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Abstract: The success of an irrigation decision support system (DSS) much depends on the reliability
of the information provided to farmers. Remote sensing data can expectably help validate that
information at the field scale. In this study, the MOHID-Land model, the core engine of the IrrigaSys
DSS, was used to simulate the soil water balance in an irrigated vineyard located in southern Portugal
during three growing seasons. Modeled actual basal crop coefficients and transpiration rates were
then compared with the corresponding estimates derived from the normalized difference vegetation
index (NDVI) computed from Sentinel-2 imagery. On one hand, the hydrological model was able
to successfully estimate the soil water balance during the monitored seasons, exposing the need for
improved irrigation schedules to minimize percolation losses. On the other hand, remote sensing
products found correspondence with model outputs despite the conceptual differences between
both approaches. With the necessary precautions, those products can be used to complement the
information provided to farmers for irrigation of vine crop, further contributing to the regular
validation of model estimates in the absence of field datasets.

Keywords: crop evapotranspiration; modeling; sentinel sensors; soil water balance; vegetation indices

1. Introduction

Irrigation is fundamental to fulfill crop water requirements in many regions of the
world. Yet, inefficient practices often lead to the degradation of soil and water resources
by promoting nutrient leaching, surface runoff and soil erosion, salt accumulation in the
rootzone, and the eutrophication of water bodies with associated biodiversity loss. There is
thus the need for minimizing environmental risks through the accurate estimate of crop
water requirements and the definition of irrigation schedules (irrigation timing, duration,
and quantity) that maximize agricultural water productivity and farmers’ income [1].

Several decision support systems (DSS) were developed over the last few decades
to aid farmers in the decision-making of irrigation. One example is the IrrigaSys DSS
developed by academics and stakeholders to support farmers in the Sorraia valley irrigation
district, in southern Portugal [2]. When running in operational mode this DSS computes
the weekly soil water balance based on hindcast and forecast weather data as well as inputs
from farmers. It then suggests an optimized irrigation schedule for the week that follows.
Assuring the reliability of predictions has been fundamental for the success of the DSS. It
has also been its most challenging issue considering that the core engine of the system is the
MOHID-Land model [3], which is highly complex in terms of parametrization of soil and
crop state variables. The current support of the DSS to 103 agricultural fields distributed
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throughout the region only further presses the need for correctly accounting for a wide
variety of crop management and soil conditions to guarantee the quality of the service.

Remote sensing, with the ability to cover large remote areas at different spatial and
temporal resolutions, compatible with the characterization of the state and dynamics
of several meteorological, vegetation growth, and hydrological variables, has been a
preferential approach for evaluating the performance of the DSS [4,5]. Ramos et al. [4]
analyzed the impact of assimilation of leaf area index (LAI) data derived from Landsat 8
imagery on model simulations. The relevancy of this study was because MOHID-Land
computes the soil water balance using mass and momentum conservation equations, with
LAI being critical to the correct partition of crop evapotranspiration (ETc) rates into crop
transpiration and soil evaporation. Their main conclusion was that modeling vegetation
growth and the partition of the ETc components at the plot scale could not depend solely
on inputs from LAI data assimilation because estimates of the soil water balance could
diverge substantially from the reality, thus confirming the need to use a proper crop dataset
for model calibration. On the other hand, Simionesei et al. [5] used LAI data derived from
the same satellite sensor for simply adjusting crop growth parameters to calibrate/validate
model results, providing a more feasible solution for rapidly developing a large database
of crop variability at the regional scale. This would, however, depend on the availability
of a relationship to be established between field LAI data and that estimated from the
satellite sensor.

This paper now focuses on an alternative solution for evaluating the performance of
the DSS, in this case by comparing MOHID-Land estimates of the transpiration component
in ETc with those derived from remote sensing-based vegetation indices (VI). Several
procedures already exist that make use of spectral VI for estimating crop evapotranspiration
fluxes and irrigation needs in agricultural fields [6]. Although in most of these procedures
the soil water balance is computed according to the FAO56 approach [7], they can eventually
be adapted for obtaining calibrated relations between the VI and fluxes from a complex
mechanistic model such as MOHID-Land, providing a scalable solution for assessing model
behavior in fields with similar management.

Hence, the objectives of this study are (i) to simulate soil water contents in an irrigated
vineyard (Vitis vinifera L.) using the MOHID-Land model during the 2018–2020 growing
seasons; (ii) to compute the soil water balance for the study period; (iii) to establish
relationships between actual transpiration rates computed by the MOHID-Land model
and those derived from the normalized difference vegetation index (NDVI) and Sentinel-2
satellite (European Space Agency, European Union) imagery. Results of this study can thus
help define better management practices to be implemented in IrrigaSys and improve its
performance in the Sorraia Valley region.

