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Abstract: The cultivation of cocoa (Theobroma cacao L.) is traditionally managed under shade because
of its photosynthetic characteristics; however, its behavior can vary according to the genotype and
environmental conditions where it is grown. In this sense, here, we explore the possible mechanisms
of protection against radiation stress and how these mechanisms are affected by variation between co-
coa genotypes. Therefore, we evaluate the effect of the radiation level (HPAR, 2100 ± 46 mol m−2 s−1;
MPAR, 1150 ± 42 mol m−2 s−1; LPAR, 636 ± 40 mol m−2 s−1) on the water status and gas exchange
in plants of different cocoa genotypes (CCN-51, ICS-1, ICS-95, LUKER-40 and LUKER-50), and the
occurrence of photoinhibition of PSII (as a marker of photodamage), followed by a characterization
of the protection mechanisms, including the dynamics of photosynthetic pigments and enzymatic
and non-enzymatic antioxidant systems. We found significant changes in the specific leaf area (SLA)
and the water potential of the leaf (ΨL) due to the level of radiation, affecting the maximum quantum
yield of PSII (Fv/Fm), which generated dynamic photoinhibition processes (PIDyn). Cocoa genotypes
showed the lowest Light-saturated maximum net carbon assimilation rate (Amax) in HPAR. Moreover,
the maximum carboxylation rate (Vcmax) was negatively affected in HPAR for most cocoa genotypes,
indicating less RuBisCO activity except for the ICS-95 genotype. The ICS-95 showed the highest
values of Vcmax and maximum rate of regeneration of ribulose-1,5-bisphosphate (RuBP) controlled by
electron transport (Jmax) under HPAR. Hence, our results show that some genotypes were acclimated
to full sun conditions, which translated into greater carbon use efficiency due to the maximization of
photosynthetic rates accompanied by energy dissipation mechanisms.
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1. Introduction

The level of solar radiation is a factor that can limit some physiological processes
on crops, such as photosynthesis [1,2]. Crops under shade conditions adjust a suite of
anatomical, physiological and biochemical traits to increase the efficiency of carbon fix-
ation [3]. Among these traits are found the specific leaf area (SLA), the chlorophyll a/b
ratio (chloroplast level) and the rate of light-saturated net photosynthesis (Amax) [4–6].
An increased radiation level above the light saturation point can cause damage to the
photosynthetic apparatus [7–9], even causing dynamic or chronic photoinhibition when
the plant is not able to dissipate the excess energy adequately [10–12], which affects crop
production. The excess energy could cause damage to the photosynthetic reaction centers
causing chronic photoinhibition, considered a slower reversible loss of reaction center func-
tion that depends on the repair and recovery rates of the protein [12,13]. If the exposure
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process is more extensive, high irradiation can lead to irreversible oxidation of chlorophyll
(Chl) and a loss of chloroplast function due to the formation of reactive oxygen species
(ROS) [14]. Faced with this stressful situation, the plant makes biochemical adjustments
related to the content of photosynthetic pigments (a, b and carotenoids), protein content,
antioxidant system, sugar content and malondialdehyde (MDA) [8,15–17].

Cocoa (Theobroma cacao L.) is native to the rainforests of the Amazon [18]. It is con-
sidered one of the world’s most important perennial crops, with the largest production
coming from West Africa, followed by South East Asia and Latin America [19]. It is a
species that adapts to shade conditions that result in photosynthetic characteristics related
to a low point of saturation and light compensation [20–28]. For this reason, cocoa crops in
most cocoa-producing regions of the world tend to be established in shaded environments.
However, in recent years, different physiological behaviors have been observed when cocoa
is grown in full sun, specifically in areas where most of the year there is cloud cover and low
demand for air evaporation [6,29], characteristic management in regions of Indonesia [30]
and Malaysia [31] in the Ecuadorian Amazon [32] and on the Atlantic coast of Brazil [8].

