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Abstract: The agricultural sector plays a fundamental role in our society, where it is increasingly im-
portant to automate processes, which can generate beneficial impacts in the productivity and quality
of products. Perception and computer vision approaches can be fundamental in the implementation
of robotics in agriculture. In particular, deep learning can be used for image classification or object
detection, endowing machines with the capability to perform operations in the agriculture context.
In this work, deep learning was used for the detection of grape bunches in vineyards considering
different growth stages: the early stage just after the bloom and the medium stage where the grape
bunches present an intermediate development. Two state-of-the-art single-shot multibox models
were trained, quantized, and deployed in a low-cost and low-power hardware device, a Tensor
Processing Unit. The training input was a novel and publicly available dataset proposed in this
work. This dataset contains 1929 images and respective annotations of grape bunches at two different
growth stages, captured by different cameras in several illumination conditions. The models were
benchmarked and characterized considering the variation of two different parameters: the confidence
score and the intersection over union threshold. The results showed that the deployed models could
detect grape bunches in images with a medium average precision up to 66.96%. Since this approach
uses low resources, a low-cost and low-power hardware device that requires simplified models with 8
bit quantization, the obtained performance was satisfactory. Experiments also demonstrated that the
models performed better in identifying grape bunches at the medium growth stage, in comparison
with grape bunches present in the vineyard after the bloom, since the second class represents smaller
grape bunches, with a color and texture more similar to the surrounding foliage, which complicates
their detection.

Keywords: deep learning; grape bunch detection; agriculture

1. Introduction

The agricultural sector plays a fundamental role in our society. Thus, research, de-
velopment, and innovation should be promoted and implemented in the vast range of
areas connected to agriculture. In this context, it is increasingly important to automatize
processes in agricultural environments, which can generate beneficial impacts in the pro-
ductivity and quality of products, minimizing the environmental impacts and production
costs [1,2]. In particular, vineyards occupy large terrain extensions, which make human
labor, many times, intense. Vineyards such as the ones located for example in the Douro
Demarched Region, the oldest controlled wine-making region in the world, a UNESCO her-
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itage place [3], are located along hills presenting harsh inclinations. In these environments,
the automatization of processes becomes more challenging, as well as more necessary.
Perception algorithms can be important to provide visual data processed to be further ana-
lyzed by specialists. These algorithms can be deployed onboard robots to provide detailed
and large-scale information of the agricultural environments [4]. Perception applied to
fruit detection can be a valuable resource. The automatic detection of fruits at early stages
can be used to predict the yield estimation [5]. More advanced approaches should be able
to detect fruits at different growth stages. With this, agronomists can analyze the data and
collect information about, for example, the crop evolution over time.

In the past few years, Deep Learning (DL) has had a huge impact in the development
of perception and computer vision algorithms [6]. This concept can be applied for object
detection in images, which can be used for fruit detection in agriculture. Convolutional
Neural Networks (CNNs) are widely used to perform such a task. They have shown
the highest performance levels in several contests in machine learning and pattern recog-
nition [7]. Image classification and object detection based on DL techniques are widely
present in the agriculture sector, endowing machines with the capability to perform opera-
tions in the agriculture context such as plant disease detection, weed identification, seed
identification, fruit detection and counting, and obstacle detection, among others [8–10]. In
particular, in recent years, CNNs have been increasingly incorporated into plant phenotyp-
ing concepts. They have been very successful in modeling complicated systems, owing to
their ability to distinguish patterns and extract regularities from data. Examples further
extend to variety identification in seeds [11] and in intact plants by using leaves [12]. The
presence of these techniques in real applications leads the state-of-the-art to develop more
computationally efficient models and specific hardware to deploy such models. These
low-cost and low-power hardware devices promote fast and efficient model inference and
allow the deployment of DL in robotic platforms. This concept is usually known as Edge
Artificial Intelligence (Edge-AI) [13].

Our previous works focused on the detection of vine trunks [14–16] and tomatoes
in greenhouses [17]. This work intends to solve the problem of automatically detecting
grape bunches in images considering different growth stages, so that more intelligent and
advanced tasks can be performed by robots such as: harvesting, yield estimation, fruit
picking, semantic mapping of cultures, and others. In particular, the motivation of this
work is oriented toward several applications in the agricultural sector. The grape bunch
detection can be used by Simultaneous Localization and Mapping (SLAM) systems to
build precise semantic maps of the environment providing the detailed 3D location of the
fruits on crops. This can be used to build prescription maps of the vineyards, which can
optimize, for example, the application of fertilizers, seeds, or sprayers in different regions
of the agricultural environment. In addition, considering the detection of grape bunches at
different growth stages can be useful to track the evolution of the crop. Specialists in the
agricultural sector can use the detection at the early growth stages for early yield estimation
and then compare with the actual yield of the vineyard at more advanced growth stages.

