0.993 0.961 0.897
1 400 0.993 0.938 1.000 0.993 0.965 0.968
2 400 1.000 1.000 1.000 1.000 1.000 1.000

Average per class 0.991 0.954 0.953 0.995 0.974 0.953
1 Statistical analysis models used for the data analysis: Nu-SVM = Nu penalty coefficient support vector machine
and C-SVM = C penalty coefficient support vector machine. 2 Fruit harvests: 1 = first harvest 4 months after
planting seeds and 2 = second harvest 5 months after planting seeds.

Table 7. Confusion matrix for the 10 cucumber treatment groups (based on the urea fertilizer applied)
using the ANN classification methods.

Topology 1 Fruit
Harvest 2

Urea
Fertilizer

Rate (kg/ha)

Cucumber Harvests (by Treatment Group) 3

1 2 3 4 5 6 7 8 9 10

0 0 100 100 200 200 300 300 400 400

8-6-10

1 0 15 0 0 0 0 0 0 0 0 0
2 0 0 13 2 0 0 0 0 0 0 0
1 100 0 2 13 0 0 0 0 0 0 0
2 100 0 0 0 15 0 0 0 0 0 0
1 200 0 0 0 0 14 0 0 0 0 0
2 200 0 0 0 0 1 15 1 0 0 0
1 300 0 0 0 0 0 0 14 0 0 0
2 300 0 0 0 0 0 0 0 15 0 0
1 400 0 0 0 0 0 0 0 0 15 0
2 400 0 0 0 0 0 0 0 0 0 15

1 Topology: A network topology notation (8–6–10) refers to the arrangement of a network with its nodes and
connecting lines. The first number indicates the number of input layers obtained (based on data from eight
sensors). The second number shows the number of hidden layers (obtained by trial and error), and the third
number indicates the output layers (based on the ten cucumber harvest treatment groups). 2 Fruit harvests:
1 = first harvest 4 months after planting seeds and 2 = second harvest 5 months after planting seeds. 3 Ten
cucumber harvest treatment groups based on two harvests for each of the five urea fertilizer application rates.

The functional parameters of ANN for classifying cucumbers, based on the urea fertil-
izer applied, are presented in Table 8. Accordingly, the network with a structure of 8–6–10
had the highest accuracy for the classifying cucumbers based on fertilizer consumption. All
the performance parameters for the ANN, including accuracy, precision, recall, specificity,
and AUC values, showed high levels of significance. The F-scores for the ANN model were
very high for most of the urea fertilizer application rates, except for the 0 and 100-kg/ha
urea fertilizer application rates for harvests 2 and 1, respectively.
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Table 8. Performance parameters of the ANN models for the 10-group classification.

Topology 1 Fruit
Harvest 2

Urea
Fertilizer

Rate (kg/ha)
Accuracy Precision Recall Specificity AUC F-Score

8–6–10

1 0 1.000 1.000 1.000 1.000 1.000 1.000
2 0 0.973 0.867 0.867 0.985 0.926 0.867
1 100 0.973 0.867 0.867 0.985 0.926 0.867
2 100 1.000 1.000 1.000 1.000 1.000 1.000
1 200 0.993 1.000 0.933 1.000 1.000 0.966
2 200 0.987 0.882 1.000 0.985 0.934 0.938
1 300 0.993 1.000 0.933 1.000 1.000 0.966
2 300 1.000 1.000 1.000 1.000 1.000 1.000
1 400 1.000 1.000 1.000 1.000 1.000 1.000
2 400 1.000 1.000 1.000 1.000 1.000 1.000

Average per class 0.992 0.962 0.960 0.996 0.979 0.960
1 Topology: A network topology notation (8–6–10) refers to the arrangement of a network with its nodes and
connecting lines. The first number indicates the number of input layers obtained (based on data from eight
sensors). The second number shows the number of hidden layers (obtained by trial and error), and the third
number indicates the output layers (based on the ten cucumber harvest treatment groups). 2 Fruit harvests:
1 = first harvest 4 months after planting seeds and 2 = second harvest 5 months after planting seeds.