2. Materials and Methods
2.1. Description of the Study Area

This study was carried out at Companhia das Lezírias, Samora Correia, Portugal
(38.808◦ N, 8.900◦ W, 45 m a.s.l.) from January 2018 to October 2020. The climate in the
region is dry subhumid, with mild winters and hot, dry summers. The mean annual
precipitation is 669 mm, mainly concentrated between October and May, while the mean
annual temperature is 16.8 ◦C. The weather data (Figure 1) for the study area was obtained
from the local weather station (Figueirinha) and included daily precipitation (P; mm);
maximum (Tmax; ◦C) and minimum (Tmin; ◦C) surface air temperatures; maximum (RHmax;
%), mean (RHavg; %), and minimum (RHmin; %) relative humidity; solar radiation (Rs;
MJ m−2 d−1); wind speed measured at 2 m height (u2; m s−1). This information was then
used to compute the reference evapotranspiration (ETo, mm) following the FAO Penman–
Monteith method [7]. The soil was classified as a Haplic Fluvisol [8], with loamy-sand
texture in the top 60 cm layer and sandy texture in the bottom 60–100 cm layer.



Agronomy 2021, 11, 1228 3 of 16

Agronomy 2021, 11, x FOR PEER REVIEW 3 of 16 
 

 

Monteith method [7]. The soil was classified as a Haplic Fluvisol [8], with loamy-sand 
texture in the top 60 cm layer and sandy texture in the bottom 60–100 cm layer. 

The selected field, planted in 2008, was relatively flat (slope < 2‰), and part of a 
larger (130 ha) vineyard area. The field was a drip-irrigated plot, 5 ha in size, planted with 
different varieties of wine grapes, with Touriga Nacional being dominant and Castelão, 
Moreto, and Alicante Bouschet in smaller proportions. The plants were grown on vertical 
shoot positioned trellis, with wood pruning during the dormant period. Plants presented 
a row distance of 1.0 m and a row spacing of 2.8 m, thus a plant density of approximately 
3571 plants ha−1, with an orientation in the east–west direction. Irrigation was delivered 
through a drip system, with management practices performed according to the standard 
practices in the region and decided by the farmer. Drippers were spaced 1 m apart, and 
the drip line was placed on the trellis 0.5 m above the soil surface. The total water applied 
through irrigation summed 470, 625, and 465 mm in 2018, 2019, and 2020 growing seasons, 
respectively. The application depth during irrigation events varied from 1 to 12 mm. Soil 
water contents were continuously monitored in two locations at depths of 10, 20, 30, 40, 
50, 60, 70, and 80 cm using EnviroPro MT (MAIT Industries, Australia) capacitance probes. 

 
Figure 1. Weather data for the study period (P, precipitation, ETo, reference evapotranspiration; Tmax and Tmin, maximum 
and minimum surface air temperatures, respectively; RHavg, mean relative humidity; Rs, solar radiation, u2, wind speed at 
2 m height). 

0
1
2
3
4
5
6
7
8

0

10

20

30

40

50

-10

0

10

20

30

40

50 Tmax TminTmax Tmin

0

20

40

60

80

100

01
/0

1
31

/0
1

02
/0

3
01

/0
4

01
/0

5
31

/0
5

30
/0

6
30

/0
7

29
/0

8
28

/0
9

28
/1

0
27

/1
1

27
/1

2
26

/0
1

25
/0

2
27

/0
3

26
/0

4
26

/0
5

25
/0

6
25

/0
7

24
/0

8
23

/0
9

23
/1

0
22

/1
1

22
/1

2
21

/0
1

20
/0

2
21

/0
3

20
/0

4
20

/0
5

19
/0

6
19

/0
7

18
/0

8
17

/0
9

17
/1

0
16

/1
1

16
/1

2

0

1

2

3

4

5

6

2018 2019 2020
Time (days)

ET
o

(m
m

)

Te
m

pe
ra

tu
re

(°C
)

Pr
ec

ip
ita

tio
n

(m
m

)

W
in

d
sp

ee
d 

(m
 s

− 
1 )

Hu
m

id
ity

(%
)

So
la

r r
ad

ia
tio

n
(M

J m
−2

d− 
1 ) 

P               ETo

Rs u2 RHavg

Figure 1. Weather data for the study period (P, precipitation, ETo, reference evapotranspiration; Tmax and Tmin, maximum
and minimum surface air temperatures, respectively; RHavg, mean relative humidity; Rs, solar radiation, u2, wind speed at
2 m height).

The selected field, planted in 2008, was relatively flat (slope < 2‰), and part of a
larger (130 ha) vineyard area. The field was a drip-irrigated plot, 5 ha in size, planted with
different varieties of wine grapes, with Touriga Nacional being dominant and Castelão,
Moreto, and Alicante Bouschet in smaller proportions. The plants were grown on vertical
shoot positioned trellis, with wood pruning during the dormant period. Plants presented a
row distance of 1.0 m and a row spacing of 2.8 m, thus a plant density of approximately
3571 plants ha−1, with an orientation in the east–west direction. Irrigation was delivered
through a drip system, with management practices performed according to the standard
practices in the region and decided by the farmer. Drippers were spaced 1 m apart, and
the drip line was placed on the trellis 0.5 m above the soil surface. The total water applied
through irrigation summed 470, 625, and 465 mm in 2018, 2019, and 2020 growing seasons,
respectively. The application depth during irrigation events varied from 1 to 12 mm. Soil
water contents were continuously monitored in two locations at depths of 10, 20, 30, 40,
50, 60, 70, and 80 cm using EnviroPro MT (MAIT Industries, Bayswater North, Australia)
capacitance probes.
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2.2. The MOHID-Land Model
2.2.1. Model Description