One of the main features of this work is the use of cameras operating in the visible
portion of the electromagnetic spectrum (400–700 nm). In this way, it is possible to im-
plement an affordable solution without the requirement of trained personnel [18]. In the
current state-of-the-art, however, not only a specific orientation of the object of interest in
relation to the camera is required, but also defined illumination conditions, which limit the
applicability to controlled-light environments [19]. The method presented in this paper is
independent of the ambient light environment, making this solution cost-effective, portable
(thus, in situ), and rapid. Thus, the contributions of the proposed approach are threefold:

• A publicly available dataset (https://doi.org/10.5281/zenodo.5114142) (accessed on
23 August 2021) containing 1929 images and annotations of grape bunches at different
growth stages, captured by different cameras in several illumination conditions;

• A benchmark of Deep Learning (DL) quantized models for grape bunch detection at
different growth stages;

https://doi.org/10.5281/zenodo.5114142
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• The deployment of the models in a low-cost and low-power hardware embedded device.

To sum up, this work innovates the state-of-the-art by proposing the first publicly
available dataset containing images and annotations of grape bunches at different growth
stages. In addition, this work proposes the benchmarking between 8 bit quantized models
and their deployment in a dedicated hardware, which still is an underdeveloped area in
the literature.

The rest of the paper is organized as follows. Section 2 presents the current state-of-
the-art on DL-based object detection in agriculture and the current techniques for grape
bunch, grape flower, and grape berry detection. Section 3 describes the proposed approach
for grape bunch detection. Section 4 summarizes the obtained results. Finally, Section 5
presents the main conclusions of this work.

2. Related Work

The use of DL is present in several agricultural areas and contexts. In particular, this
approach is often used for the detection of natural features in the cultures. Fruit detection
and counting in orchards are the most common applications. Moreover, some works focus
on obstacle and insect detection, as well as pest identification. Dias et al. [20] implemented
a technique for apple flower identification, which is robust to changes in illumination
and clutter. The authors used a pretrained CNN and Transfer Learning (TL) concepts to
create the detector. In the context of mango fruit detection, Koirala et al. [21] compared
the performance of six state-of-the-art DL techniques and proposed MangoYOLO, a new
architecture based on YOLO [22]. Zeng et al. [23] proposed a large dataset for species
classification and detection, called CropDeep. The dataset contains more than 30,000
images of 31 different classes. Bargoti and Underwood [24] used the standard Faster
R-CNN architecture [25] to detect several types of fruits in orchards, such as apples,
mangoes, and almonds. Additionally, Sa et al. [26] proposed a fruit detection system
called DeepFruits while using the Faster R-CNN architecture. The proposed detectors
were integrated in the software pipeline of an agricultural robot to estimate yield and
automate the harvesting process. To detect ripe soft fruits, Kirk et al. [27] proposed a
detector implemented as a combination of a conventional computer vision algorithm and a
DL-based approach.

In vineyards, several works have tackled the problem of grape detection in images
using computer vision approaches. Either DL-based or more traditional implementations
are used to detect, segment, or track these natural features such as grape bunches, grape
flowers, or single berries. Table 1 presents an overview of the current state-of-the-art
in this area.
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Table 1. Summary of the current state-of-the-art of Deep-Learning (DL)-based grape detection.

Reference Application Performance

Liu et al. [28] (2018) Automated grape flower counting to determine potential yields at early stages. Accuracy of 84.3% for flower estimation.

Diago et al. [29] (2014) Assessment of flower number per inflorescence in grapevine. Precision exceeding 90.0%.

Palacios et al. [30] (2020) Estimation of the number of flowers at the bloom. F1 score of 73.0% for individual flower detection.

Pérez-Zavala et al. [31] (2018) Grape bunch detection for automating grapevine growth monitoring, spraying, leaf thinning, and harvesting tasks. AP of 88.6% and Average Recall (AR) of 80.3%.

Reis et al. [32] (2012) Support harvesting procedures by grape bunch detection. 97.0% and 91.0% correct classifications for red and white grapes.

Liu and Whitty et al. [33] (2015) Precise yield estimation in vineyards by detecting bunches of red grapes in images. Accuracy of 88.0% and recall of 91.6%.

Cecotti et al. [34] (2020) Study of the best CNN architecture to detect grapes in images. Accuracy of 99.0% for both red and white grapes.

Santos et al. [35] (2020) Infer the crop state for yield prediction, precision agriculture, and automated harvesting. F1 score of 91.0% for instance grape segmentation.

Xiong et al. [36] (2018) Develop a technology for night-time fruit picking using artificial illumination. Accuracy of 91.7% for green grape detection.

Kangune et al. [37] (2019) Grape ripeness estimation. Classification accuracy of 79.5% between ripened and unripened grapes.

Aquino et al. [38] (2015) Early yield prediction and flower estimation in vineyards. Precision and recall were 83.4% and 85.0%.
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Concerning the yield estimation of grapes at early growth stages, several works
approached the problem with the implementation of grape flower detectors. Liu et al. [28]
proposed a detection algorithm based on the extraction of texture information from images
to access the location of visible grape flowers. Diago et al. [29] aimed to assess the flower
number per inflorescence in grapevine. In this work, the grape bunches were placed over
uniform backgrounds and were separated from each other by the application of a threshold.
Palacios et al. [30] presented a DL-based approach where the region of interest containing
aggregations of flowers was extracted using a semantic segmentation architecture. For
the detection of grape bunches at more advanced growth stages, Pérez-Zavala et al. [31]
clustered pixels into grape bunches using shape and texture information from images.
This work used conventional approaches such as local binary pattern descriptors, but also
machine-learning-based such as support vector machine classifiers. More focused on DL,
Cecotti et al. [34] studied the best CNN architecture to deploy in agricultural environments.
In this context, the authors tested several architectures for the detection of two types of
grapes in images. The results showed that Resnet [39] was the best architecture, reaching
an accuracy of 99.0%.

