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Abstract: This study aims to evaluate NASA POWER reanalysis products for daily surface maximum
(Tmax) and minimum (Tmin) temperatures, solar radiation (Rs), relative humidity (RH) and wind
speed (Ws) when compared with observed data from 14 distributed weather stations across Alentejo
Region, Southern Portugal, with a hot summer Mediterranean climate. Results showed that there is
good agreement between NASA POWER reanalysis and observed data for all parameters, except
for wind speed, with coefficient of determination (R2) higher than 0.82, with normalized root mean
square error (NRMSE) varying, from 8 to 20%, and a normalized mean bias error (NMBE) ranging
from –9 to 26%, for those variables. Based on these results, and in order to improve the accuracy of
the NASA POWER dataset, two bias corrections were performed to all weather variables: one for the
Alentejo Region as a whole; another, for each location individually. Results improved significantly,
especially when a local bias correction is performed, with Tmax and Tmin presenting an improvement
of the mean NRMSE of 6.6 ◦C (from 8.0 ◦C) and 16.1 ◦C (from 20.5 ◦C), respectively, while a mean
NMBE decreased from 10.65 to 0.2%. Rs results also show a very high goodness of fit with a mean
NRMSE of 11.2% and mean NMBE equal to 0.1%. Additionally, bias corrected RH data performed
acceptably with an NRMSE lower than 12.1% and an NMBE below 2.1%. However, even when a
bias correction is performed, Ws lacks the performance showed by the remaining weather variables,
with an NRMSE never lower than 19.6%. Results show that NASA POWER can be useful for the
generation of weather data sets where ground weather stations data is of missing or unavailable.

Keywords: NASA POWER; reanalysis dataset; hot summer Mediterranean climate; bias correction;
weather variables

1. Introduction

Weather variables are regarded as one of most significant factors affecting decision
making in agriculture. In many regions around the world, weather variables are not
observed, are of poor quality due to lacking quality control, or are not available for free.
Reanalysis and gridding meteorological data from global atmospheric models are consid-
ered as one of weather data sources that can be used to compensate lack of observation,
quality, or availability [1].

Reanalysis of the observations, with more complete data, improved quality control,
and with constant state-of-the-art assimilating models and analysis systems, greatly im-
proves the homogeneity of the record and makes it useful for examining weather variations.
This whole endeavor is now referred to as “reanalysis” [2]. The reanalysis products are
constructed from numerical weather data assimilation systems that use a variety of at-
mospheric and sea surface observations to provide for long-term atmospheric and land
surface variables [3]. However, some reanalysis products may require corrections using
observation-based datasets in order to amend for anomalies that arise from land surface
modelling [4].
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There are several historical reanalysis datasets available, such as the Climate Forecast
System Reanalysis (CFSR) [5], the ERA-Interim reanalysis products [6], provided by the
European Centre for Medium-Range Weather Forecasts (ECMWF), the Japanese Meteoro-
logical Agency (JRA-55), [7], the National Center for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) [8], the NASA Modern Era Retrospective-
Analysis for Research and Applications (MERRA) [9] and NASA Prediction of Worldwide
Energy Resource (NASA POWER) [10]. The latter, available for a resolution of 0.5◦ latitude
by 0.5◦ longitude at the NASA POWER’s website (https://power.larc.nasa.gov/, accessed
on 1 November 2020), provides daily data of near surface air temperature, relative hu-
midity, rainfall, solar radiation and wind speed and direction. All datasets derive from
using simulations of numerical weather prediction models based on a set of meteorological
observations. However, the ease of use of NASA POWER allows to easily access data
since it is available as a single point, providing regional and global coverage with daily,
interannual and climatological temporal averages. By selecting a single point, a time series
of data is made available based on the registered coordinate—single latitude and longitude.
The regional endpoint produces a time series dataset based on a bounding box of latitude
and longitude coordinates defined by the user. The global endpoint returns long-term
climatological averages for the entire globe. If data proves to be accurate, its user-friendly
interface allows any end-user to easily have access to near-real time sound weather data
from anywhere around the globe.