The MOHID-Land model [3] computes the variable-saturated one-dimensional wa-
ter flow in porous medium using the Richards equation and following a finite volume
approach. The unsaturated soil hydraulic properties are described according to the van
Genuchten–Mualem functional relationships [9,10]:

Se(h) = (θ(h) − θr)/(θs − θr) = (1 + |α h|η) −m (1)

K(h) = Ks Se
` [1 − (1 − Se

1/m) m] 2 (2)

where Se is the effective saturation (L3 L−3), θr and θs denote the residual and saturated
water contents (L3 L−3), respectively, Ks is the saturated hydraulic conductivity (L T−1),
α (L−1) and η (-) are empirical shape parameters, m = 1 − 1/η, ` is a pore connectiv-
ity/tortuosity parameter (-), and h is the soil pressure head (L).

Crop evapotranspiration (ETc, L T−1) is computed from the product of the reference
evapotranspiration (ETo, L T−1) following the FAO Penman–Monteith method and a crop
stage-dependent coefficient (Kc) [7], and then partitioned into potential soil evaporation
(Es model; L T−1) and potential crop transpiration (Tc model; L T−1) as a function of the
simulated LAI [11]:

Tc model = ETc(1 − e (−λ LAI)) (3)

Es model = ETc − Tc model (4)

where λ is the extinction coefficient of radiation attenuation within the canopy (-). Potential
root water uptake values, given by the Tc model rates, are then linearly distributed over
the root zone (z), creating the function Tc model(z), which may be diminished due to water
stress [12]. Actual transpiration (Tc act model; L T−1) rates are obtained by limiting the
potential values using the piecewise linear model proposed by Feddes et al. [12]. This
approach considers that the water uptake is at the potential rate when the pressure head is
between h2 and h3, drops off linearly when h > h2 or h < h3, and becomes zero when h < h4
or h > h1 (subscripts 1–4 denote different threshold pressure heads). Es model is limited
by a pressure head threshold value to obtain the actual soil evaporation rate (Es act model;
L T−1) [13]. LAI evolution is simulated as a function of crop stage, potential heat units
(PHU) for plants to reach maturity, and plant stress [14]. In this study, the subscript model
identifies the variables computed using the MOHID-Land model.

The MOHID-Land model further includes an irrigation scheduling tool for automatiz-
ing irrigation using a system-dependent boundary condition that triggers the application
of water when a certain threshold pressure head (ht) is reached in different grid cells of
the rootzone domain. Irrigation then ceases after a second target pressure head (h0) is
obtained in the same grid cells. Since the root zone domain is typically defined by a large
and variable number of grid cells, MOHID-Land further includes a series of constraints
that prevent the application of meaningless irrigation amounts and countless irrigation
events, namely a maximum irrigation pulse (Imax) and a minimum irrigation interval (Iint).
The model is thus automatized for triggering irrigation whenever h drops below ht in
different cells of the root zone domain, supplying them enough water to reach h0 in those
same cells based on a predefined irrigation strategy. Further details on the MOHID-Land
model can be found in Ramos et al. [3].

2.2.2. Model Setup, Calibration, Validation

The simulation period covered the 2018–2020 growing seasons. The soil profile was
represented by one vertical column discretized into 20 grid cells, 1 m wide, 1 m long,
and with variable thickness (0.025 m on the top to 0.625 m at the bottom) considering the
depth of the simulation domain, the root zone, and the measured soil moisture data. ETc
rates were computed by multiplying daily ETo values with the respective crop coefficients
(Kc) for the initial, mid-season, and late-season stages. The Kc values for wine grapes
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listed in Allen et al. [7] were used as default. The upper boundary condition was then
determined by Es model and Tc model rates, and net irrigation and precipitation fluxes. The
soil hydraulic parameters were initially set according to the texture classes of the soil
horizons/layers following the class pedotransfer functions in Ramos et al. [15,16]. The crop
growth parameters in Neitsch’s et al. [14] crop database were also used as default settings.
Root water uptake reductions were computed by considering the following parameters:
h1 = −10, h2 = −25, h3 = −1000, h4 = −18,000 cm [17]. Free drainage was used as the
bottom boundary condition.

Model calibration was performed during the 2018 growing season following
Ramos et al. [3]. The trial-and-error procedure was first used to calibrate the crop growth
parameters by making them vary within reasonable ranges until deviations between mod-
eled and field LAI data were minimized. The Copernicus Global Land Service LAI dataset
derived from the Sentinel-3 sensor at 300 m resolution was assumed here to represent
field conditions [18]. Only pixels covering the vineyard area and not affected by adjacent
vegetation were used to extract LAI data. LAI values were also compared to the existing
literature to evaluate their adequacy [19,20]. LAI data corresponding to the non-growing
season were simply ignored since it represented grass growth covering the vine’s interrow
during the rainfall period, but which dynamics could not be considered in this application.
The interrow crop had also little influence on soil moisture data as the capacitance probes
were installed in the vine rows. Then, the same trial-and-error procedure was adopted
for calibrating the Kc values for the different crop stages as well as the soil hydraulic
parameters for the different soil layers. These parameters were also made to vary within
reasonable ranges until deviations between observed and simulated soil water contents
were minimized. The connectivity/tortuosity parameter ` was not adjusted, being set to
0.5 following Mualem [9]. The parameters θs, α, η, Ks, and the maximum value of LAI
(LAImax) are identified as the most sensitive parameters during model calibration [3]. The
calibrated crop growth parameters, Kc values, and soil hydraulic parameters were then
used to validate model simulations of crop growth and soil water contents during the
2019 and 2020 growing seasons. Seasons were run separately, with end results from one
season being updated at the beginning of the following according to measured data of soil
water contents.