The proposed work relates to the state-of-the-art in the way that it uses DL techniques
to detect grape bunches in images. However, this paper proposes the novelty of making
publicly available (https://doi.org/10.5281/zenodo.5114142) a dataset (accessed on 21
August 2021) with 1929 vineyard images. The dataset contains images of grape bunches
at different growth stages, with variations of illumination and different resolutions. This
dataset is more realistic than the state-of-the-art because grapes are inserted on the canopy,
so not very visible. The grape bunch annotations are also provided so that the scientific
community can directly use the dataset for training DL models. In addition, this work
benchmarks state-of-the-art DL models for grape bunch detection at different growth stages
and deploys them in a low-cost and low-power embedded device. This requirement is
important since our main goal was to have this solution running on our robotic platform
(Figure 1).

Figure 1. Agricultural robot used to collect visual data with onboard cameras pointing to the canopy.

https://doi.org/10.5281/zenodo.5114142
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Thus, power consumption was taken into consideration so that the grape detection
solution required as little power as possible, and robot autonomy was not highly affected
by it. With this low-power solution, the robot would operate autonomously for a longer
time without needing to charge. On the other hand, high-power solutions can decrease the
autonomy time of the platforms, which is essential for long-term operations. In addition,
since this was intended to be a solution that runs online on the robot, runtime requirements
were important, so that the detection could be performed in a time-effective manner. In
this way, mobile agricultural robots could perform tasks dependent on the grape detection
algorithm in an online fashion. For example, SLAM algorithms that usually run at a high
frequency could use the grape detections to build prescription maps that could be used for
later processing and other agricultural applications. Furthermore, harvesting procedures
require the correct location of the grape bunches in relation to the robotic arm that is
moving. Thus, it was essential to have a high detection frequency to have a precise location
of the grapes with reference to the arm gripper.

3. Deep-Learning-Based Grape Bunch Detection

The semantic perception of agricultural environments is increasingly important for
the development of intelligent and autonomous robotic solutions capable of performing
agricultural tasks. Robots should be able to understand their surroundings. For example,
to develop autonomous fruit picking, robots should know how to distinguish fruits from the
other natural agents and calculate their position with precision. Furthermore, Simultaneous
Localization and Mapping (SLAM) approaches can use semantic information to build maps
with meaningful information for agricultural analysis. In this context, this work focused on
the detection of grape bunches at different growth stages in images. A monocular visual
setup was mounted on an agricultural robot (Figure 1) pointing to the vineyard canopy
during several trials. Using this, different states of the crop were captured along different
stages of the year, so that the robot could detect grape bunches at different growth stages.
From the data collection until the autonomous vineyard perception, three main steps were
carried out as represented in Figure 2:

• Data collection: video data recorded by cameras mounted on top of an agricultural
robotic platform; image extraction and storage from videos in order to build the input
dataset;

• Dataset generation: image annotation by drawing bounding boxes around grape
bunches in images considering two different classes; image augmentation by the
application of several operations to the images and annotations to increase the dataset
size and avoid overfitting when training the DL models; image splitting of the image
size, to avoid losing resolution due to the image resize operation performed by the
models to their kernel size (in this case, 300 × 300 px, with three channels);

• Model training and deployment: training and quantization of the DL models to deploy
them in a low-cost and low-power embedded device with the main goal of performing
time-effective grape bunch detection in images.
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Figure 2. High-level workflow of the proposed system. The first step is data collection, where images are extracted and
stored from videos recorded by onboard cameras. Then, the dataset is generated by the grape bunch annotation; data
augmentation is performed to increase the dataset size; the images are split to improve the training performance. Finally,
the models are trained, then quantized and compiled so that they can be deployed in a lightweight embedded device.

The following sections describe each step carefully.

3.1. Data Collection

This work proposes a novel dataset for grape bunch detection considering different
growth stages. To build the dataset, several experiments were carried out considering
different stages of the vineyard. To capture the data, the robot platform represented in
Figure 1 was used.

This platform was equipped with two monocular RGB cameras mounted on the
anthropomorphic manipulator pointing to the vineyard canopy during all the experiments.
The cameras used to build the proposed dataset were the QG Raspberry Pi—Sony IMX477
and the OAK-D color camera.

To gather visual information and to be able to follow the evolution of the vineyard
crop, the robot traveled the same path several times, in different stages of the vineyard. For
this reason, the data collected presented variation of the illumination conditions, the visual
perspective of the canopy, and the fruit growth stage. At an early stage, the robot captured
the vineyard in a premature grape bunch stage, as represented in Figure 3a. At this stage,
the grape bunches were captured right after the bloom. Thus, the grape berries had a light
green color and a diameter of approximately 0.5 cm. In the next experiments, the grape
bunches were captured at a medium growth stage, as is visible in Figure 3b. At this stage,
the grape bunches were in an intermediate development stage, with a regular green color
and a diameter of approximately 1.2 cm.