Table 9 presents the statistical results of the ANN classification models using electronic
nose output. The total accuracy (96.7%) and error and cross-entropy values were 3.3 and
0.063, respectively. This model was not under- or overfitted, because the CE values for
training were lower than the testing stage values, indicating its high performance. High
levels of accuracy (>93%) resulted during the training, validation, and testing stages of the
ANN model e-nose data analysis and classifications of the cucumber fruit samples.

Table 9. Statistical results of the ANN classification models using the e-nose sensor array outputs for
10 cucumber treatment group samples based on the urea fertilizer treatments.

Stage Samples Accuracy Error * CE **

Training 90 97.8 2.2 0.526
Validation 30 93.4 6.6 0.968

Testing 30 96.7 3.3 0.974
Total 150 96.7 3.3 0.063

* Percent error indicates the fraction of samples that are misclassified. A value of 0 means no misclassifications,
and 100 indicates the maximum misclassifications. ** Minimizing the cross-entropy results in good classification.
Lower values are better. Zero means no error.

The receiver operating characteristic (ROC) shows that the classification of 10 cucum-
ber harvest groups had very high sensitivity as diagrammed in Figure 5. ROC analyses
showing that cucumber samples had large areas under the curve (with high F values)
provided good indications of effective classification of cucumber sample types, based on
e-nose volatile emissions data, for different application rates of urea fertilizer applied to
cucumber plants.

Figure 6 summarizes test results for the statistical model classification accuracy for
10 cucumber harvest groups based on different quantities of urea fertilizer applied for five
treatment (fertilizer rate) groups. The statistical results were calculated using Equations
(1)–(6), and their means were reported. Among the models tested, the QDA model showed
the best performance in classifying cucumber samples and provided the highest accuracy.
The highest recall values of 10 cucumber harvest groups in the QDA and Nu-SVM methods
were 98.7% and 98%, respectively. Although precision and recall are valid metrics, one can
be optimized at the expense of the other. Consequently, the F-score metric was used. The
mean performance parameters of the QDA model (i.e., accuracy, precision, recall, specificity,
AUC, and F-score) were 0.997, 0.987, 0.9410, 0.987, 0.987, 0.999, 0.993, and 0.987, respectively.
The overall accuracy of all the models was high, and the electronic nose and QDA method
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were effectively used to classify cucumber fruits into 10 harvest categories, composed of
five treatment groups defined by the urea fertilizer applied, with great accuracy.
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4. Discussion

The effects of variable urea fertilizer application rates on the metabolic processes of
cucumber plants were detected by measurable differences in the e-nose sensor array output
responses and corresponding smellprint signatures. Comparisons of e-nose aroma profiles
provided indications of these differences in the physiological responses of plants (receiving
different amounts of urea–nitrogen fertilizer), which were reflected by differences in the
VOC profiles of the headspace volatiles derived from cucumber fruits, harvested from
the cucumber source plants. Furthermore, aroma signature profiles, derived from the
8-MOS e-nose sensor array outputs, provided relative magnitude sensor intensity response
patterns (from the analysis of VOCs of cucumber fruits) that were significantly different
for the smellprint signatures of no urea, unfertilized controls, and all four (100–400 kg/ha
equivalent) urea-fertilized plants. Additional statistical analyses using various classification
models based on e-nose data from cucumber fruit-associated plants receiving the five urea
fertilizer treatments provided further evidence of the differential effects of variable nitrogen
fertilizer treatments on plant physiology and concomitant effects on fruit volatile emissions
and e-nose VOC profiles, as indicated in the following discussions.