In the Amazon, unlike other cocoa-producing areas in Colombia (Santander, Arauca,
and Huila), the annual average radiation is only 3–4 sunshine hours per day [33] due
to its high cloud cover. This situation can cause, in addition to the type of agroforestry
system [34], variations in microclimatic conditions [35]. Due to these prevailing envi-
ronmental conditions, there is some uncertainty about the real need to establish cocoa
plantations under shade conditions. In that sense, to maximize cocoa production [23], it
is necessary to carry out studies on the physiological behavior of different genotypes of
cocoa under different environmental and management conditions, especially when there is
inconsistency in the optimal shading conditions that allow for increased growth [36]. In this
regard, some studies suggest genotypic differences in relation to radiation variation [36–38].
Accordingly, our main objective was to explore the potential mechanisms of protection
against radiation stress and how these mechanisms are affected by variation among cocoa
genotypes. To achieve these objectives, we first evaluated the effect of the radiation level
(HPAR, 2100± 46 mol m−2 s−1; MPAR, 1150± 42 mol m−2 s−1; LPAR, 636± 40 mol m−2 s−1)
on the water status and gas exchange in plants of different cocoa genotypes (CCN-51, ICS-1,
ICS-95, LUKER-40 and LUKER-50). We also evaluated the occurrence of photoinhibition of
PSII (as a marker of photodamage), followed by a characterization of the protection mecha-
nisms, including the dynamics of photosynthetic pigments, enzymatic and non-enzymatic
antioxidant systems.

2. Materials and Methods
2.1. Plant Material and Experimental Design

Measurements were taken for cacao plants under different radiation levels in the
Centro de Investigaciones Amazónicas CIMAZ Macagual-Universidad de la Amazonia
(137′ N and 7536′ W at 360 m a.s.l.), Colombia. The climate is warm–humid, typical of the
ecosystem of tropical rainforests, with a mean annual temperature of 25.5 ◦C, precipitation
of 3800 mm, relative humidity of 84% and 1200 sunshine hours year−1. Five cocoa geno-
types (CCN-51, ICS-1, ICS-95, LUKER-40 and LUKER-50) were used, which were grafted
onto plants of the genotype IMC67, which had previously germinated in a nursery. At the
age of 7 months (3 months of growth of IMC 67 + 4 months in grafting), the cocoa seedlings
were transplanted in plastic bags with a capacity of 100 L with a homogeneous mixture
of soil (3:1:1 mixture of clay-rich soil, sand and organic substrate) under a radiation level
of 600 mol m−2 s−1. Ten plants of each genotype were subjected to a period of 180 days
of acclimatization at each of the radiation levels with constant water availability close
to field capacity (ΨL~−0.2 ± 0.01 MPa using soil water potential sensor MPS-2 Decagon
Devices, Inc., Pullman, WA, USA). The three levels of radiation considered were high mean
daily incident photosynthetically active radiation (HPAR, 2100 ± 46 mol m−2 s−1) that
was in full sun, medium mean daily incident photosynthetically active radiation (MPAR,
1150 ± 42 mol m−2 s−1), and low mean daily incident photosynthetically active radiation
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(LPAR, 636 ± 40 mol m−2 s−1) values that were obtained from the measurement during the
adaptation period of the plants between 11:00 am and 1:00 pm using the AccuPAR cep-
tometer LP-80 (Decagon Devices Inc., Pullman, WA, USA). To simulate the radiation levels
in MPAR and LPAR, we used poly shade meshes branded “Colmallas®”. A randomized
complete block (RCB) design with factorial arrangement (3 levels of radiation × 5 geno-
types) was used for the study. The plot was composed of ten plants by cocoa genotypes
under each level of radiation.

2.2. Leaf Water Potential (ΨL) and Specific Leaf Area

The assessments of ΨL were performed employing a PMS Model 1000 pressure cham-
ber (PMS Instrument Company, Corvallis, OR, USA) in the second or third mature leaf
from the apex of the orthotropic axis between 04:00 and 05:00 h (solar time) in three plants
for each cocoa genotype under different levels of radiation. Specific leaf area (SLA) was
determined using six leaf discs (3.14 cm2), omitting the mid-vein for each leaf that had
been previously employed to measure gas exchange and Chla fluorescence (n = 810 corre-
sponding to 3 plants per genotype (5 genotypes) per treatment (3 PAR levels), 3 leaves per
plant and 18 discs per plant). The discs were dried at 70 ◦C until that a constant mass was
achieved, and the SLA determined as the ratio between the leaf disc area and its respective
dry mass [39].