The goodness-of-fit indicators adopted for comparing field and simulated LAI values
and soil water contents were the coefficient of determination (R2), the root mean square
error (RMSE), the normalized RMSE (NRMSE), the percentage bias (PBIAS), and the model
efficiency (NSE). R2 values close to 1 indicate that the model explains well the variance of
observations. RMSE and NRMSE values close to zero indicate small estimation errors and
good model predictions [21]. PBIAS values close to zero indicate that model simulations
are accurate, while positive or negative values indicate under- or over-estimation bias,
respectively. NSE values close to 1 indicate that the residuals’ variance is much smaller
than the observed data variance, hence the model predictions are good. On the contrary, if
NSE is less than zero the model-predicted values are worse than simply using the observed
mean [22].

2.3. Data Processing of Sentinel-2 Imagery

Tc act model rates, and respective actual basal crop coefficients (Kcb act model = Tc act model/ETo
ratio), computed by the MOHID-Land model were compared with those derived using a sec-
ond approach, where those variables were estimated from a vegetation index (VI). Satellite
sensors have been extensively used for estimating crop evapotranspiration with real-time
single (Kc) or basal crop coefficients (Kcb) estimated from VI data. Pôças et al. [6] provided
a comprehensive listing of the many types of Kc-VI and Kcb-VI relationships developed
for annual and perennial crops. Examples of applications in vineyards can be found in
Campos et al. [23,24] and Er-Raki et al. [25]. Landsat imagery (National Aeronautics and
Space Administration Agency, Washington, DC, USA) has been the most frequently used
satellite data to generate VIs to estimate those crop coefficients. However, its revisiting
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period of 16 days, which is often extended due to high levels of cloud cover, and the
relatively coarse resolution (30 m) of its multispectral imagery has limited the use of that
sensor for irrigation water management at the field scale. In this sense, the launch of the
Sentinel-2 mission (European Space Agency, European Union) in 2017 represented a major
step forward on the use of satellite data for remotely monitoring crop irrigation needs
by offering a revisiting time of 5 days under the same viewing angle, and multispectral
imagery at 10 m (visible and broad near-infrared spectrum), 20 m (red edge and narrow
and short-wave infrared), and 60 m (atmospheric bands) resolution.

In this study, the red (Red; band 4) and near infra-red (NIR, band 8) bands from
Sentinel-2 image tiles having less than 10% cloud cover were downloaded from the Coper-
nicus Open Access Hub [26] for the study period. The images were subjected to atmospheric
correction of the downloaded scenes using the Sen2cor software [27], which is a processor
for Sentinel-2 Level 2A product generation and formatting, performing the atmospheric,
terrain and cirrus correction of top-of-atmosphere Level 1C input data, and creating bottom-
of-atmosphere corrected reflectance images. A total of 65 images were available during
the 2018–2020 growing seasons. The NDVI was then computed for all available images as
follows [28]:

NDVI = (NIR − Red)/(NIR + Red) (5)

This VI was chosen as it is the most used for establishing Kc-VI and Kcb-VI relation-
ships for annual and perennial crops in the literature [6]. Following Campos et al. [23],
the NDVI was calculated on a pixel-by-pixel basis and averaged for the area surrounding
the location of soil moisture probes (100 m long × 60 m width), avoiding field edge pixels
(Figure 2).
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The NDVI data were used to derive values of the basal crop coefficients and actual
transpiration rates for each available image date as follows [6,29]:

Kcb act NDVI = min [Kcb max, Kcb max/fc max (NDVI − NDVImin)/(NDVImax − NDVImin)] (6)

Tc act NDVI = Kcb act NDVI ETo (7)

where Kcb act NDVI is the actual basal crop coefficient computed from the NDVI (-), Tc act NDVI
is the actual transpiration rate computed from the NDVI (L T−1), Kcb max is the maximum
value of basal crop coefficient (-), fc max is the fraction of ground cover corresponding to
the maximum Kcb (-), and NDVImin and NDVImax represent the maximum and minimum
values of NDVI corresponding to bare soil and effective full cover, respectively (-). Thus,
in this study, the subscript NDVI identifies the variables computed from satellite imagery.
The Kcb act NDVI represents primarily plant transpiration as well as a residual diffusive
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evaporation component supplied by soil water below the dry surface [7,30]. As the VI
reflects the actual vegetation cover conditions, the estimated values represent actual rather
than standard conditions [31]. For each growing season, the Kcb max (0.48) was defined
according to Rallo et al. [32]. The fc max was obtained from the maximum LAI value
(LAImax) and crop height following Allen and Pereira [33]. The NDVImin and NDVImax
values were specified based on the evolution of the NDVI over the growing seasons, being
set to 0.10 (assumed to represent bare soil conditions) and 0.58 (corresponding to a 10%
increase of the maximum observed NDVI value), respectively, in each season.