Many studies evaluated the accuracy of most weather variables from the available re-
analysis datasets such the CFSR [11–14], the ERA-Interim [11,15–17], the JRA-55 [14,17,18],
the NCEP/NCAR [11,19,20] and the MERRA [14,21,22]. Nevertheless, few studies aimed
to evaluate the performance of NASA POWER data.

White et al. [23] compared daily temperature from NASA POWER in the continental
USA, concluding that the reanalysis data showed good agreement with a root mean square
error (RMSE) of 4.1 ◦C for maximum temperature and 3.7 ◦C for minimum temperature.
Additionally, they recommended that data could be improved by adjusting for elevation
effects, reducing seasonal bias, and refining estimation of actual maximum and minimum
temperatures in diurnal cycles. Bai et al. [24] assessed NASA POWER’s daily maximum
and minimum temperatures and solar radiation in China. They concluded that there is
a close relation between NASA POWER and the observed data with a RMSE of 4.0 ◦C,
3.2 ◦C and 3.4 MJ m–2 d–1 for maximum and minimum temperatures, and solar radiation,
respectively. Negm et al. [25] assessed the suitability of NASA POWER to estimate reference
evapotranspiration through daily maximum, minimum and average air temperatures,
relative humidity, global solar radiation and wind speed, in Sicily, Italy. Results showed
a RMSE for those variables, respectively of 3.6 ◦C, 5.0 ◦C, 3.2 ◦C, 12.2%, 2.7 MJ m–2

d–1 and 2.4 m s−1, allowing them to conclude that NASA POWER had agreement with
the corresponding measured values on ground weather stations. However, inaccurate
estimations of relative air humidity occurred for the coastal weather stations. Monteiro
et al. [26], performed a similar study in Brazil, found similar agreement for the same
variables. Aboelkhair et al. [1] evaluated NASA POWER reanalysis data for surface
monthly average maximum, minimum, average and dew point temperatures, and relative
humidity in comparison the observed data in Egypt. The results showed that there is
a significant correlation between NASA POWER reanalysis and observed data for all
temperature parameters (RMSE lower than 5 ◦C) but failed to accurately simulate relative
humidity (with an average RMSE of 11.6%). However, none of those previous studies
evaluated the impact of bias correction on reanalysis products.

Using daily meteorological NASA POWER reanalysis data and observations from 14
weather stations in Alentejo region, Southern Portugal, the objectives of this study are:
(1) assess the accuracy of NASA POWER maximum and minimum temperatures, solar
radiation, relative humidity and wind speed when compared to local observations; (2)
assess the performance of alternative bias correction procedures to improve reanalysis
accuracy.

https://power.larc.nasa.gov/
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2. Materials and Methods
2.1. Study Area

This study was conducted in Alentejo Region, Southern Portugal. The region has a
Köppen–Geiger Csa climate, and is characterized by a semi-arid Mediterranean climate
of hot and dry season in the summer and mild temperature associated to annual rainfall
in winter. This region was selected due to its characteristics, being semi-arid and prone
to desertification, where water availability is crucial to achieve farming sustainability and
profitability. Additionally, and due to recurrent water scarcity, this agricultural area is
prone to several risks associated with weather.

Daily meteorological data from 14 ground weather stations were obtained from the
Irrigation Operation and Technology Center (COTR). The number and location of the
selected weather stations allow to evaluate the performance of the reanalysis data at the
regional level, and to better understand the spatial–temporal trends of the series. All
weather data are validated every day by a team of experienced technicians, assuring its
quality and feasibility. Figure 1 and Table 1 present, respectively, the geographical position
of the weather data locations, their coordinates and period of observation.

Figure 1. Weather station locations in the Alentejo region of Portugal.
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Table 1. Weather stations coordinates, elevation, distance to the sea and date ranges of the weather data series.

