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Abstract: The WRKY genes are one of the largest families of transcription factors (TFs) and play a
crucial role in certain processes in plants including stress signaling, regulation of transcriptional
reprogramming associated with stress responses, and other regulatory networks. This study aims to
investigate the WRKY gene family in the C3 model plant, Oryza sativa L., using a genome-wide in silico
expression analysis. Firstly, 104 WRKY TF family members were identified, and then their molecular
properties and expression signatures were analyzed systematically. In silico spatio-temporal and
hormonal expression profiling revealed the roles of OsWRKY genes and their dynamism in diverse
developmental tissues and hormones, respectively. Comparative mapping between OsWRKY genes
and their synteny with C4 panicoid genomes showed the evolutionary insights of the WRKY TF
family. Interactions of OsWRKY coding gene sequences represented the complexity of abiotic stress
(AbS) and their molecular cross-talks. The expression signature of 26 novel candidate genes in
response to stresses exhibited the putative involvement of individual and combined AbS (CAbS)
responses. These novel findings unravel the in-depth insights into OsWRKY TF genes and delineate
the plant developmental metabolisms and their functional regulations in individual and CAbS
conditions.

Keywords: abiotic stress; comparative mapping; GWAS; Oryza sativa; OsWRKY; transcription factor

1. Introduction

As sessile organisms, plants are continuously exposed to adverse environmental
conditions which may cause deleterious impacts on their growth, development, and pro-
ductivity. Abiotic stresses (AbS) are predominant among various environmental stresses,
which include drought, low temperature or cold stress, salinity, submergence, heavy metal,
and other forms of oxidative stress such as radiation. At present, global agriculture is
facing a serious threat from climatic changes, which is another aggravating challenge that
affects the sustainability and productivity of crop plants [1]. Plants have well-developed
defense responses to ensure survival under these environmental stresses and exhibit
stress avoidance/stress tolerance through acclimation and adaptation mechanisms [2].
On deeper insight of stress, initiation of complex abscisic acid (ABA) -dependent and/or
-independent signal transduction pathways and its manifestation at physiological, molec-
ular, and metabolic responses that ultimately elevate the stress tolerance in plants [3].
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Transcription factors (TFs) are the pivotal players involved in the stress signaling pathways,
transcriptional reprogramming, cell division, plant growth, development, and stimulating
the abiotic stress-responsive (AbSR) genes [4,5]. The TFs may afford signaling cascades or
gene networks, in which they regulate other TFs and/or functional regulatory elements
through their specific binding sequences [6,7]. The plant genome devotes approximately
7% putative TFs [8] that are classified into 58 TF families [9]. Among these, WRKY is the
seventh-largest family of TFs (https://grassius.org/, accessed on 4 December 2020) that
are mainly found in higher plants with 74 members in Arabidopsis and up to 104 members
predicted in Oryza sativa [10]. WRKY TF domain is composed of a conserved WRKYGQK
sequence motif and a CX5-8CX25-28HX1-2C or CX4-5CX22-23HXH (metal-chelating zinc
finger) motif [11]. WRKY TFs contain 60 highly conserved amino acids with a WRKY
motif sequence at its amino-terminal end and a putative zinc finger domain at its carboxy-
terminal end [12]. The WRKY family could specifically bind on the W-box promoter region
with consensus sequence (C/T) TGAC [T/C], which targets the downstream genes and
stimulates their expression dynamism. In addition, WRKY TFs can bind to both W-box and
a sugar-responsive (SURE) cis-element (TAAAGATTACTAATAGGAA) and activate the
transcription machinery of downstream genes [13].