The Kcb act model and Tc act model values computed using the MOHID-Land model were
thus compared with the corresponding values derived from satellite imagery (Kcb act NDVI
and Tc act NDVI) by linear regression analysis. The estimates from the MOHID-Land model
were considered the dependent variables since they were the objective of validation. The
resulting linear regression models were analyzed using a cross-validation technique, in
which data from two years were used as the training subset and data from the remaining
year was used as the validation subset. As data from only three growing seasons was used,
this procedure was repeated three times to include all possible combinations as calibration
and validation subsets. For each validation test, the performance of regression models was
assessed using the same goodness-of-fit tests referred earlier except for the NSE.

3. Results and Discussion
3.1. Model Parametrization

Table 1 presents the calibrated crop growth parameters for the vine. Like in previous
applications of the MOHID-Land model [3,5], most default settings used for simulating
crop growth needed to be modified to accurately describe field data. In this case study,
LAImax was set according to the maximum value extracted from the Copernicus Global
Land Service LAI dataset [18] during the three growing seasons. The remaining parameters
of the LAI curve were then modified using the data available in the calibration period. The
maximum canopy height (hc,max) was defined according to field observations while the
maximum root depth (Zroot,max) was adjusted based on measured soil moisture profiles
using the capacitance probes installed at the field plot. Lastly, the base temperature for
vine growth (Tbase), i.e., the minimum temperature required for crop development, was
calibrated to 8 ◦C, which is slightly lower than the minimum threshold of 10 ◦C generally
considered for vineyard in the literature [34]. The optimal temperature was set to 20 ◦C, in
accordance with the existing literature.

Table 1. Calibrated crop growth parameters.

Crop Parameter Value

Optimal temperature for plant growth, Topt (◦C) 20.0
Minimum temperature for plant growth, Tbase (◦C) 8.0

Plant radiation-use efficiency, RUE [(kg ha−1) (MJ m−2)−1] 30
Total heat units required for plant maturity, PHU (◦C) 3500

Fraction of PHU to reach the end of stage 1 (initial crop stage), frPHU,init (-) 0.05
Fraction of PHU to reach the end of stage 2 (canopy development stage), frPHU,dev (-) 0.15

Fraction of PHU after which LAI starts to decline, frPHU,sen (-) 0.55
Maximum leaf area index, LAImax (m2 m−2) 1.4

Fraction of LAImax at the end of stage 1 (initial crop stage), frLAImax,ini (-) 0.35
Fraction of LAImax at the end of stage 2 (canopy development stage), frLAImax,dev (-) 0.85

Maximum canopy height, hc,max (m) 1.5
Maximum root depth, Zroot,max (m) 0.8

Net radiation coefficient (-) 0.463
Photosynthetically active radiation coefficient (-) 0.650

Table 2 presents the calibrated van Genuchten-Mualem parameters for different soil
layers. Most parameters showed little variation with depth, with α and η reflecting as
expected the characteristically relatively high values of coarse-textured soils [15,16]. The
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exception was the Ks, which values increased with depth on several orders of magnitude.
On the other hand, the calibrated Kc values for the initial (Kc ini = 0.30), mid-season
(Kc mid = 0.70), and late-season (Kc end = 0.45) crop stages agreed well with Allen et al. [7].
The Kc value for the initial stage was then adjusted for the frequency of the rainfall events
and average infiltration depths, varying between 0.3 and 0.5. The Kc values for mid-season
and late-season were adjusted for local climate conditions taking into consideration plant
height, mean u2, and mean RHmin for the period under consideration, varying from 0.69 to
0.71 and 0.44 to 0.46, respectively, during the different growing seasons.

Table 2. Calibrated soil hydraulic parameters.

Depth (m) 0–0.15 0.15–0.25 0.25–0.35 0.35–0.45 0.45–0.55 0.55–0.65 0.65–0.75 0.75–2.0

θr (m3 m−3) 0.057 0.057 0.057 0.057 0.057 0.057 0.037 0.037
θs (m3 m−3) 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410
α (cm−1) 0.184 0.184 0.194 0.194 0.184 0.184 0.184 0.164

η (-) 2.0 1.9 1.8 1.8 1.8 1.8 1.8 1.8
` (-) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Ks (cm d−1) 90.7 90.7 1339.2 907.2 565.9 565.9 907.2 1339.2

θr, residual water content; θs, saturated water content; α and η, empirical shape parameters; `, pore connectivity/tortuosity parameter; Ks,
saturated hydraulic conductivity.