2.3. Photosynthetic Light- and CO2-Response Curves of Different Genotypes of Cacao Grown
under Varying Levels of Radiation

For measuring the gas exchange, leaves attached to the plant corresponding to the
second or third mature leaf from the apex were assessed using an infrared gas analyzer
CIRAS-3 Portable Photosynthesis System (PP Systems Inc. Amesbury, MA, USA) was
used as described before by Suárez et al. [6,40]. The leaf cuvette environmental conditions
were set with a vapor pressure deficit (VPD) ranging from 1.0 to 1.5 kPa and a constant
temperature of 25 ◦C. Measurements were performed between 08:00 and 11:00 h (solar
time), at a partial concentration of CO2 of 400 ppm, and under photosynthetically active
radiation (PAR) provided by the LED light source of the cuvette. The stabilization time
for gas exchange data collection was 10 min. The photosynthetic (A) response curves to
PAR intensity (hereafter, A/PAR) were obtained by increasing PAR in 10 steps from 0 to
2000 µmol m−2 s−1. The stabilization time at each point of the A/PAR was 3 min with CO2
stability of 400 ± 0.1 ppm, a process that was carried out similarly for each of the cocoa
genotypes grown at each level of radiation. Initially, in the chamber, leaves were exposed to
a VPD between 1.0 and 1.5 kPa, a leaf temperature of 25 ◦C, and a partial concentration of
CO2 of 50 ppm for 5 min, allowing the opening of the stomata; successively, A/PAR curves
were generated at a partial concentration of CO2 of 400 ppm. Photosynthetic limitations in
each genotype, resulting from microclimatic conditions of radiation level, were stablished
using the above data to estimate different parameters derived from the A/PAR curves,
light compensation point (LCP), light-saturated maximum net carbon assimilation rate
(Amax), light saturation point (LSP), dark respiration rates (Rd) and apparent quantum
efficiency (ΦPAR) that was calculated from the slope of the initial linear portion of the
A/PAR curve [41] recommended.

Photosynthetic assimilation response curves to internal CO2 concentration (hereafter,
A/Ci) were obtained at a PAR of 500 µmol m−2 s−1 (based on the A/PAR curves), at
25 ◦C and ambient O2 concentration as recommended byLong and Bernacchi [42] on
leaves attached to the plant located on the second or third mature leaf from the apex. The
stabilization time for gas exchange data collection was 10 min. Measurements began a
partial concentration of CO2 of 400 ppm, which was gradually diminished until 50 ppm and
then increased in 15 steps until 1600 ppm of partial concentration of CO2 [43]. Following
Flexas et al.’s [44] recommendations, leakage errors were corrected by measuring the
CO2 response curves in dead leaves. The Maximum rate of ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisCO) carboxylation (Vcmax), the maximum rate of electron
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transport driving the regeneration of ribulose-1,5-bisphosphate (RuBP) (Jmax), and leaf
respiration under light conditions (RD) were estimated from each A/Ci curve.

2.4. Chlorophyll (Chla) Parameters of Different Genotypes of Cacao Grown under Varying Levels
of Radiation

Measurements were done on the same leaves employed to measure gas exchange
differences using the Chlorophyll Fluorescence Module (CFM-3) adapted for the infrared
gas analyzer CIRAS-3 (PP Systems Inc., Amesbury, MA, USA) was used. The CFM-3
provides chlorophyll fluorescence measurements using the pulse-amplitude modulation
(PAM) technique. The maximum quantum yield of PSII (Fv/Fm) was established in leaves
under complete darkness at predawn (04:00 h solar time), and midday (13:00 h solar time,
the dark adaptation time was 45 min) by exposing the leaves to a saturating pulse of
light (6000 µmol m−2 s−1; 1 s). The leaf tissues were exposed to actinic photon irradiance
(110 µmol m−2 s−1) for 120 s to obtain the steady-state fluorescence yield (Fs), after which
a saturating white light pulse (2400 µmol µmol m−2 s−1; 0.8 s) was applied to achieve the
light-adapted maximum fluorescence (F′m).

The actual PSII quantum efficiency (ΦPSII) that assesses the proportion of light ab-
sorbed by the PSII light-harvesting antenna used in the photochemical process [45], was
calculated in the light-adapted state as follows:

ΦPSII = (Fm’ − Fs)/Fm’ (1)

where Fs represents the measured fluorescence immediately before the application of
light pulses.