To the best of our knowledge, WRKY TFs are involved in functional regulation of diverse
physiological and molecular processes including pollen development and its function [14],
seed dormancy [15], trichome development [16], seed development [13,16,17], flowering time
and plant height [18], somatic embryogenesis [19,20], biomass [21,22], secondary metabolite
biosynthesis [13,23–25], hormone signaling [26] and leaf senescence [27–29]. Most importantly,
WRKY TFs have been shown to get activated in response to different biotic [10,30] and
AbS [31,32], including pathogen infection [33,34], oxidative stress [35], drought, cold, high
salinity [36], wounding [37], freezing [38], bacterial infection [39–41], viral attack [39,42],
fungal invasion [39,43,44], defense against oomycetes [45,46], carbohydrate anabolism,
and secondary metabolism [13]. Furthermore, AbS induces the activity of various WRKY
proteins, which function in synchronization to confer resistance against certain stress or
provide a combinatorial effect on combined stress resistance. Some of the WRKY TFs can
be differentially expressed, regulating the expression of related genes and promoting signal
transduction machinery. In wheat, out of the 15 WRKY genes, 8 genes were transcribed in
response to NaCl, heat, polyethylene glycol (PEG), and cold [47]. In rice, the majority of the
WRKY genes show variable responses towards PEG, salinity, cold, and heat stresses [48].
Elevated expression of 18 WRKY genes in the roots of NaCl treated Arabidopsis plants
were confirmed via microarray profiling [49]. The expression profiling and functional
identifications of WRKY TFs in most studies are generally based on genetic transformation,
real-time fluorescence quantitative PCR, and transcriptome analyses. Hence, WRKY genes
can function effectively in different abiotic stress responses or tolerances in rice and various
crop plants.

The potential role of WRKY TF family members in various molecular, physiological
and biological processes has been studied extensively in a variety of crop plants [50–54].
However, a systematic view of WRKY TFs in the C3 model plant, O. sativa (OsWRKY) is
still inadequate. In view of its importance, high-throughput in silico approaches have
been used to identify the potential AbSR—OsWRKY TF family members for the first time.
This study provides the functional aspects of these AbSR—OsWRKY TFs and spotlights
potential candidates for further characterization toward representing their functional role
in AbS dynamism.

2. Materials and Methods
2.1. In Silico Mining and Meta-Analysis of WRKY TF Genes in O. sativa

The WRKY family members and their encoding gene sequences of O. sativa were
retrieved from the GRASSIUS Grass Regulatory Information Server (http://grassius.org/g
rasstfdb.html, accessed on 4 December 2020) [55]. OsWRKY TF family members and their
RAP ID/locus ID were collected and used for further analyses. Furthermore, WRKY genes

https://grassius.org/
http://grassius.org/grasstfdb.html
http://grassius.org/grasstfdb.html
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with their IDs were used to fetch the corresponding genomic, transcriptomic, and coding
sequences along with their chromosomal positions were collected from the RGAP (Rice
Genome Annotation Project Database) (http://rice.plantbiology.msu.edu/, accessed on
24 December 2020) [56].

2.2. Spatio-Temporal and Phytohormone Expression Analysis

OsWRKY genes were exported to the spatio-temporal (RXP_0001) dataset and plant
hormone (RXP_1001~RXP_1012) dataset of rice expression profile database (RiceXPro)
(http://ricexpro.dna.affrc.go.jp/, accessed on 16 January 2020) [57] for analyzing the
spatio-temporal gene expression profile covering different tissues/organs and cell types at
various developmental stages, and plant hormone responses, respectively using publicly
available microarray.

2.3. Gene Features and Phylogenetic Analysis

Gene properties including amino acid length, molecular weight (M.Wt), isoelectric
point (pI), instability index, aliphatic index, and grand average hydropathicity (GRAVY)
were predicted using the online ExPASy proteomics server (http://web.expasy.org/pro
tparam/, accessed on 2 February 2020) [58]. The OsWRKY TF family members and their
respective amino acid sequences in other C4 panicoid sequenced grass species such as
foxtail millet (Setaria italica), sorghum (Sorghum bicolor), and maize (Zea mays) were also
identified by BLASTP (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Genes, accessed
on 8 February 2020) analysis. The accession numbers of newly predicted WRKY TFs family
members from C4 grass species were assigned as SiWRKY (S. italica), SbWRKY (S. bicolor),
ZmWRKY (Z. mays) TF family members and their identity score values were tabulated
(Supplementary Table S1). The predicted WRKY TF gene sequences confirmed the presence
of WRKY DNA—binding domain and hAT family C-terminal dimerization domain by
HMMSCAN (Supplementary Table S2). The amino acid sequences of OsWRKY along with
SiWRKY, SbWRKY, ZmWRKY were imported into MEGA v7.0 (Philadelphia, PA, USA) [59]
and multiple sequence alignment was performed using ClustalW. The parameters used in
the alignment were as follows: gap opening: 10.00, and gap extension: 0.10. The alignment
file was imported to construct a phylogenetic tree by the maximum-likelihood method and
bootstrap analysis was performed with 1000 replicates.