3.2. Model Performance

Figure 3 shows the daily averages of the soil water contents measured at depths of
10, 40, and 80 cm during the 2018–2020 growing seasons and compares these values with
the MOHID-Land simulations. Although measured and simulated data were compared
for all monitored depths, results are presented graphically only for the depths mentioned
above to limit the number of figures. Measured soil water contents increased sharply
with precipitation to values close to saturation to then decrease also rapidly to lower
levels due to the dominance of the gravitational gradient near saturation which promoted
percolation, but also due to crop evapotranspiration. Irrigation was usually applied at
small depths (1–12 mm) to maintain soil water contents relatively controlled during the
growing seasons. Yet, large variations of soil moisture levels were still noticed during these
periods, particularly at shallower depths.

Table 3 presents the statistical indicators used for evaluating the level of agreement
between measured and simulated values. The MOHID-Land model performed reasonably
well when simulating soil water contents during the 2018 calibration period. The value of
R2 was relatively high (0.671), showing that the model could explain most of the variability
of the observed data. The errors of the estimates were quite small, resulting in a RMSE
value of 0.014 m3 m−3 and a NRMSE value of 0.102. The PBIAS value was 0.51%, indicating
no under or overestimation trend when simulating the measured data. The NSE value was
also high (0.653), indicating that the residual variance was much smaller than the measured
data variance. The parameters calibrated in 2018 were then validated during the 2019 and
2020 growing seasons, producing similar goodness-of-fit indicators. These were also within
the range of values reported in the literature for soil water content simulations using the
MOHID-Land model [3,5]. As such, the model was considered adequate to simulate soil
water dynamics during the three growing seasons.

Figure 4 presents the simulated LAI using the MOHID-Land model as well as the
Copernicus Global Land Service dataset used for representing field LAI data during the
growing seasons [18]. As referred earlier, only satellite data corresponding to the vine
growing seasons is shown, with data from the non-growing period being ignored since the
development of the interrow plants could not be considered in this application. Table 3
describes the goodness-of-fit indicators obtained when comparing the simulated and field
datasets during the three growing seasons. The correspondence between those datasets
was quite satisfactory during the 2018 calibration period, resulting in relatively high R2

(0.680) and NSE (0.639) values, and relatively low RMSE (0.155 m2 m−2) and NRMSE
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(0.186) values. However, model simulations failed to reproduce crop growth during the
2019 validation season, with the main stressor affecting crop development during that
year not being identified. This may have been the fire occurrence that affected the area
west of the study vineyard at the end of the 2018 growing season, with effects on the
300 m resolution LAI product being then particularly noticed during the following year.
Nevertheless, as satellite data in 2019 revealed an uncharacteristic trend of the LAI curve
the model was also considered to be calibrated for simulating vine growth in the study
area since the goodness-of-fit indicators were again satisfactory in 2020.
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Figure 3. Measured and simulated soil water contents at 10, 40, and 80 cm depths during the 2018, 2019, and 2020 seasons.
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Table 3. Statistical parameters for the agreement between model simulations and observed data.

Statistical
Indicator

Soil Water Contents LAI

Validation
2018

Validation
2019

Validation
2020

Validation
2018

Validation
2019

Validation
2020

R2 0.671 0.683 0.676 0.680 0.445 0.842
RMSE (L L−1) 0.014 0.012 0.015 0.155 0.462 0.191

NRMSE 0.102 0.097 0.115 0.186 0.794 0.246
PBIAS (%) 0.508 −1.550 −0.614 −6.035 −67.403 14.667

NSE 0.653 0.615 0.658 0.639 −9.311 0.513
R2, coefficient of determination; RMSE, root mean square error; NRMSE, normalized RMSE; PBIAS, percentage
bias; NSE, modeling efficiency.
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3.3. Soil Water Balance

Table 4 shows the components of the soil water balance for each growing season.
Figure 5 also presents the daily fluxes of ETc, Tc model, Tc act model, Es act model computed
with the MOHID-Land as well as the daily irrigation and precipitation depths during
the 2018–2020 growing seasons. The seasonal ETc values ranged from 445 mm in 2018 to
555 mm in 2020. The seasonal ETc act model values were smaller due to the impact of water
stress on Tc model, varying from 293 to 320 mm in the same years. Although these values
depended on the seasonal atmospheric demand as well as soil moisture conditions, they
were found to be comparable to estimates of 321 mm in Campos et al. [23], 274–354 mm in
Cancela et al. [35], and even 395–567 mm in Fandiño et al. [36] for different regions in Spain,
239–382 mm in Phogat et al. [37] for South Australia, and 320–480 mm in Wilson et al. [38]
for California, USA.

In terms of ETc partitioning, Tc model and Es model rates varied from 130 to 177 mm and
315–378 mm, respectively, throughout the different seasons, being mostly dependent of the
quality of the adjustment of the LAI curve to the LAI dataset derived from Sentinel-3. On the
other hand, Tc act model and Es act model rates ranged from 82 to 117 mm and 203–210 mm,
respectively. Thus, the Tc act model accounted for only 28–37% of the ETc act model. The
Tc act model values were also comparably smaller than the range of 137–278 mm estimated in
Fandiño et al. [36] or to the 183–263 mm reported in Cancela et al. [35] for vines subjected
to different irrigation treatments. To refer that besides the obvious differences in climate
conditions during different growing seasons, irrigation management, cultivars, soil textures,
and soil water storage capabilities, the soil water balance in these latter studies was
computed using the FAO56 dual-Kc approach [7,30], which estimation of the individual
components of the ETc generally results more precise as commonly recognized in the
literature [31,39]. Nevertheless, the small Tc act model values estimated by the MOHID-Land
model find some explanation in the coarse textures (loamy-sand to sandy) and limited
water holding capacity of the study soil as well as irrigation management. The reduction of
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Tc model values was relatively large due to water stress (34–37%) and was usually observed
from mid-June onwards (Figure 5) as the farmer attempted to improve berry and wine
quality while controlling shoot vigor and ripening through deficit irrigation.