The data collection procedure was tackled in three different steps: video recording,
image extraction, and image storage. Firstly, the robot recorded video sequences of the vine-
yard canopy in the ROSBag format. Then, to obtain the set of images for each experiment,
the videos were sampled with a period of one second. This process had as the output a set
of images per experiment that was then stored for the later processing. The data collection
procedure generated 1929 original vineyard images considering different growth stages.
It is worth noting that raw images were used, i.e., no calibration nor rectification were
performed during the data collection procedure. Thus, it was expected that the models also
received unrectified images during the inference procedure.
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(a)

(b)

Figure 3. Two images of the proposed publicly available dataset considering (a) an early and (b) a
medium grape bunch growth stage.

3.2. Dataset Generation

To use the data collected to train the DL models, a dataset generation procedure
was carried out. Since we used a supervised learning approach, the models required the
annotation of each input image. Each annotation consisted of a bounding box around
each object that represented its area, position, and class. To annotate all the original
1929 collected images, the Pascal VOC format [40] was used due to its compatibility with
the framework used for training (Tensorflow) and its simplicity. The annotation was
carried out in a manual manner using two different software frameworks: CVAT [41],
which is collaborative and thus allows the simultaneous annotation between multiple
users, and LabelImg [42], which is an offline annotation tool. In the annotation procedure,
two classes were considered for grape bunches, given that two different growth stages
were captured during the experiments: tiny-grape-bunch, representing grape bunches
at an early stage; and medium-grape-bunch, representing the same feature at a medium
growth stage.

After having the entire dataset annotated, the amount of data used for training was
increased using data augmentation. In past experiments, image augmentation was revealed
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to be an essential step when compared to the use of only the original dataset images, due
to the increase in the dataset size and variability and the reduction of overfitting during
the models’ training. For these reasons, this technique is widely used in the literature
to improve models’ performance [43]. When dealing with images, data augmentation
consists of applying a set of operations to each image so that several images with slight
modifications can be extracted from a single one. Thus, this approach generates synthetic
data from the original data and can increase the variability of the datasets. In this work,
five operations were applied to each original image:

1. Rotation;
2. Translation;
3. Scale;
4. Flipping;
5. Multiplication.

Since for the rotation operation two values were applied to each image, the dataset
increased 7 times, for a total of 13,503 images. Table 2 details the augmentation operations
performed.

Table 2. Description of the augmentation operations used to expand the original collection of data.

Augmentation Operation Description

Rotation Rotates the image by +30 and −30 degrees.

Translation Translates the image by −30% to +30% on the x- and y-axis.

Scale Scales the image to a value of 50 to 150% of their original size.

Flipping Mirrors the image horizontally.

Multiply Multiplies all pixels in an image with a random value sampled once per image,
which can be used to make images lighter or darker.

In Figure 4 are represented the set of operations performed on an original image.
Finally, the last step of the dataset generation procedure was the image splitting. As

referenced before, this work used lightweight models and deployed them in a low-cost and
low-power embedded device, in an Edge-AI manner. Thus, the models trained can only
process small images during the training procedure. In particular, the pretrained models
SSD MobileNet-V1 [44] and SSD Inception-V2 [45] resized the input images to 300 × 300
px. In this case, if the dataset contained high-resolution images, many important data
would be lost in this resizing process. To avoid this, in this work, the augmented dataset
was extended by splitting the images into the input sizes of the trained CNN. From our
past experience, this technique highly improves models’ performance, especially when
using high-resolution images. Without splitting these images, they would be resized to a
lower resolution, and a significant amount of data would be lost in this process. On the
contrary, if we split high-resolution images, no resize operation would performed by the
DL model when performing image inference, and then all the data collected would be
used. As represented in Figure 5, for an image with a resolution of 1920 × 1080 px, 40 other
images were generated with a resolution of 300 × 300 px.
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(a) Original (b) Flipped

(c) Scaled (d) Rotated 30 degrees

(e) Rotated -30 degrees (f) Multiplied

(g) Translated

Figure 4. Set of augmentation operations applied to a single image to extend the original dataset.

Table 3 contains the information about the number of annotated objects per class in the
three different stages of the dataset: original images, augmented images, and split images.

Table 3. Number of annotated objects per class. The original dataset contains 1929 images with
two different classes. To increase the dataset size, several augmentation operations were applied,
increasing the number of images to 13,503. Finally, the images were split, and the final dataset was
composed of 302,252 images.

Class # of Objects # of Objects in Augmented Images # of Objects in Split Images

tiny_grape_bunch 2497 13,393 25,349

medium_grape_bunch 4292 25,189 51,272
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Figure 5. Split of a collected image to a 300 × 300 px resolution. The original image with a resolution
of 1920 × 1080 px generated 40 split images considering an overlapping ratio of 20%.

In this process, an overlap of 20% between image patches was considered. By doing
this, the models did not need to resize the input image, and no information was lost.
Considering this operation, the dataset size increased to 302,252 images of 300 × 300 px.

It is worth noting that, during the two preprocessing operations where the dataset size
was increased, the grape bunch annotations of both classes were automatically generated
considering the original annotations. During the augmentation procedures, the operations
were applied both to the images and the annotations. Similarly, the annotations were also
split, together with the images.