The classification accuracy determined in the current study for discriminating be-
tween cucumber fruits within five urea treatment groups, based on differences in the VOC
emissions, was 92 and 98.67% for the QDA and LDA statistical methods, respectively. The
QDA method was more accurate than the LDA method, since the number of incorrect
classification samples was relatively low. These results are consistent with those of previous
research. Karami et al. [25] investigated the classification of the edible oil shelf life for
150 days using the QDA and LDA methods, which had an accuracy of 95% and 94.4%,
respectively. An electronic nose was used to detect fraudulent labeling of virgin olive oil
in another study, with the results revealing a classification accuracy greater than 95% for
the LDA and QDA [45]. Similarly, the LDA and QDA models, used for classifying apples
based on time in storage, were reported to have an accuracy of 80.56% and 83.33% respec-
tively [46]. Khodamoradi et al. [47] reported 95% and 97.78% accuracy for the classification
of 12 groups of basil plants based on the urea fertilizer applied using the LDA and QDA
methods. This is the only known related nitrogen study in which basil was classified based
on the amount of nitrogen fertilizer used with the electronic nose. They used artificial
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neural networks, principal component analysis, linear resolution analysis, and quadratic
statistical analysis methods to analyze the data.

The C-SVM method for classifying 10 groups of cucumber harvests in the present study
showed the highest accuracy for training and validation by a linear function with 95.33%
and 94% accuracy, respectively. Additionally, the Nu-SVM method showed the highest
accuracy of the radial basis function with 98% and 94.67%, respectively. Karami et al. [25]
reported that their C-SVM method was 100% accurate in determining the shelf life of
edible oils using an electronic nose. Ghasemi-Varnamkhasti et al. [48] conducted a study
by using response surface methodology (RSM) to describe the freshness of strawberries in
polymer packages. Using the C-SVM method and polynomial function for training and
validation, they reported 4% and 50.6% accuracy, respectively, whereas, for the Nu-SVM
method with the radial basis function, the training accuracy and validation were 85.2% and
55.6%, respectively. In addition, Gorji-Chakespari et al. [49] studied the classification of
Damask rose essential oil and reported 99% accuracy. Khorramifar et al. [50] utilized similar
machine learning methods to classify and identify the potato cultivars based on a MOS
e-nose sensor array. Karami et al. [21] used the SVM method with a linear basis function for
training and validation and reported a classification accuracy of 98% and 97%, respectively.

Classifying cucumbers using the ANN method (with a topology structure of 8–6–10)
resulted in the highest total accuracy (96.7%), and the error and cross-entropy values were
3.3 and 0.063, respectively. The results of cucumber classification using artificial neural
networks in this study were consistent with those of other researchers [22,27,37,51]. In a
study conducted by Rasekh et al. [52] to classify edible essential oils, these researchers
reported that the accuracy of two-group and six-group classifications of essentials oils by
an ANN was 100% and 98.9%, respectively.

5. Conclusions

An experimental electronic nose device, consisting of eight commercial MOS gas
sensors used in combination with four statistical models (LDA, QDA, SVM, and ANN)
in this study, was capable of classifying cucumber fruits based on differences in the e-
nose sensor array outputs resulting from different amounts of urea fertilizer applied to
cultivated plants. The MOS e-nose sensor array data indicated that the differences in the
VOC emissions from cucumber fruits resulted from different rates of urea fertilizer applied
to cultivated plants. These differences in the e-nose output data suggest that different
urea fertilizer application rates (as the only treatment variable) sufficiently affected the
physiology of cucumbers fruits, causing differences in the VOC emissions. The QDA
method and Nu-SVM support vector method with a radial basis yield (RBF) both indicated
a high accuracy for the classification of cucumber fruits derived from plants receiving
different levels of urea fertilizer. These results suggest that the MOS e-nose sensor array
output data, displayed as smellprint signatures and aroma data plot maps (from the QDA
and LDA statistical models), were capable of indirectly detecting differences in the nitrogen
fertilizer rates applied to plants. This new e-nose tool potentially could be used to monitor
urea fertilizer application rates applied to cucumbers and other agricultural crops with
similar research to facilitate the adjustments of future urea application schedules to avoid
overfertilization. Subsequent follow-up research is needed to correlate the specific VOC
emission signatures to actual nitrate levels in fruits to achieve the maximum utility of this
new method as an effective fertilizer application monitoring tool. This capability could
eventually help mitigate the negative human health effects associated with the frequent
ingestion of fresh produce with high nitrate levels, particularly common vegetables like
cucumbers, due to the high availability of these foods in commercial produce markets,
short time periods between fertilization and harvesting, and multiple harvests per season.
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