While Tc act model values were relatively small and crop stress was significant, the
amount of water applied through irrigation was relatively high, varying from 465 mm
in 2020 to 625 mm in 2019 (Table 4). Irrigation was used to compensate for the deficit
in precipitation during the dry period, with seasonal values increasing when annual
precipitation was less. However, due to limited soil water storage capacity percolation
losses were quite high, ranging from 544 mm in 2020 to 688 mm in 2018. From these, 39–61%
occurred during the irrigation period, corresponding to 45–58% of the total irrigation water
applied. The occurrence of high percolation losses with the simultaneous observation of
crop water stress only evidenced the imperative need for better irrigation protocols that
duly consider the physical characteristics of the study soil.

Table 4. Soil water balance in the studied vineyard.

Farmer’s Schedule Optimized Schedule
2018 2019 2020 2018 2019 2020

Inputs (mm):
P 512 241 399 512 241 399
I 470 625 465 55 98 105

CRmodel 0 0 0 0 0 0
∆SSmodel −1 9 1 −2 9 1

Outputs (mm):
Tc act model 82 105 117 115 139 146

Tc model 130 164 177 130 164 177
1-Tc act model/Tc model 0.37 0.36 0.34 0.11 0.15 0.17

Es act model 210 210 203 68 44 49
Es model 315 333 378 315 333 379
DPmodel 688 560 544 382 166 309

Runoffmodel 0 0 0 0 0 0
Error (%) 0 0 0 0 0 0

P, precipitation; I, irrigation; CRmodel, capillary rise; ∆SSmodel, soil water storage variation; Ta act model, actual tran-
spiration; Tc model, potential transpiration; Ea act model, actual soil evaporation; Es model, potential soil evaporation;
DPmodel, deep percolation. The subscript model corresponds to results computed with the MOHID-Land model.
Model error = 100 (∑inputs − ∑outputs)/∑inputs.

Table 4 further shows the soil water balance in the studied vineyard following an
optimized irrigation schedule using the MOHID-Land model. The threshold pressure
head (ht) for triggering irrigation was set at −1200 cm, i.e., slightly below the h3 value in
the Feddes et al. [12] model to induce some water stress to the plant. The target pressure
head (h0) was set at −100 cm, here assumed to represent field capacity. The maximum
irrigation pulse (Imax) was set to 5 mm, with a minimum irrigation interval (Iint) of 1 day.
Following these settings, the model proposed the net application of only 55, 98, and
105 mm in 2018, 2019, and 2020, respectively, which compared to farmer’s inputs are
considerably lower. This inevitably led to lower percolation, with values ranging now from
166 mm in 2019 to 382 mm in 2018, resulting mostly from precipitation events. Additionally,
the Es act model decreased considerably since the soil surface was less moistened with the
absence of successive irrigation events. On the other hand, Tc act model values increased
between 25 and 40%, corresponding to a less pronounced, more controlled water stress
(11–17%). Hence, this exercise exposed the advantages of using a modeling tool for
optimizing irrigation schedules, helping to save substantial amounts of water in the process.
Those low irrigation depths were only possible because the model was not subjected to
constraints that usually occur in the decision-making of irrigation, being hard to match
in field conditions. Additionally, model estimates much depended on how well soil
hydraulic properties were able to represent actual flow conditions in the vineyard soil,
how well the three-dimensional flow from the drip irrigation system was represented by
a simple one-dimensional modeling approach as the one used here, how representative
were the Feddes et al. [12] pressure head threshold values for describing the response of
this particular variety to water stress, and how reliable was the partitioning of the ETc and
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the computation of the soil water balance based on LAI evolution. Most of these modeling
approach errors were already discussed in Ramos et al. [3,40,41] and will not be further
extended here.
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Figure 5. Crop evapotranspiration (ETc), potential (Tc model) and actual (Tc act model) crop transpiration, actual soil evap-
oration (Es act model), irrigation (I), and precipitation (P) fluxes following (a) irrigation applied by the farmer and (b) an
optimized irrigation schedule computed by the model (the subscript model corresponds to results computed with the
MOHID-Land model).

3.4. MOHID-Land vs. Remote Sensing

Table 5 presents the regression models obtained after relating the MOHID-Land
outputs with the corresponding ones derived from Sentinel-2 imagery. Figure 6 shows the
scatterplots of those relations. Considering the mismatch between the simulated LAI curve
and the field LAI dataset derived from the Sentinel-3 sensor during the 2019 growing season
(Figure 4), the simulated LAI values were first correlated to the NDVI values computed
from Sentinel-2 imagery to evaluate the quality of both datasets and whether the same
disagreement was observed here. This was not verified as the comparison resulted in
Pearson correlation coefficient (r) values of 0.80, 0.84, and 0.92 for 2018, 2019, and 2020
growing seasons (r = 0.65 for total data), with the correlation significant at the 0.01 level.