2.4. Gene Structure Analysis and Gene Ontology Annotation

Understanding the gene organization will aid to reveal the function, regulation, and
evolution of genes. Arrangements of exons and introns were predicted by comparing
the coding sequences with their genomic sequences using Gene Structure Display Server
(GSDS) v2.0, a web-based bioinformatics tool (http://gsds.cbi.pku.edu.cn/, accessed on
16 February 2021) [60]. Potential candidate genes and their corresponding RAP IDs were
subjected to the ShinyGO v0.61 database (http://bioinformatics.sdstate.edu/go/, accessed
on 7 March 2021) to obtain gene ontology (GO) annotation against O. sativa subsp. japonica.
GO enrichment was calculated by the p-value cut-off (FDR) at 0.01 for the genes.

2.5. Molecular Interactome and Enrichment Analysis

Protein-Protein Interaction (PPI) analysis was performed using STRING v11.0 (https:
//string-db.org/, accessed on 20 March 2021) [61] with a high confidence score of 0.7.
The functional enrichment analysis of the interactome was done through the level of
0.01. Active interaction based on the various sources, including text mining, experiments,
gene fusion, databases, and co-expression, and an interaction score > 0.4 were applied to
construct the PPI network. This interactome map was used to identify the physical and
functional role of the key candidate genes involved.

http://rice.plantbiology.msu.edu/
http://ricexpro.dna.affrc.go.jp/
http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Genes
http://gsds.cbi.pku.edu.cn/
http://bioinformatics.sdstate.edu/go/
https://string-db.org/
https://string-db.org/
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2.6. Gene Synteny Analysis

In order to unravel the genomic distribution of WRKY TFs, comparative mapping/gene
synteny analysis was performed. OsWRKY and their orthologous genes in C4 grasses such
as S. italica, S. bicolor, and Z. mays were identified by Gramene-BLASTP (reciprocal) analysis
of the gene sequences against these panicoid genomes. All orthologous gene sequences
and all hits with E-value 1e−0 (1 × 100) and minimum 60% similarity were treated as
significant. The chromosomal synteny between O. sativa and these C4 grass species was
then visualized by Circos v0.55 (Switzerland) [62].

3. Results
3.1. Identification of the WRKY Family Transcription Factors in Rice Genome

The GRASSIUS Grass Regulatory Information Server identified a total of 104 OsWRKY
TF family members (Supplementary Table S3). These 104 genes were subjected to RiceXPro
for meta-expression analysis (Supplementary Figure S1). Based on the heatmap profiling,
26 OsWRKY TF novel candidate genes were identified and these players are significantly
involved in individual and CAbS responses (Table 1). Notably, these genes were localized
in all the rice chromosomes except the 10th chromosome, which revealed these players
divergence of chromosomes in the rice genome.

Table 1. OsWRKY TF family members and their attributes.

S. NO Gene Name RAP ID Start End Chr. No UniProt ID

1 OsWRKY1 Os01g0246700 4356383 4340849 1 Q0JQ43
2 OsWRKY6 Os03g0798500 22731943 22733240 3 Q94D50
3 OsWRKY10 Os01g0186000 26688416 26687377 1 Q0JKQ9
4 OsWRKY11 Os01g0626400 25009453 25012236 1 Q9FE35
5 OsWRKY12 Os01g0624700 29723065 29720923 1 Q5JLU2
6 OsWRKY14 Os01g0730700 30604295 30608077 1 Q942D2
7 OsWRKY23 Os01g0734000 36194611 36193840 1 Q6IEM5
8 OsWRKY24 Os01g0826400 42946753 42948750 1 Q5JM93
9 OsWRKY28 Os06g0649000 26283914 26280253 6 Q0DZ26