3.3. Models’ Training and Deployment

The final step to perform grape bunch detection considering different growth stages
was the models’ training and deployment. To achieve full compatibility with the hardware
device used to deploy the models, only quantized models could be considered. Due to
the higher number of compatible operations of Single-Shot Multibox (SSD) models [46]
with the hardware device in comparison to other architectures, in this work, only this
type of model was used. Thus, in this work, only SSD models were explored due to
the constraints imposed by the hardware device used, Google’s Tensor Processing Unit
(TPU)—https://coral.ai/products/accelerator/ (accessed on 25 August 2021). Due to the
same cause, the models were quantized to 8 bit precision. Google’s Coral USB Accelerator
provides an Edge TPU machine learning accelerator coprocessor. It is connected via USB
to a host computer, allowing high-speed inference. This device is capable of performing
four trillion operations per second (TOPS) and two TOPS per watt. It is connected to
the host computed by USB requiring 5 V and 500 mA. To achieve the proposed goal—
grape bunch detection considering different growth stages—two models were used and
benchmarked: SSD MobileNet-V1 [44] and SSD Inception-V2 [45]. The models are briefly
described bellow.

SSD MobileNet-V1:
This model is one of the most popular among the state-of-the-art models designed

to run on low-power and low-cost embedded devices. One of its main novelties is the
use of depthwise separable convolutions. This concept is achieved by factorization of
standard convolutions into depthwise and 1 × 1 convolutions denominated pointwise
convolutions. The outputs of both convolution types are then combined. The input of the
CNN is a tensor with shape D f × D f ×M, where D f represents the input channel spatial

https://coral.ai/products/accelerator/
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width and height, and M is the input depth. After the convolution, a feature map of shape
D f × D f × N is obtained, where N is the output depth. Thus, the model contained two
hyperparameters that the user can tune in order to optimize the CNN performance. The
first, width multiplier α, can be used to decrease the model size uniformly at each layer by
a factor of α2. This was performed by multiplying the number of both the input and output
channels by this constant. The second hyperparameter, resolution multiplier ρ, was also
used to reduce the computational cost of the model by a factor of ρ2 by changing the input
image resolution accordingly. Both parameters can be used simultaneously to achieve a
balance between performance and inference time.

SSD Inception-V2:
Ioffe et al. [45] developed the original approach of Inception. The design of the

model is supported by the fact that each object present in a different image can present
different sizes. With this assumption, the choice if the CNN kernel size becomes difficult.
To overcome this, the authors developed the model with three convolutional filter sizes of
−1× 1, 3× 3, and 5× 5. The results from the operations performed by the three filter were
then concatenated, which resulted in the output of the network. SSD Inception-V2 was
developed in order to reduce the computational complexity of the original version. This
goal was achieved using factorization over the convolution operations. For example, a 5 ×
5 convolution was factorized into two 3 × 3 convolutions, improving runtime performance.
In the same way, a m×m convolution can be factorized into a combination of 1 × m and
m × 1 convolutions.

To train and deploy these two models, they were downloaded from the Tensor-
flow model zoo (https://github.com/tensorflow/models/blob/master/research/object_
detection/g3doc/tf1_detection_zoo.md, accessed on 24 August 2021). The versions con-
sidered were already pretrained on the COCO dataset [47]. To fine-tune the pretrained
models, the Tensorflow [48] framework was used due to its compatibility with the TPU
device used for inference. Tensorflow, a machine learning system that operates at a large
scale and in heterogeneous environments, is one of the most used frameworks in the
state-of-the-art. It is compatible with multiple hardware architectures such as CPUs, GPUs,
and TPUs. In addition, this framework provides a version dedicated to on-device machine
learning, Tensorflow Lite. This platform supports Android and iOS devices, embedded
Linux, and microcontrollers. It uses hardware acceleration and model optimization to
deploy high-performance models. In this work, Tensorflow Lite was used to deploy the
models in the TPU embedded device.

Given all of the above, the models were trained considering the set of steps represented
in Figure 6.

Figure 6. Steps to train and deploy a pretrained model into Google’s Coral USB Accelerator (TPU).

The input of the workflow was a pretrained model on the COCO dataset. The models
were then fine-tuned using quantization-aware training [49] in order to convert them to 8
bit precision. This technique allowed reducing the models accuracy drop while converting
from float to 8 bit precision. When the train was complete, the resultant binary files
were combined in a single file containing only the useful information for inference. This
procedure is called freezing, which produces a frozen graph. After this, since the hardware
device used (TPU) supports only the lighter version of Tensorflow, the frozen graph was
converted to Tensorflow Lite. Finally, the Tensorflow Lite model was compiled to the TPU.
This compilation procedure was essential since it assigned operations either to the host
CPU or to the TPU device. At the first point in the graph where an unsupported operation
for the TPU occurs, the compiler separates the graph into two parts. The first is executed

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
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on the TPU, while the second is assigned to the host CPU. It is worth noting that the higher
the number of operations assigned to the TPU, the faster the inference procedure will be.
Thus, it is essential that models with a high level of compatibility be used.

Finally, after having the models prepared, they were deployed on the TPU device to
perform grape bunch detection. As referenced before, the original images on the dataset
were split to match the models’ input channels’ size. Thus, to perform inference, we
performed exactly the same operation to ensure that the data characteristics learned by the
model matched the ones received for object detection. This means that each input image
was split into a fixed number of overlapping tiles, and the model performed inference on
each tile. After this, the results obtained for each tile were combined in order to compute
the bounding box detections on the original image. Nonoverlapping bounding boxes
were directly mapped onto the original image without any further operation. For the
ones that overlapped between tiles, nonmaximum suppression [50] was used to suppress
the overlapping bounding boxes for the same objects. Figure 7 shows the effects of this
algorithm on the final inference result of the model SSD MobileNet-V1.