Table 5. Regression models between the MOHID-Land model and satellite sensor estimates of crop coefficients and
transpiration fluxes (values in brackets correspond to the standard deviation of errors) a.

Model Equation R2

(-)
RMSE

(b)
NRMSE

(-)
PBIAS

(%)

1 Kcb act model = 1.006 NDVI − 0.258 0.534
(0.050)

0.050
(0.008)

0.421
(0.113)

−0.555
(39.96)

2 Kcb act model = 0.875 Kcb act NDVI − 0.168 0.550
(0.054)

0.049
(0.007)

0.414
(0.097)

0.041
(39.84)

3 Tc act model = 2.216 NDVI − 0.612 0.365
(0.066)

0.432
(0.102)

0.839
(0.182)

57.057
(10.55)

4 Tc act model = 0.718 Tc act NDVI − 0.443 0.782
(0.069)

0.174
(0.022)

0.339
(0.119)

0.065
(10.07)

a Kcb act model and Kcb act NDVI, actual basal crop coefficient computed, respectively, from the MOHID-Land and satellite imagery; NDVI,
normalized difference vegetation index; Ta act model and Ta act NDVI, actual transpiration computed, respectively, from the MOHID-Land and
satellite imagery; R2, coefficient of determination; RMSE, root mean square error; NRMSE, normalized RMSE; PBIAS, percentage bias.
b Units are the same as the variable units.
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The direct relationships between the NDVI and the estimated Kcb act model or Tc act model
values generally resulted in poor regression models (models 1 and 3). On the other hand,
the scaling of the NDVI values between minimum and maximum values defined based on
observed data improved the agreement between the MOHID-Land outputs and those de-
rived from the satellite sensor. This improvement was only minor for Kcb act model (model 2),
with the resulting R2 value (0.55) remaining relatively low. This was attributed to the fact
that the lowest NDVI value (0.232), computed at the end of the 2020 growing season
(11/10/2020), corresponded to a Kcb act NDVI value of 0.16, which is close to the minimum
Kcb value (0.15) to be expected for bare soils in the FAO56 procedure [7]. However, in
mechanistic models such as the MOHID-Land model where LAI is used for the partition
of ETc rates, this does not occur. At the beginning or close to the end of the crop growing
season, when LAI values are null or very small, the corresponding Tc model/ETo ratio (or
Kcb) is equally null or very small. For that, the Kcb act model values varied from 0 to 0.27 in
MOHID-Land simulations while the range of variation for the Kcb act NDVI was from 0.16 to
0.48. This conceptual difference also affected the relationship between Tc act model and the
Tc act NDVI, with the latter values being slightly higher than the former. Yet, the regression
model obtained between these two parameters (model 4) was quite good, with the R2

value (0.782) showing the ability of the model to explain most of the variability observed in
the MOHID-Land dataset while the RMSE of 0.174 mm d−1 showed the low error of the
estimate. On the other hand, the large variation in the PBIAS revealed the conceptual dif-
ferences in the two approaches that need to be considered in the IrrigaSys decision support
system. Nevertheless, the relatively low RMSE suggested that the satellite approach if duly
calibrated could be considered as a reliable approach for validating transpiration fluxes
from the MOHID-Land model and assuring the reliability of the weekly recommendations
issued by IrrigaSys to farmers. The assimilation of these independent predictions into
IrrigaSys may, however, be dependent on the plot location as the number of Sentinel-2
images available in this case study was much lower compared to Ramos et al. [42], who
had twice as many images for a study carried out 15 km north during the 2017–2019
growing seasons.
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4. Conclusions

In this study, the MOHID-Land model was able to successfully estimate the soil
water balance in an irrigated vineyard located in southern Portugal. Estimated actual
transpiration rates were relatively low, revealing considerable water stress during the three
monitored growing seasons. At the same time, percolation losses were high, showing the
need for improved agricultural water use. Precise irrigation scheduling tools such as the
one in MOHID-Land may thus contribute to ensuring optimum soil moisture levels for
vine growth. Yet, the particularity of vine irrigation management is difficult to scale up
in a decision support system such as IrrigaSys, much influenced by the characteristics of
crop variety and fruit quality. Expert knowledge on these issues seems thus fundamental
for setting up the model correctly and ensuring the accuracy of the irrigation schedules
provided by the DSS. While model support can be validated by remote sensing data, the
established relationships between model outputs and the NDVI were much dependent on
experimental conditions, including irrigation management and climate conditions. This
should be always considered when generalizing these products to other vineyards in the
region. Nonetheless, taking the necessary precautions, Sentinel-2 data can well provide
important information to validate model outputs during the decision-making of irrigation
on a regular basis. In the absence of calibration datasets, the regression models developed
in this study can be further helpful to rapidly identify fields covered by the DSS where the
hydrological model may be acting poorly.
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