Weather Station Latitude (N) Longitude (W) Elevation (m) Date Range

Aljustrel 37◦ 58′ 17′ ′ 08◦ 11′ 25′ ′ 104 Sep/2001–Sep/2020

Alvalade do Sado 37◦ 55′ 44′ ′ 08◦ 20′ 45′ ′ 79 Sep/2001–Sep/2020

Beja 38◦ 02′ 15′ ′ 07◦ 53′ 06′ ′ 206 Sep/2001–Sep/2020

Castro Verde 37◦ 45′ 21′ ′ 08◦ 04′ 35′ ′ 200 Oct/2001–Sep/2020

Elvas 38◦ 54′ 56′ ′ 07◦ 05′ 56′ ′ 202 Sep/2001–Sep/2020

Estremoz 38◦ 52′ 20′ ′ 07◦ 35′ 49′ ′ 404 Feb/2006–Sep/2020

Évora 38◦ 44′ 16′ ′ 07◦ 56′ 10′ ′ 246 Feb/2002–Sep/2020

Ferreira do Alentejo 38◦ 02′ 42′ ′ 08◦ 15′ 59′ ′ 74 Sep/2001–Sep/2020

Moura 38◦ 05′ 15′ ′ 07◦ 16′ 39′ ′ 172 Sep/2001–Sep/2020

Odemira 37◦ 30′ 06′ ′ 08◦ 45′ 12′ ′ 92 Jul/2002–Sep/2020

Redondo 38◦ 31′ 41′ ′ 07◦ 37′ 40′ ′ 236 Sep/2001–Sep/2020

Serpa 37◦ 58′ 06′ ′ 07◦ 33′ 03′ ′ 190 May/2004–Sep/2020

Viana do Alentejo 38◦ 21′ 39′ ′ 08◦ 07′ 32′ ′ 138 Mar/2006–Sep/2020

Vidigueira 38◦ 10′ 37′ ′ 07◦ 47′ 35′ ′ 155 Nov/2007–Sep/2020

2.2. Agroclimatic Data

The annual mean and standard deviation for the selected weather variables—maximum
and minimum temperature, solar radiation, relative humidity and wind speed—are shown
in Table 2. These data were interpolated between stations to cover all Alentejo region, as
illustrated in Figure 2, using kriging algorithm. Due to the specific nature of the atmo-
spheric processes leading to rainfall, we left the evaluation of this variable to a dedicated
study. The same weather parameters for the same period of observations were collected
from NASA POWER from the nearest grid point of the target location.

Table 2. Annual mean and standard deviation of maximum (Tmax) and minimum (Tmin) temperatures, mean relative
humidity (RH), solar radiation (Rs) and mean wind speed (Ws) at the selected weather stations.

Weather Station T Max (◦C) T Min (◦C) RH (%) Rs (MJ m–2 day−1) Ws (m s–1)

Aljustrel 24.5 (±7.5) 9.9 (±5.1) 72.3 (±14.8) 16.4 (±7.7) 1.9 (±0.9)

Alvalade do Sado 24.8 (±7.3) 10.3 (±5.1) 73.1 (±13.2) 16.9 (±8.1) 2.1 (±0.9)

Beja 24.0 (±7.8) 10.4 (±4.8) 70.2 (±15.8) 18.1 (±8.6) 2.0 (±0.8)

Castro Verde 24.2 (±7.7) 9.9 (±4.9) 72.3 (±16.1) 17.5 (±8.0) 2.7 (±1.2)

Elvas 24.5 (±8.4) 9.5 (±5.7) 67.9 (±18.0) 16.9 (±8.1) 1.8 (±0.9)

Estremoz 22.5 (±8.1) 9.4 (±4.9) 70.2 (±17.3) 16.9 (±8.5) 1.4 (±0.7)

Évora 23.8 (±7.9) 9.0 (±5.3) 71.3 (±14.7) 16.0 (±7.7) 2.0 (±1.3)

Ferreira do
Alentejo 24.8 (±7.4) 9.8 (±5.2) 72.4 (±14.3) 16.7 (±7.9) 1.6 (±0.7)