The apparent electron transport rate (ETR) that indicates the overall photosynthetic
capacity in vivo, was calculated as follows [46]:

ETR = PAR × 0.84 × 0.5 × ΦPSII (2)

where the fraction of ΦPSII centers, are in the open state according to the Lake model of the
PSII photosynthetic unit [46] and qP is photochemical quenching coefficient:

qP = (Fm’ − FT)/(Fm’ − F’0) (3)

where FT is the steady-state yield of fluorescence in the light; the F0’ parameter is assessed
after an introduction of far-red illumination on light-adapted leaves when all of the PSII
reaction centers and acceptors of electrons are oxidized once again, employing a far-red
light lighting [46]. Furthermore, the non-photochemical quenching of Chla fluorescence
(NPQ), which indicates heat dissipation of Chl excitation energy through the PSII light-
harvesting antenna, was also estimated [46]:

NPQ = (Fm − Fm’)/Fm’ (4)

where Fm is maximal fluorescence in the dark.
The photoinhibition indices of the PSII were also estimated according to Werner et al. [11],

including (A) chronic photoinhibition (PIChr), representing the percent reduction in Fv/Fm
at each radiation level for each genotype relative to the maximal Fv/Fm obtained during the
entire experiment; (B) dynamic photoinhibition (PIDyn), representing the decline in Fv/Fm
that is fully reversible overnight, being calculated as the percent reduction in midday F′v/F′m
relative to Fv/Fm at each t radiation level for each genotype, relative to the maximal Fv/Fm
from the entire experiment; (C) was also estimated total photoinhibition:

PIChr = [(Fv/Fm) max − (Fv/Fm) pd]/(Fv/Fm)max × 100% (5)

PIDyn = [(Fv/Fm) pd − (Fv/Fm) mid]/(Fv/Fm)max × 100% (6)

PITotal = PIChr + PIDyn (7)
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2.5. Biochemical Assays

In all pigment and enzymatic analyses, the leaf discs were collected between 12:00
and 13:00 h (solar time) when photosynthetic rates were maximal [47]. We followed the
protocol described by Lichtenthaler [48] to estimate the levels of total Chl (Chlt), Chla and
Chlb, and carotenoids for each leaf using six leaf discs (3.14 cm2) from the same leaves that
had been used previously to calculate SLA. Between one of the key enzymes, glutathione
reductase (GR; EC 1.6.4.2) was assayed as described in Pinheiro et al. [49]. Cellular damages
were analyzed through electrolyte leakage (assayed immediately after leaf sampling) when
plants reached leaf ΨL of −1.5 and −3.0 MPa and malondialdehyde (MDA) accumulation
(which expresses lipid peroxidation), as reported earlier [50].

2.6. Data Analysis

The Michaelis-Menten hyperbolic constant was used to adjust the A/PAR curves; the
parameters Amax, LSP, LCP, Rd, and ΦPAR were carried out during the day and estimated
following the equations described by Lobo et al. [51]. Evaluation of the A/Ci curve
and stimation of the Vcmax, Jmax, and RD was performed emplying the model created by
Farquhar et al. [52] using the plantecophys package in R [53]. A generalized linear model
(GLM) was adjusted for the different parameters derived from the A/PAR and A/Ci curves
for each genotype at each radiation level and the interaction of these (fixed factor). The
plant and leaf were included as random factors (n = 16). Similarly, a GLM was made for
SLA, photosynthetic pigments, including the level of radiation as the fixed factor. The
plant, leaf and leaf discs were included as random factors. For the variables (leaf water
potential and chlorophyll fluorescence) that were measured both at pre-warming and
midday, a GLM model was performed, where the radiation level, genotype, time during
the day and the interaction of these were analyzed as fixed factors. The plant and leaf were
included as random factors. The assumptions of normality and homogeneity of variance
were evaluated using an exploratory residual analysis. Differences between mean values
of each genotype cacao plant responses under the level of radiation (fixed factor) were
analyzed with the LSD Fisher’s post hoc test at a significance of α = 0.05. Analyses of GLM
were performed using the lme function in the nlme package [54] in R language software,
version 4.0.0 [55], and using the interface in InfoStat [56].

3. Results
3.1. Leaf Water Potential and Specific Leaf Area

Independent of the cocoa genotypes and the radiation level studied, the ΨL before
dawn (−0.08 ± 0.01 MPa p > 0.05) was significantly lower than that found at midday
(−1.06 ± 0.07 MPa p < 0.05). Additionally, an increase in the water deficit was found by
increasing the PAR level at midday. When comparing cocoa genotypes, LUK-40 was the
most sensitive in its water status, contrary to the behavior presented for ICS-95, which
presented the lowest ΨL values under the different levels of radiation at midday (Figure 1).
In general, SLA tended to increase with decreasing radiation and the change was significant
except for ICS-95 and LUK-50 (Figure 2).
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significant differences between genotypes of cacao × radiation level (post hoc LSD Fisher, p < 0.05). *: Means statistical 
differences between radiation levels in each cocoa genotype. The results include means ± SE (n = 4). 