10 OsWRKY29 Os07g0111400 28726783 28730933 7 Q6Z8E9
11 OsWRKY32 Os02g0770500 12394669 12396898 2 Q10LT9
12 OsWRKY37 Os04g0597300 31326926 31323190 4 Q9AUV7
13 OsWRKY45 Os05g0322900 30132491 30136547 5 Q0JAI8
14 OsWRKY49 Os05g0565900 4999626 4998210 5 Q65WY5
15 OsWRKY55 Os03g0321700 23530499 23529423 3 Q6IEN3
16 OsWRKY66 Os02g0698800 2958991 2963006 2 Q5VMX9
17 OsWRKY71 Os07g0583700 23659625 23654076 7 Q84ZS7
18 OsWRKY73 Os07g0680400 28832398 28828793 7 Q7XHX5
19 OsWRKY74 Os08g0198000 5669406 5663578 8 Q0J7F5
20 OsWRKY79 Os08g0386200 18220041 18222408 8 Q6ZA22
21 OsWRKY82 Os09g0334500 10128825 10131136 9 Q6ERI5
22 OsWRKY83 Os09g0417600 14977713 14975932 9 Q6EPZ2
23 OsWRKY85 Os09g0481700 18501264 18496949 9 Q0J0V4
24 OsWRKY92 Os11g0117500 789030 787542 11 Q2RBB8
25 OsWRKY94 Os11g0490900 17352085 17355820 11 Q2R432
26 OsWRKY101 Os12g0116700 825793 824302 12 Q2QYJ6

3.2. Spatio-Temporal Expression Analysis of OsWRKY

To detect dynamic changes in spatio-temporal expression level of 104 OsWRKY TF
genes in 48 different tissue/organ, specific meta-profiling was performed and observed at
diverse developmental stages of rice plants under natural field conditions (Supplementary
Figure S1). Among the 104 WRKY TF genes, 26 key players (listed in Table 1) showed higher
expression pattern in diverse tissues and organs such as leaf sheath (vegetative—12:00;
00:00; reproductive—12:00; 00:00), leaf blade (vegetative—12:00; 00:00, reproductive—12:00;
00:00, ripening—12:00; 00:00), root (vegetative—12:00; 00:00, reproductive—12:00; 00:00),
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inflorescence (0.6–1.0, 3.0–4.0, 5.0–10 mm), stem (ripening—12:00; 00:00), ovary (01, 03 days
after flowering (DAF)), and endosperms (07, 10, 14, 28 and 42 DAF (Figure 1). OsWRKY
showed lower expression in stem (reproductive—12:00; 00:00), lemma (1.5–2.0, 4.0–5.0,
7.0 mm floret), palea (1.5–2.0, 4.0–5.0, 7.0 mm floret), anther (0.3–0.6, 0.7–1.0, 1.2–1.5,
1.6–2.0 mm), ovary (05 07 DAF), and embryo (07, 10, 14, 28 and 42 DAF) (Figure 1)
as imputed by RiceXPro, based on the available OsWRKY TF family members field RNA-
Seq data.
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The red color indicates up-regulation, the blue color indicates down-regulation, and the white color indicates no expression.
The color bar at the right side top represents the level of expression value, where −1 and 1 represent the down- and
up-regulation of AbS responsible OsWRKY TF family members.

3.3. Phytohormone Expression Profiling

Twenty-six OsWRKY TF genes showed phytohormonal expression profiling in various
time points such as 15 min, 30 min, 1 h, 3 h, 6 h, and 1 h, 3 h, 6 h, 12 h in root and shoot,
respectively. In the shoot, auxin and jasmonic acid (JA) showed high-level expression,
and a negligible level of expression was observed in abscisic acid (ABA), cytokinin (CK),
gibberellins (GA), and brassinosteroid (BRs) (Figure 2) at various time points. In the root,
all these 26 genes were found to show higher expression in auxin, CK, and JA and lower
expression in ABA, GA, BRs hormone expression levels across all the time points (Figure 3).
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Figure 2. Heatmap representing the potential 26 AbSR—OsWRKY TF family members and their phytohormonal ex-
pression pattern in the shoot which are differentially regulated across the entire growth in the field conditions. The
red color indicates up-regulation, the blue color indicates down-regulation, and the white color indicates no expression.
The color bar at the right side top represents the level of expression value, where −1 and 1 represent the down- and
up-regulation of AbS responsible OsWRKY TF family members.