(a) Before nonmaximum suppression.

(b) After nonmaximum suppression.

Figure 7. Impact of nonmaximum suppression on the final inference result.
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4. Results

This section describes the experiments performed to test the proposed approach.
Firstly, the metrics used to evaluate the system are presented. Then, an evaluation is
performed of the entire approach. Finally, an overall discussion of the obtained results is
carried out.

4.1. Methodology

The evaluation performed used state-of-the-art metrics to evaluate the DL models
deployed. In this work, seven different metrics were used: precision, recall, F1 score,
precision × recall curve, AP, medium AP (mAP), and inference time. To calculate these
metrics, the following set of concepts was used:

• Interception over Union (IoU): a measure based on the Jaccard index that calculates
the overlap between two bounding boxes using the ground truth and the predicted
bounding boxes;

• True Positive (TP): a valid detection, i.e., IoU ≥ threshold;
• False Positive (FP): an invalid detection, i.e., IoU < threshold;
• False Negative (FN): a ground truth bounding box not detected.

Given all of the above, the metrics were calculated as follows:

• Precision: defined as the ability of a given model to detect only relevant objects,
precision is calculated as the percentage of TP and is given by:

Precision =
TP

TP + FP
; (1)

• Recall: defined as the ability of a given model to find all the ground truth bounding
boxes, recall is calculated as the percentage of TP detected divided by all the ground
truths and is given by:

Recall =
TP

TP + FN
; (2)

• F1 score: defined as the harmonic mean between precision and recall, F1 score
is given by:

2 · precision · recall
precision + recall

; (3)

• Precision × recall curve: a curve plotted for each object class that shows the tradeoff
between precision and recall;

• AP: calculated as the area under the precision × recall curve. A high area represents
both high precision and recall;

• mAP: calculated as the mean AP for all the object classes;
• Inference time: defined in this work as the amount of time that a model takes to

process a tile or an image, on average.

In this work, the previously described metrics were used to evaluate both SSD
MobileNet-V1 and SSD Inception-V2. In addition, the models were characterized by
changing two parameters: the detection confidence and the IoU thresholds. Some visual
results were also present to demonstrate the system robustness to occluded objects and
variations in illumination conditions. To perform a fair evaluation of the DL models,
the input dataset was divided into three groups: training, test, and evaluation. The larger
one, the training set, was used to train the DL models. The test set was used to perform
the evaluation of the models during the training by Tensorflow. The evaluation set was
exclusively used to test the models by computing the metrics described above.

4.2. Evaluation

This work used quantized models to detect grape bunches at different growth stages.
To evaluate these models, they were characterized by changing the confidence threshold
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and the IoU parameter. Table 4 shows the detection performance of SSD MobileNet-V1 and
SSD Inception-V2 for three values of the confidence: 30%, 50%, and 70%.

Table 4. Grape bunch detection performance considering an IoU of 50% and a variation of the
confidence threshold for three different values.

Model Confidence (%) Class Precision (%) Recall (%) F1 Score (%) AP (%) mAP (%)

SSD MobileNet-V1 30 tiny-grape-bunch 17.38 61.72 27.12 40.38 44.93
medium-grape-bunch 28.53 66.44 39.92 49.48

SSD Inception-V2 30 tiny-grape-bunch 35.81 44.88 39.83 26.95 28.32
medium-grape-bunch 64.62 37.59 47.53 29.68

SSD MobileNet-V1 50 tiny-grape-bunch 49.28 50.44 49.85 36.29 42.47
medium-grape-bunch 45.59 64.26 53.34 48.64

SSD Inception-V2 50 tiny-grape-bunch 51.36 30.57 38.33 20.50 22.48
medium-grape-bunch 70.86 29.90 42.06 24.45

SSD MobileNet-V1 70 tiny-grape-bunch 78.12 11.85 20.58 9.86 22.45
medium-grape-bunch 71.95 41.99 53.03 35.04

SSD Inception-V2 70 tiny-grape-bunch 67.17 12.05 20.44 9.30 12.19
medium-grape-bunch 79.12 17.46 28.60 15.08

This table shows the effect of varying the confidence threshold. In particular, it is
visible that when the confidence score increased, the precision also increased. This was
due to the elimination of low-confidence detections. Thus, if we considered only the
high-confidence detections, the model would be more suitable to detect only relevant
objects, which would lead to an increase of the precision. On the contrary, when the
confidence threshold increased, the number of TP decreased, which led to a decrease of
the recall. Comparing both models, one can see that SSD Inception-V2 presented a higher
precision than SSD MobileNet-V1 for all confidence scores, but a lower recall. This led to
the conclusion that Inception presented a high rate of TP from all the detections, but a low
rate of TP considering the ground truths. Overall, SSD MobileNet-V1 outperformed the
Inception model, presenting a higher F1 score, AP, and mAP. This model achieved, as the
best result, a mAP of 44.93% for a confidence score of 30%. Figure 8 shows the precision ×
recall curves for both models considering the two classes and a confidence score of 50%.