 
Figure 2. The specific leaf area (SLA; m2 kg–1) for five genotypes of cacao in three levels of radiation 
considered were high mean daily incident photosynthetically active radiation (HPAR, 2100 ± 46 mol 
m−2 s−1) that was in full sun, medium mean daily incident photosynthetically active radiation (MPAR, 
1150 ± 42 mol m−2 s−1) and low mean daily incident photosynthetically active radiation (LPAR, 636 ± 
40 mol m−2 s−1). a,b,c: Values in bars with different letters indicate significant differences between gen-
otypes of cacao × radiation level (post hoc LSD Fisher, p < 0.05). *: Means statistical differences be-
tween radiation levels in each cocoa genotype. The results include means ± SE (n = 54 leaf discs). 
Statistics are defined as in Figure 1. 

3.2. Photosynthetic Light- and CO2-Response Curves of Different Genotypes of Cacao Grown 
under Varying Levels of Radiation 

Significant differences (p < 0.05) were observed in parameters obtained from the light 
and CO2 response curves in the interaction between genotypes of cacao and radiation 
level. The increase in radiation level had a significant effect on different photosynthetic 
characteristics (Figure 3). Cocoa genotypes such as ICS-95 and LUK-40 presented a greater 
response (both on the area and mass bases) in the lower radiation levels (Figure 3a,b). For 
Rd, no specific trend was found between the radiation levels, being lowest for LUK-40 in 
LPAR (Figure 3c). The highest LSP values were mainly obtained in the plants that under-
went LPAR; however, LUK-40 presented a contrary behavior and ICS-95 exhibited similar 
means in HPAR and LPAR (Figure 3d). For the LCP, a consistent trend was not clear, and only 

Figure 1. The leaf water potential (ΨL; MPa) at predawn and midday for five genotypes of cacao in three levels of radiation
considered were high mean daily incident photosynthetically active radiation (HPAR, 2100 ± 46 mol m−2 s−1) that was in
full sun, medium mean daily incident photosynthetically active radiation (MPAR, 1150 ± 42 mol m−2 s−1) and low mean
daily incident photosynthetically active radiation (LPAR, 636 ± 40 mol m−2 s−1). a,b,c: Values in bars with different letters
indicate significant differences between genotypes of cacao × radiation level (post hoc LSD Fisher, p < 0.05). *: Means
statistical differences between radiation levels in each cocoa genotype. The results include means ± SE (n = 4).
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Figure 2. The specific leaf area (SLA; m2 kg–1) for five genotypes of cacao in three levels of
radiation considered were high mean daily incident photosynthetically active radiation (HPAR,
2100 ± 46 mol m−2 s−1) that was in full sun, medium mean daily incident photosynthetically active
radiation (MPAR, 1150 ± 42 mol m−2 s−1) and low mean daily incident photosynthetically active
radiation (LPAR, 636 ± 40 mol m−2 s−1). a,b,c: Values in bars with different letters indicate significant
differences between genotypes of cacao × radiation level (post hoc LSD Fisher, p < 0.05). *: Means sta-
tistical differences between radiation levels in each cocoa genotype. The results include means ± SE
(n = 54 leaf discs). Statistics are defined as in Figure 1.

3.2. Photosynthetic Light- and CO2-Response Curves of Different Genotypes of Cacao Grown
under Varying Levels of Radiation