3.4. OsWRKY TF Genes with Their Properties

The candidate genes and their properties such as amino acid length, M. Wt, pI,
aliphatic index, instability index, GRAVY, and subcellular localization of the OsWRKY
were analyzed and are given in Table 2. Among the 26 OsWRKY genes, OsWRKY28 was
the smallest gene with 190 amino acids whereas OsWRKY74 was the largest one with 862
amino acids. The pI ranged from 9.48 (OsWRKY23) to 10.06 (OsWRKY1) and the molecular
weight of the genes also varied according to gene size ranging from 20.49 kDa (OsWRKY28)
to 97.37 kDa (OsWRKY74) (Table 2). The variation in the physiochemical properties of
genes deciphered the presence of putative novel variants. Notably, many of the players
were localized in the nucleus and it revealed that these OsWRKY TFs were involved in
gene transcriptional and several biosynthesis processes.
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Figure 3. Heatmap showed the potential 26 AbSR—OsWRKY TF family members and their phytohormonal expression
pattern in roots which are differentially regulated across the entire growth in the field conditions. The red color indicates
up-regulation, the blue color indicates down-regulation, and the white color indicates no expression. The color bar at the
right side top represents the level of expression value, where −1 and 1 represent down- and up-regulation respectively of
AbS responsible OsWRKY TF family members.

3.5. Phylogenetic Analysis of WRKY TFs

Retrieved WRKY amino acid sequences were imported into MEGA v7.0 software
(Philadelphia, PA, USA) and the unrooted phylogenetic tree was constructed by the
maximum-likelihood method to study the evolutionary organization of the potential
26 WRKY TF family members (Figure 4). The unrooted tree confirmed the homology
between the OsWRKY TF family members with SiWRKY, SbWRKY, and ZmWRKY using
phylogenetic tree analysis.
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Table 2. Details of OsWRKY genes and their properties.

S. No Gene Name RAP ID Nt L aa L M. Wt pI AI II GRAVY SL

1 OsWRKY1 Os01g0246700 1275 425 45,967.1 10.0694 68 40.54 −0.383 Ct
2 OsWRKY6 Os03g0798500 741 247 26,500.7 7.6528 68.21 55.29 −0.549 Cyto
3 OsWRKY10 Os01g0186000 825 275 29,056.4 7.4157 60.33 43.9 −0.4 N
4 OsWRKY11 Os01g0626400 1140 380 39,856 7.0634 49.45 63.38 −0.731 N
5 OsWRKY12 Os01g0624700 738 246 25,832.6 8.2902 54.37 43.51 −0.424 Ct
6 OsWRKY14 Os01g0730700 765 255 27,796.2 6.9031 66.14 47.02 −0.656 N
7 OsWRKY23 Os01g0734000 588 196 21,158.8 9.4863 59.18 63.57 −0.624 N
8 OsWRKY24 Os01g0826400 1233 411 45,109.9 4.6849 60 59.53 −0.694 N
9 OsWRKY28 Os06g0649000 570 190 20,495.6 8.492 64.07 50.13 −0.375 Cyto
10 OsWRKY29 Os07g0111400 1521 507 51,766.5 6.1521 57.67 48.26 −0.354 N
11 OsWRKY32 Os02g0770500 1071 357 36„383.7 4.9404 56.83 55.42 −0.431 N
12 OsWRKY37 Os04g0597300 945 315 32733.4 5.869 60.83 69.16 −0.416 N
13 OsWRKY45 Os05g0322900 1545 515 53,042.3 5.3217 57.43 47.7 −0.415 PM
14 OsWRKY49 Os05g0565900 585 195 21,400.7 6.269 52.01 52.32 −0.579 Ct
15 OsWRKY55 Os03g0321700 996 332 34,901.2 4.3811 57.73 65.5 −0.507 N
16 OsWRKY66 Os02g0698800 1176 392 41,403.5 6.1909 51.33 52.47 −0.646 N
17 OsWRKY71 Os07g0583700 1857 619 66,163.6 6.3317 58.75 51.59 −0.683 N
18 OsWRKY73 Os07g0680400 1002 334 34,837.5 6.5945 54.26 70.97 −0.471 N
19 OsWRKY74 Os08g0198000 2586 862 97,370.3 6.4311 80.14 41.56 −0.41 N
20 OsWRKY79 Os08g0386200 960 320 33,550.3 6.6611 67.4 41.48 −0.316 N
21 OsWRKY82 Os09g0334500 1086 362 37,944.1 6.4041 64.21 53.99 −0.428 N
22 OsWRKY83 Os09g0417600 984 328 34,780.2 8.0535 68.69 50.66 −0.496 N
23 OsWRKY85 Os09g0481700 1902 634 68,280.1 6.0112 51.66 64.68 −0.712 N
24 OsWRKY92 Os11g0117500 963 321 35,915.9 6.417 72.25 58.59 −0.672 N
25 OsWRKY94 Os11g0490900 729 243 25,857.2 9.3347 46.45 55.93 −0.778 N
26 OsWRKY101 Os12g0116700 966 322 35,749.5 6.3705 69.31 60.38 −0.723 N