Moura 25.0 (±8.2) 8.5 (±6.0) 69.1 (±17.7) 16.4 (±7.8) 1.3 (±0.7)

Odemira 21.3 (±4.8) 11.1 (±3.9) 76.7 (±10.9) 17.9 (±8.0) 2.0 (±0.9)

Redondo 24.2 (±8.1) 10.4 (±5.2) 68.4 (±16.8) 16.5 (±7.9) 2.5 (±1.3)

Serpa 25.2 (±7.9) 10.5 (±5.1) 69.4 (±15.7) 16.8 (±8.1) 1.4 (±0.8)

Viana do Alentejo 23.7 (±7.8) 10.0 (±4.7) 72.3 (±16.1) 16.8 (±7.9) 2.2 (±0.9)

Vidigueira 25.0 (±7.9) 10.0 (±5.2) 69.0 (±16.9) 17.3 (±8.3) 1.6 (±0.8)
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Figure 2. Annual climate of maximum (a) and minimum (b) temperatures, mean relative humidity (c), solar radiation (d)
and mean wind speed (e) over Alentejo.
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Figure 2 shows that the Atlantic Ocean (and somewhat the proximity the Mediter-
ranean Sea) plays a significant role in the temperature, humidity and wind speed variations
across the region. The locations closer to the sea (e.g., Odemira) present lower temperature
amplitudes (with lower maximum and higher minimum average temperatures) and higher
relative humidity and wind speed. On the other hand, at more inland locations (e.g.,
Moura), temperature tends to present higher maximums and lower minimums, with lower
relative humidity and wind speed. Therefore, there is an inverse relationship between
average temperature and relative humidity. Solar radiation tends to increase with lower
latitudes.

2.3. Evaluation Criteria

The estimation accuracy of each variable was assessed through the metrics listed
below, where Oi and Pi (i = 1, 2, . . . , n) represent pairs of values of each variable using
locally collected data and the NASA POWER estimated data, respectively, and O and P
are the respective mean values and n is the number of samples of each variable:

• The coefficients of regression and determination, relating the observed and simulated
data, b and R2, respectively, are defined as:

b =
∑n

i=1 OiPi

∑n
i=1 Oi

2 (1)

R2 =

 ∑n
i=1
(
Oi – O

)(
Pi P

)[
∑n

i=1
(
OiO

)2
]0.5[

∑n
i=1
(
PiP
)2
]0.5


2

(2)

Henseler et al. [27] defines that R2 values of 0.25, 0.50 and 0.75 match weakly, moder-
ately and significantly fit, respectively.

• The root mean square error, RMSE, and its normalization, NRMSE, which characterizes
the variance of the estimation error:

RMSE =

[
∑n

i=1(Oi – Pi)
2

n

]0.5

(3)

NRMSE =
RMSE

O
× 100% (4)

RMSE measures overall discrepancies between observed and estimated values and
the smaller, the better accuracy. NRMSE is dimensionless, allowing to compare its values
for different variables, assuming a good goodness of fit with a normalization below 15%.

• The mean bias error, MBE, and its normalization, NMBE, that measures the systematic
error between the predicted and observed values:

MBE =
∑n

i=1(Pi −Oi)

n
(5)

NMBE =
MBE

O
× 100% (6)

The MBE and NMBE measure if the predicted data is over or under estimation with its
positive or negative values, respectively. MBE intends to indicate the average interpolation
bias [28].

• The Nash and Sutcliffe [29] modelling efficiency, EF, that is the ratio of the mean square
error to the variance in the observed data, subtracted from unity:
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EF = 1.0−∑n
i=1(OiPi)

2

∑n
i=1
(
OiO

)2 (7)

As suggested by Legates and McCabe [30], if the square of the differences between
model simulations and observations is as large as the variability in the observed data, then
EF tends toward 0.0 and the O mean, O, is as good a predictor as the model, while negative
values indicate that O, is an even better predictor than the model. EF can vary between
−∞ and 1.