Significant differences (p < 0.05) were observed in parameters obtained from the light
and CO2 response curves in the interaction between genotypes of cacao and radiation
level. The increase in radiation level had a significant effect on different photosynthetic
characteristics (Figure 3). Cocoa genotypes such as ICS-95 and LUK-40 presented a greater
response (both on the area and mass bases) in the lower radiation levels (Figure 3a,b). For
Rd, no specific trend was found between the radiation levels, being lowest for LUK-40 in
LPAR (Figure 3c). The highest LSP values were mainly obtained in the plants that underwent
LPAR; however, LUK-40 presented a contrary behavior and ICS-95 exhibited similar means
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in HPAR and LPAR (Figure 3d). For the LCP, a consistent trend was not clear, and only ICS-95
and LUK-50 showed higher values in HPAR and MPAR, respectively. The greatest efficiency
in terms of electron transfer (ΦPAR Figure 3f) (revealed as the highest maximum rate of
regeneration of ribulose-1.5-bisphosphate controlled by electron transport) was observed
with three genotypes (LUK-50, ICS-1 and CCN-51) in HPAR, while LUK-40 exhibited
opposite behavior. Vcmax did not respond to PAR, while Jmax was significantly higher for
ICS-1 and ICS-95 by increasing PAR. Finally, RD was found lower in HPAR for all genotypes,
except ICS1 that showed the lowest values in LPAR.
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× radiation level (post hoc LSD Fisher, p < 0.05). *: Means statistical differences between radiation levels in each cocoa 
genotype. The results include means ± SE (n = 4). Statistics are defined as in Figure 1. 

3.3. Chlorophyll (Chla) Parameters of Different Genotypes of Cacao Grown under Varying Levels 
of Radiation 

The mean values of Fv/Fm in predawn (0.80 ± 0.01) were statistically similar for most 
cocoa genotypes at the different radiation levels, except CCN-51 and ICS-95 in LPAR (Fig-
ure 4a). However, at midday, the Fv/Fm values decreased to the extent that controlled dis-
sipation mechanisms were generated as the dynamic PSII photoinhibition (PIDyn) grad-
ually increased with increasing radiation intensity (Figure 4b). The increase in PAR im-
pacted photoinhibition in the different cocoa genotypes, being in most cases PIDyn (Fig-
ure 4b). Only at the LPAR level for the ICS-95 genotype was it higher PIChr than PIDyn. 

Figure 3. Parameters derived from photosynthetic light (A/PAR) and CO2 (A/Ci) response curves for five genotypes of
cacao in three levels of radiation considered were high mean daily incident photosynthetically active radiation (HPAR, 2100
± 46 mol m−2 s−1) that was in full sun, medium mean daily incident photosynthetically active radiation (MPAR, 1150 ±
42 mol m−2 s−1) and low mean daily incident photosynthetically active radiation (LPAR, 636 ± 40 mol m−2 s−1). (a,b).
Amax: Light-saturated maximum net carbon assimilation rate; DM: Dry mass; (c). Rd: Dark respiration rate; (d). LSP: Light
saturation point; (e). LCP: Light compensation point; (f). ΦPAR: Quantum efficiency; (g). Vcmax: Maximum carboxylation
rate; (h). Jmax: Maximum rate of regeneration of ribulose-1,5-bisphosphate (RuBP) controlled by electron transport; (i).
RD: Leaf respiration in light conditions. a,b,c: Values in bars with different letters indicate significant differences between
genotypes of cacao × radiation level (post hoc LSD Fisher, p < 0.05). *: Means statistical differences between radiation levels
in each cocoa genotype. The results include means ± SE (n = 4). Statistics are defined as in Figure 1.

3.3. Chlorophyll (Chla) Parameters of Different Genotypes of Cacao Grown under Varying Levels
of Radiation

The mean values of Fv/Fm in predawn (0.80 ± 0.01) were statistically similar for
most cocoa genotypes at the different radiation levels, except CCN-51 and ICS-95 in LPAR
(Figure 4a). However, at midday, the Fv/Fm values decreased to the extent that controlled
dissipation mechanisms were generated as the dynamic PSII photoinhibition (PIDyn)
gradually increased with increasing radiation intensity (Figure 4b). The increase in PAR
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impacted photoinhibition in the different cocoa genotypes, being in most cases PIDyn
(Figure 4b). Only at the LPAR level for the ICS-95 genotype was it higher PIChr than PIDyn.
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Figure 4. Parameters of chlorophyll a fluorescence analysis in five cocoa genotypes under different levels of radiation.
(a). maximum quantum yield of PSII (Fv/Fm), (b). photoinhibition indices of the PSII. Chronic PSII photoinhibition (PIChr).
Dynamic PSII photoinhibition (PIDyn). a,b,c: Values in bars with different letters indicate significant differences between
genotypes of cacao× radiation level (post hoc LSD Fisher, p < 0.05). *: Means the statistical differences between the radiation
levels in each of the cocoa genotypes at the different evaluation times. The results include means ± SE (n = 4). Statistics are
defined as in Figure 1.