Nt L, Nucleotide length; aa L, amino acid length; M. Wt, Molecular weight; pI, Isoelectric point; AI, Aliphatic index; II, Instability index;
GRAVY, Grand average of hydropathicity, SL, Subcellular localization; Cyto, Cytosol; Ct, Chloroplast; N, Nucleus; PM, Plasma membrane.

3.6. Gene Organization Analysis

Gene structure analysis revealed the number and distribution of exons and introns
in the OsWRKY TF genes (Figure 5). The distribution of introns ranged from one to seven
amid exonic sequences which may be due to evolutionary changes that have occurred
in the OsWRKY TF family members. The majority of the genes contained two introns,
whereas six genes (OsWRKY14, OsWRKY23, OsWRKY55, OsWRKY79, OsWRKY83, and
OsWRKY94) had only one intron. A maximum of seven introns was found to be present in
OsWRKY1 (Figure 5).

3.7. Functional GO Analysis of OsWRKY TFs

OsWRKY TF genes and their functional ontology were predicted by the ShinyGO
database which showed the involvement of these genes in various biological processes
and molecular functions. OsWRKY novel candidate genes were imputed to be involved
in stimulus, chemical, regulation of transcription, metabolic and biosynthetic processes
(Figure 6). The significant molecular functions of these candidate genes were encoded
for different types of sequence-specific, DNA, heterocyclic and regulatory region binding
activities (Figure 7).
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3.8. OsWRKY Gene Interaction Network Analysis

Potential 26 WRKY TF family encoding genes were obtained from O. sativa ssp.
Japonica AbSR OSWRKY TF genes and molecular interaction network was analyzed using
the STRING v11.0 database. The gene network had 46 nodes, 74 weighted edges, and
an enrichment p-value score <0.01 (Figure 8). The average nodal degree between the
neighboring genes was 3.22. This interaction network revealed the complexity of AbSR
OsWRKY, hence it proved the nature of multi-gene.

3.9. Orthologous Relationships of OsWRKY Genes

Gramene—BLASTP analysis revealed chromosomal collinearity among 26 potential
OsWRKY genes with those of C4 panicoid grass species such as S. italica, S. bicolour, and
Z. mays. The chromosomal ideogram exhibited the maximum relationship that occurred
between O. sativa and C4 grass plant species [26 OsWRKY (100%)] (Figure 9A–C; Supple-
mentary Tables S4–S6).
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4. Discussion