Once again, this figure shows that SSD MobileNet-V1 outperformed the Inception
model. Comparing the models performance detecting objects of both classes, we verified
that detecting grape bunches at an early stage (tiny-grape-bunch) was more challenging
than at an intermediate growth stage (medium-grape-bunch). The first class represented
smaller grape bunches, with a color and texture more similar to the surrounding foliage,
which complicated their detection. SSD MobileNet-V1 presented a AP of 40.38% detecting
grape bunches at an early growth stage and 49.48% at an intermediate growth stage. Finally,
Figure 9 shows the impact of the confidence score on the detections for a single image.
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(a) tiny-grape-bunch

(b) medium-grape-bunch

Figure 8. Precision × recall curves for both models and both classes considering a confidence score
of 50% and an IoU of 50%.

One can verify that this parameter can be used to eliminate FPs that usually present
low-confidence scores.

Table 5 presents the detection performance considering a variation of the IoU evalua-
tion parameter.

This characterization was performed since different values for the overlap between
detections and ground truths can give more information about the models’ performance.
For example, lower IoU values would consider detections that, besides not corresponding
exactly to the location of the ground truths, represent annotated objects that were actually
detected. To evaluate this, three values for the IoU parameter were considered: 20%,
40%, and 60%. Once again, one can verify that the SSD Inception-V2 model presented
a higher precision. For an IoU value of 20%, this model had a precision of 92.57% de-
tecting grape bunches at an intermediate growth stage. This is a satisfactory result since
it means that 92.57% of the detections were TPs. On the other side, SSD MobileNet-V1
presented high recall levels. For an IoU of 20%, it achieved a recall of 87.01% for the class
medium-grape-bunch. For higher IoU values, the performance of both models decreased.
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This was expected since, for example, for an IoU of 60%, the detections that did not overlap
more than 60% with the ground truths were considered as FPs, which led to a decrease in
performance. Overall, the best result was achieved by SSD MobileNet-V1, which performed
with a mAP of 66.96% for an IoU of 20%.

(a) (b)

(c) (d)

Figure 9. Impact of the confidence score on the final detection results. Blue bounding boxes represent
the ground truth and the red ones the SSD MobileNet-V1 detections considering a confidence score
of (a,c) 20% and (b,d) 50%.

Table 5. Grape bunch detection performance considering a confidence of 50% and a variation of the
IoU threshold for three different values.

Model IoU (%) Class Precision (%) Recall (%) F1 Score (%) AP (%) mAP (%)

SSD MobileNet-V1 20 tiny-grape-bunch 63.73 65.22 64.47 56.87 66.96
medium-grape-bunch 61.72 87.01 72.22 77.05

SSD Inception-V2 20 tiny-grape-bunch 71.90 42.80 53.66 36.42 37.22
medium-grape-bunch 92.57 39.06 54.94 38.01

SSD MobileNet-V1 40 tiny-grape-bunch 57.17 58.51 57.83 47.01 55.78
medium-grape-bunch 54.96 77.47 64.30 64.55

SSD Inception-V2 40 tiny-grape-bunch 64.25 38.24 47.95 30.50 31.98
medium-grape-bunch 85.14 35.93 50.53 33.45

SSD MobileNet-V1 60 tiny-grape-bunch 37.54 38.41 37.97 22.39 24.79
medium-grape-bunch 32.17 45.34 37.64 27.19

SSD Inception-V2 60 tiny-grape-bunch 33.38 19.87 24.91 8.72 9.79
medium-grape-bunch 45.78 19.32 27.17 10.85

As referenced before, the models were deployed in a low-cost and low-power embed-
ded device, a TPU. It was intended that these models run in a time-effective manner to be
integrated in more complex systems such as harvesting and spraying procedures. Thus,
evaluating the runtime performance of both models was important in the context of this
work. Table 6 shows the inference time results for both models.
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Table 6. Runtime performance of both models.

Model Inference Time per Tile (ms) Inference Time per Image (ms)

SSD MobileNet-V1 6.29 93.12

SSD Inception-V2 26.07 385.69

In this table, the performances per tile and per image are both described. The inference
time per tile was also considered in this evaluation since it represents the time that each
model would take to process an entire image if the input images were not split. The
inference times were measured for each evaluation image, and the final value considered
was the average for all images. The results showed that the SSD MobileNet-V1 was more
than four-times faster than the Inception model. This was due to the simpler architecture of
MobileNets in relation to Inception, and the higher compatibility of MobileNet compared
with Inception. This model can process a single tile in 6.29 ms and an entire split image
in 93.12 ms. This proved both the high performance of the model, but also that the TPU
hardware device used was capable of deploying models in a very efficient way, even
considering low-power costs.

This approach was intended to be robust to different light conditions since the robot
would operate at different times of the day and stages of the year. Because of this reason,
the built dataset considered several light conditions, and the models were trained to be
robust to them. Furthermore, the dataset considered occluded grape bunches so that the
models could also detect not fully visible grape bunches. To demonstrate these challenging
conditions present in the proposed dataset, Figures 10 and 11 present an overview of
the performance of SSD MobileNet-V1 considering occlusions in the grape bunches and
variation in the illumination conditions.