The electron transport rate (ETR) was higher in the plants of the cocoa genotypes
grown in the LPAR, with ICS-95 and LUK-50 showing the highest values (Figure 5). How-
ever, under HPAR the ΦPSII was reduced in the cocoa genotypes ICS-1, LUK-50 and CCN-51
(Figure 5). The photochemical quenching coefficient (qP) reduction was reduced by in-
creasing PAR availability (x-axis) but was more pronounced at HPAR, with ICS-95 and
LUK-40 being the cocoa genotypes that performed best (Figure 5). Finally, among different
genotypes, LUK-40 was found to dissipate the highest amount of energy in the form of
heat (NPQ) in the different PAR levels (Figure 5).
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Figure 5. Chl fluorescence parameters in relation to PAR levels in cacao leaves for five genotypes of cacao in three
radiation levels. Actual PSII quantum yield (ΦPSII); electron transport rate (ETR); photochemical quenching coefficient
(qP); non-photochemical quenching coefficient (NPQ). The results include means ± SE (n = 4). Statistics are defined as in
Figure 1.

It was found that the total concentration of Chlt (a + b) was higher in the shaded
leaves than in the sunlight ones, being statistically different between cocoa genotypes
under different PAR levels (Figure 6). Because total Chl concentration decreased more
than carotenoids, these parameters were lower in HPAR. GR did not exhibit a clear trend,
although CCN-51 and LUK-40 showed higher values. Electrolyte leakage and MDA showed
similar behavior, with lower values in LPAR (Figure 6).
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Figure 6. Biochemical assays for five genotypes of cacao in three levels of radiation. (a). Chla: chlorophyll a; (b). Chlb:
chlorophyll b; (c). Chlt: Total chlorophyll; (d). Car: Carotenoid; (e). Chlt/Car: Total chlorophyll/ carotenoids ratio; (f).
Chla/Chlb: chlorophyll a/b ratio; (g). glutathione reductase (GR; µmol min–1 g–1 FM); (h). electrolyte leakage (µmol kg–1

FM) and (i) concentration of malondialdehyde (MDA; µmol kg–1 FM). a,b,c: Values in bars with different letters indicate
significant differences between genotypes of cacao × radiation level (post hoc LSD Fisher, p < 0.05). *: Means statistical
differences between radiation levels in each cocoa genotype. The results include means ± SE (n = 4).

4. Discussion

We found good physiological performance at a low level of solar radiation for some
cocoa genotypes as well as other genotypes exhibiting adequate acclimatization to relatively
high solar radiation conditions. Plants in HPAR that were subjected to harsh environmental
conditions (high accumulated temperature, air–leaf VPD, and radiation loads) were affected
by ΨL at midday, directly affecting carbon assimilation (A), contrary to what was found in
LPAR. When radiation levels increase, changes in environmental conditions are generated,
mainly related to the increase in temperature, which has an impact on the water status
of the plant [24,57], since reaching values below −1.5 MPa can have significant effects on
photosynthesis [24,58]. Therefore, as a mechanism of adjustment to water deficit, cocoa
plants reduce their stomatal conductance and thus carbon fixation [25]. Specifically, for all
cocoa genotypes, a low level of Amax in HPAR was found, and for most of them, Vcmax was
also affected in HPAR, suggesting less RuBisCO activity. However, the ICS-95 genotype
showed the highest values of Vcmax and Jmax under HPAR.

In order to achieve adequate carbon fixation in LPAR as well as HPAR, adjustments
were required in the capture, use and dissipation of light to provide photoprotection for
the photosynthetic apparatus, thus avoiding the appearance of photoinhibitory processes.
Under shaded conditions, electron transport rate (ETR) is reduced in plants; however,
cocoa plants as a mechanism to increase light harvesting increase pigment content [4,6],
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likewise, as a strategy to cope with the low PAR, a situation presented in plants under
LPAR. It has been reported that SLA is a trait related to the level of incident light [26]
and specifically in cocoa cultivation when increasing the level of radiation the SLA is
reduced [59,60], a characteristic presented in crops under monoculture compared to that
found under agroforestry systems [61,62]. This SLA variation is a trait that may be related
to the reduction in leaf thickness when plants are subjected to low light intensity. It can be
interpreted as a strategy to obtain a larger surface area towards more efficient absorption
and optimization of photon capture [7] and a way to reduce the transpiration rate [61].