WRKY TFs are a class of DNA-binding proteins that play a major role in physiological
processes, plant growth and development, signal transduction, senescence, seed dormancy,
responses to a diverse biotic and AbS, biosynthesis and hormonal regulations and stress
signaling through auto- and cross-regulation [63–65]. Compared to biotic stresses, so
far, only limited information is available on the WRKY TF family members’ role in AbS.
Considering the importance of WRKY TF genes from various plant species and their crucial
roles under various environmental conditions, it remains a big challenge to unveil their
mechanisms in AbS. The functions of WRKY TF genes in defense signal transduction
pathways came from the analysis of dicot plants, such as tomato, Arabidopsis, potato,
and tobacco, and to date, less information was reported in rice and other monocot plants.
Few studies have demonstrated that many WRKY genes are predominantly expressed in
response to AbS such as cold, salinity, drought, flooding and submergence [66,67], extreme
levels of light (high and low), sugar starvation [63], phosphate deprivation [68], radiation
(UV-B and UV-A) [69], and wounding [70]. However, the mode of action of WRKY TFs
among the diverse signaling pathways and self-regulation is still not clearly understood.

The regulation and fine-tuning of WRKY TFs during plant stress responses contribute
to the establishment of complex signaling networks and their crucial roles in plant AbS
responses that make them potential candidates for imparting stress tolerance. More than
100 WRKY genes were predicted in rice [71]. They are upregulated in response to salinity,
drought, and ABA, and downregulated in response to cold [71,72]. However, out of the
extensive list of rice WRKY TFs studied, only a few genes have been functionally character-
ized with their response to AbS. The overexpression of OsWRKY genes, known to increase
the sensitivity to cold and salt stresses [73], involved in the ABA signaling [12], enhanced
drought and heat tolerance after heat pre-treatment as compared to wild-type plants [74].
When OsWRKY genes were over-expressed in Arabidopsis, besides an improvement of lat-
eral root number and primary root length in the transgenic plants under osmotic stress, no
clear phenotype regarding survival under AbS was shown [48,75] and increased sensitivity
to ABA, salt, and osmotic stress [63]. The overexpression of OsWRKY TFs has induced
higher sensitivity or enhanced stress tolerance, thus acting as both positive and negative
regulators in stress signaling pathways [76].

This study is the foremost one to report an integrated genome-transcriptome-wide
systematic analysis in C3 model plant rice and also C4 grass species. A deeper view of
its importance in rice stress and systems biology particularly on AbS was investigated to
identify and annotate the key players by computational omics approaches and examine
their orthologs, differential expression signatures of spatio-temporal and plant hormones
levels, interactome map, and molecular properties of the WRKY TFs in response to AbS.
The systematic analysis provides insights for the molecular basis of WRKY TFs in O. sativa
to stress responses, notably on plant AbS tolerance.

Based on the publicly available RNA-seq transcriptome data of OsWRKY genes, 26 out
of 104 OsWRKY TFs showed a high and low level of hormonal expression. This expression
signature data revealed that 26 potential OsWRKY genes for phytohormones such as ABA,
JA, auxin, GA, CK, and BRs in the root and shoot of the rice plant at various time points.
Thus, the obtained results revealed the lower expression of auxin and JA under field
conditions. On the other hand, under a stressful environment, these two hormones are
expressed in elevated levels and they play an important role in biotic and AbS conditions.
From the heat map analysis, 26 potentially expressed AbSR OsWRKY TF genes were used
for further functional analysis.

Spatio-temporal expression profiling of 26 OsWRKY genes showed the differential
expression in 48 different tissue/organ-specific and developmental stages at individual
abiotic stress conferring the higher expression level of OsWRKY genes from various tissue-
specific and organs-specific expression dynamism under field conditions. This analysis
revealed that OsWRKY TFs could be potential candidates for further functional characteri-
zation and distinct expression patterns for explaining their roles in AbS signaling. Further,
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this data provides the support for conducting overexpression studies and metabolic engi-
neering in different plant tissues in order to increase the number of AbSR gene content and
also to enhance the nutrition content in rice. Moreover, the properties of the genes have
many differences in M.Wt, amino acid length, aliphatic index, and pI of these genes which
contain novel variants, which need to be delineated further for validation.