For the models to be able to accommodate these conditions, the annotation procedure
was crucial. In this process, the decision to consider occluded objects was made. Several
times, the annotation of an occluded object was complex since there was the need to
consider parts of other objects inside the bounding box corresponding to the occluded
object. Figure 10 shows that occluded objects were taken into consideration during the
annotation procedure and that the models were able to identify these objects in the images.
Regarding the variations of the illumination conditions, one of the key steps to accomplish
this goal was the capture of visual data during different days and stages of the year. To
build the proposed dataset, the robot represented in Figure 1 was taken four times to the
vineyard in order to capture the crop state in different conditions. The visit dates were 11
May 2021, 27 May 2021, 23 June 2021, and 26 July 2021.

On each day, images were recorded both in the morning and during the evening to
account for multiple light conditions. In May, grape bunches at an early growth stage were
captured, while in June and July, the intermediate growth stage was present in the vineyard.
After recording all these data, the annotation process was once again essential since during
the annotation, the objects were present under different light conditions. Figure 11 shows
the different levels of illumination captured during the field visits performed. This figure
proves that the models were able to detect grape bunches at different growth stages in
these conditions.
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(a)

(b)

Figure 10. Detection of grape bunches (a) in early, and (b) intermediate growth stages considering
occlusions caused by the dense foliage present in the vineyard. Blue bounding boxes represent the
ground truth and the red ones the detections.

4.3. Discussion

This work proposed a novel dataset for grape bunch detection at different growth
stages. Two state-of-the-art models were used to perform this detection. Due to the require-
ment of a time-effective, low-power, and low-cost detection, this work used lightweight
models that were quantized to be deployed in an embedded device. Quantization was
used to reduce the size of the DL models and improve runtime performance by taking
advantage of high throughput integer instructions. However, quantization can reduce the
detection performance of DL models. Wu et al. [51] showed that the error rates increase
when the model size decreases by quantization. In this work, this decrease in detection
performance was accepted due to the high gain in runtime performance. In comparison
with state-of-the-art works such as the one proposed by Palacios et al. [30], which detected
grape flower at the bloom with an F1 score of 73.0%, this work presented a lower detection
performance. On the other hand, the tradeoff between detection performance and runtime
performance was extremely satisfactory since, especially for SSD MobileNet-V1, the model
could perform with a mAP up to 66.96%, performing the detection at a rate higher than
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10 Hz per image. In addition, the models were able to detect grape bunches at different
stages, considering occlusions and variations in illumination conditions. Since the pro-
posed dataset is publicly available, we believe that it has potential to be used in the future
by the scientific community to train more complex and nonquantized DL models in order
to achieve higher detection performances for applications without runtime restrictions.
Furthermore, the proposed system can be adopted in future works and applications since
it is cost-effective, portable, low-power, and independent of light conditions. The solution
is modular and can be placed in any robotic platform, meaning that the price of the mod-
ule is completely independent of the platform where it is placed. For applications that
require higher levels of detection precision and that are not dependent on a time-effective
solution, more complex models can be trained with the proposed dataset. Some works
may also propose new DL-based architectures or modify state-of-the-art models to better
suit the application purposes. For example, Taheri-Garavand et al. [11] proposed a mod-
ification to the VGG16 model to identify chickpea varieties by using seed images in the
visible spectrum, and Nasiri et al. [12] proposed a similar approach to automate grapevine
cultivar identification.

One of the main goals of this work was to achieve a low-power solution. The device
used operates at high inference rate with a requirement of 5 V and 500 mA. This result was
aligned with the state-of-the-art works that proposed advanced solutions for object detec-
tion using accelerator devices. Kaarmukilan et al. [52] used Movidius Neural Compute
Stick 2, which similar to the TPU used in this work, is connected to the host device by USB
and is capable of 4 TOPS with a 1.5 W power consumption. Dinelli et al. [53] compared
several field-programmable gate array families by Xilinx and Intel for object detection.
From all the evaluated devices, the authors achieved a minimum power consumption of
0.969 W and a maximum power consumption of 4.010 W.

(a) (b)

(c) (d)

Figure 11. Demonstration of the differences in illumination captured by the proposed dataset and
the corresponding ability of the models to deal with it. Each image (a–d) represents a different light
condition. Blue bounding boxes represent the ground truth and the red ones the detections.

5. Conclusions

This work approached the problem of detecting grape bunches at different growth
stages by cameras mounted onboard mobile robots. A novel dataset with 1929 images
and respective annotations was proposed considering different stages of grape bunches,
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constructed by visiting a vineyard four different times to record the data. To achieve
time-effective, low-cost, and low-power grape bunch detection, two models were trained,
quantized, and deployed in an embedded device. The results showed that the tradeoff
between detection and runtime performance was satisfactory. SSD MobileNet-V1 achieved
the best results, with a maximum detection performance of 66.96% and a runtime average
cycle of 6.29 ms and 93.12 ms per tile and image, respectively.

In future work, we would like to extend the dataset to consider more grape bunch
growth stages. Since our robotic platform was intended to run also at night, we will also
consider including vineyard images captured at night using artificial illumination. Further-
more, we would like to test the proposed system in vineyards that were not considered
in this work, to evaluate if the models are robust to different scenarios. Additionally,
the proposed dataset could be extended to consider grape bunches of these different
vineyards.
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