Second, from the balance of energy use and/or dissipation capabilities, analyzed by
the dynamic photoinhibition (PIDyn) and chronic (PIChr) estimates of the PSII, we found
that mainly PIDyn increased when PAR was increased. The leaves of the cocoa genotypes
in LPAR showed similar capacities to those of the leaves in HPAR against photoinhibition, as
indicated by the strong upward regulation of NPQ when exposed to light, as well as the
slight decrease in the Fv/Fm ratio when the PAR level is increased. PIDyn increased in HPAR
as a photoprotection mechanism, since a reduction in the reversible PSII quantum potential
yield (Fv/Fm) was found, accompanied by a significant increase in the thermal dissipation
of excess absorbed energy, these processes being photoprotection mechanisms [8]. The
above reduces the effect on proteins of the photosynthetic apparatus [62]. Finally, cocoa
genotypes under HPAR showed a decrease in Chlt; in parallel, they also showed a reduction
in the Chl/Car ratio, which favors the dissipation of excess energy in the form of heat.
However, increased MDA concentration and electrolyte leakage were found to mean more
damage at the cellular level in HPAR.

Our study mainly found that cocoa plants exhibit optimal physiological behavior
under low radiation conditions, specifically at mean PAR levels of 400 µmol m−2 s−1,

which different studies have reported. However, this finding is contrary to what has been
reported by Suárez et al. [6] for the same study area. In that study, cocoa plants show
an optimal physiological performance under HPAR conditions, mainly attributed to the
high cloud cover typical of the Colombian Amazon, a region that presents an annual
average of only 3–4 h of daily radiation [33]. These differences are also probably due to
the state of development of the cocoa plants. The plants we used in our study had 13
months of development while those used by Suárez et al. [6,63] report a growth of 36
months (productive phase) under agroforestry systems with different levels of radiation
transmitted. Therefore, the time difference between these two experiments that were
conducted at the same site was 23 months, demonstrating the sensitivity to radiation at
the early stages of development. When we compare the biochemical responses reported
by Suárez et al. [6] as a function of carotenoid concentration and chlorophyll a/b ratio
with those obtained in the present study, we observe marked differences specifically for
genotype CCN51, which was evaluated in both studies. In this sense, it has been reported
that the variation in carotenoid content can be considered an adjustment or mechanism of
photoprotection, which is related to growth time and environmental conditions [64,65].

Different studies report that variability in carbon uptake may be due to differences in
age and growing conditions [20–28]. Since there is no universal agreement on the exact
amount of shade required to maximize cocoa production, our results are of utmost impor-
tance, specifically because they show how different cocoa genotypes cope with increased
radiation, supported by analysis of the relationship with water, diffusive components and
biochemicals at leaf level.

Therefore, based on the results obtained by Suárez et al. [6] and Jaimez et al. [29] in
areas where most of the year there is cloud cover and low air evaporation demand, the
importance of our study lies in the different responses of cocoa to light in field conditions
when it is cloudy. These data are very important when deciding which genotype is best
adapted to the Colombian Amazon conditions [6], since it is currently considered the
“crop for peace”, that is, a crop to replace illegal farming systems. In this sense, there is
the possibility of growing cocoa with a low level of shade and taking advantage of the
availability of cocoa materials that have high radiation acclimatization. In this study, we
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highlight genotypes such as ICS-1 and LUK-40 that exhibit physiological and biochemical
mechanisms to maintain the balance between the use of energy and/or dissipation capacity,
thus maintaining carbon fixation. Taken together, these facts suggest that, under the
conditions of the Colombian Amazon, some cocoa genotypes have the ability to acclimatize
to high levels of light as long as they are under high cloudiness conditions.

5. Conclusions

This study shows the physiological behavior of different cocoa genotypes under
contrasting radiation levels, being superior at a low radiation level for the ICS-95 and LUK-
40 genotypes. However, even more importantly, it is possible to demonstrate that these
same cocoa genotypes exhibit improved carbon assimilation performance, demonstrating
photosynthetic acclimatization to high solar radiation patterns that resulted in higher Amax
and Vcmax; this was possible to the high cloud cover conditions prevailing in the Colombian
Amazon. Our results also suggest the need to expand the analysis of adaptation to other
universal and regional cocoa genotypes in order to find materials that demonstrate greater
photosynthetic acclimatization.
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