A phylogenetic tree of OsWRKY and WRKY TFs from C4 plants such as SiWRKY,
SbWRKY, and ZmWRKY was constructed in accordance with the multiple sequence align-
ment of their corresponding WRKY domains. The position of WRKY DNA—binding
domain (WRKY) and hAT family C-terminal dimerization domain (Dimer_Tnp_hAT) in
OsWRKY, SiWRKY, SbWRKY, and ZmWRKY have been analyzed by HMMSCAN. This
unrooted tree showed the distribution and divergence of WRKY domains and conserved
regions present in candidate genes. Phylogenetic analysis showed that the predicted gene
sequences highly diverge to S. italica, S. bicolor, and Z. mays. OsWRKY and their respective
molecular cross-talks and functional relationships unraveled the complexity of unique and
combined abiotic stress upon evolutionary seed gene modules and their connecting nodes,
edges, and genes that were expressed in AbS studies [4,77].

Comparative mapping of WRKY and their respective genes on rice, sorghum, maize,
and foxtail millet were performed to unveil the collinearity between the rice and C4 grass
species. OsWRKY showed maximum orthology of genes with S. italica, Z. mays, and S.
bicolor owing to their wide range of chromosomal synteny. This analysis clearly shows
that OsWRKY genes are highly similar to SbWRKY, SiWRKY, and ZmWRKY TFs and this
close evolutionary relationship revealed the putative novel variants about C3 and C4 model
crop plants, particularly grass species. This gene synteny information could pave the way
for understanding the molecular evolutionary analysis and also could be used to conduct
the over-expression and molecular breeding studies of OsWRKY genes among Poaceae
members.

Comparing with rice (104 WRKYs), Arabidopsis (Arabidopsis thaliana) and wheat
(Triticum aestivum) contains a proportionate number of WRKY genes (72 AtWRKYs and
171 TaWRKYs) [78,79], among which a certain number of genes play an important role
in AbS. Drought is one of the most common AbS, that has a severe impact on crop
growth and yield [80]. Rice OsWRKY11 and OsWRKY72 play an important role in drought
tolerance [81,82] in analogous with Arabidopsis genes such as AtWRKY57, AtWRKY63 [83,84],
and wheat genes TaWRKY14, TaWRKY90, TaWRKY8, TaWRKY122, and TaWRKY45 [85]. In
addition, 12 TaWRKYs were recognized as the candidate drought-responsive genes, which
are orthologous to genes in Arabidopsis and enhances during water deprivation [78]. Thus,
the characterization of WRKYs in rice will help to unravels the AbS associated regulatory
networks.

5. Conclusions

In this study, we have identified 26 OsWRKY genes that are responsible for various
AbS via the computational systems biology approach. The gene properties, evolution-
ary analysis, gene structure, gene ontology annotation, and gene interaction networks of
OsWRKY were evaluated. OsWRKY TFs and their spatio-temporal and phytohormonal
expression of these candidate genes showed their differential expression signatures in
various rice plant tissues and plant growth hormones, respectively. In addition to that,
comparative mapping analysis exhibited that the maximum similarity with C4 grass species
such as S. italica, S. bicolor, and Z. mays. Thus, provides an important indication of their
regulatory functions in AbS stress conditions. This study also provides depth information
about OsWRKY TF genes and delineates the plant developmental metabolisms and their
functional regulations under AbS conditions. This holistic study also hypothesizes that
the identified candidate players may interact with various stress responsible TF family
members and activates the transcriptional regulation, antioxidant enzymes, ROS scaveng-
ing mechanisms, biosynthesis of amino acids, cellular and physiological processes, and
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synthesis of polyamines in response to AbS tolerance. Further functional analyses are
needed to unravel the novel avenues of the identified players.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.
3390/agronomy11071301/s1, Figure S1: Meta expression analysis of 104 OsWRKY TF genes, Table S1:
WRKY name and NCBI ID in C3 and C4 grass plants; Table S2: OsWRKY genes and their HMMSCAN
report; Table S3: OsWRKY genes and their attributes; Table S4: Orthologous relationship between
O. sativa and S. italica; Table S5: Orthologous relationship between O. sativa and S. bicolor; Table S6:
Orthologous relationship between O. sativa and Z. mays.
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