2.4. Correction of Bias

Bias correction seeks to reduce the differences between the NASA POWER data and
the observed data, since forecast products are often biased due to errors in the host weather
forecast models [31]. To find an accurate yet simple bias correction procedure, the approach
proposed by Leander and Buishand [32], where the correction of bias only involves shifting
and scaling to adjust the mean and variance, was used. Two bias corrections schemes were
carried out for each variable (Figure 3): (1) for the Alentejo Region as a whole, hereby
defined as a regional bias correction, where all data was treated as one set; (2) for each
location individually, defined onwards as a local bias correction.

For each scheme, the corrected daily weather variable X’ was obtained as:

X’ = XObs +
σ(XObs)

σ(XNASA)
× (X NASA − XObs) + (XObs − XNASA) (8)

where XNASA is the uncorrected NASA POWER’s daily weather variable and Xobs is the
observed daily weather variable. In the equation an overbar denotes the average over
the considered period and σ the standard deviation. The ratio of the standard deviation
performs the scaling while the difference of the averages performs the shifting of bias.

A major uncertainty of bias correction refers to how well it performs for conditions dif-
ferent from those used at calibration. Thus, a validation procedure was applied, consisting
in providing a validation of model fit with a set of data that is independent of the model
fitting set. In the present study, the models were fitted individually for each weather station
location and validated on independent data sets for the same location. The validation
procedure consisted in dividing each data set into two subsets of the same size, randomly
chosen from the dataset (e.g., Paredes et al. [16]). For each iteration, the first set was used
for calibration and the second was used for validation (Figure 3). Equation (1) parameters
were obtained from the calibration dataset, and then used with the validation dataset. The
assessment of the performance of each bias correction procedure was performed on the
calibration and validation sets. When comparing the accuracy metrics of bias corrected
calibration and validation datasets with the bias corrected full datasets, no evidence of
overfitting was found, with the estimated parameters only showing residual differences
(Supplementary Tables S1–S5). Thus, in order to test the validity of the procedure when
applied to long sets, the approach to bias correct the full dataset was hereby adopted.
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Figure 3. Flow chart presenting the procedures to correct the bias of NASA POWER data and comparing with observations
using two bias correction methods.

3. Results
3.1. Bias Correction Equations

The resulting calibrated and validated bias correction equations, following the proce-
dure presented in Figure 3, are presented in Table 3. The results obtained when adopting
each equation are presented int the following Sections. Full results for all locations, with
and without bias corrections, are presented in Supplementary Tables S1–S5.
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Table 3. Calibrated and validated bias correction equations for NASA POWER maximum (Tmax) and minimum (Tmin)
temperatures, solar radiation (Rs), mean relative humidity (RH) and mean wind speed (Ws).

Location Equation

Alentejo Tmax’ = 0.96 × Tmax +
1.56

Tmin’ = 0.95 × Tmin −
0.57 Rs’ = 0.99 × Rs − 0.44 RH’ = 0.85 × RH +

16.01 Ws’ = 0.88 ×Ws − 0.64

Aljustrel Tmax’ = 0.97 × Tmax +
1.89

Tmin’ = 1.01 × Tmin −
1.35 Rs’ = 0.97 × Rs − 1.06 RH’ = 0.82 × RH +

17.88 Ws’ = 0.78 ×Ws − 0.57

Alvalade Tmax’ = 0.95 × Tmax +
2.51

Tmin’ = 0.99 × Tmin −
0.76 Rs’ = 1.01 × Rs − 1.25 RH’ = 0.74 × RH +

24.87 Ws’ = 0.81 ×Ws − 0.45

Beja Tmax’ = 0.94 × Tmax +
1.60

Tmin’ = 0.86 × Tmin +
1.09 Rs’ = 1.04 × Rs + 0.08 RH’ = 0.82 × RH +

18.01 Ws’ = 0.73 ×Ws − 0.05

Castro
Verde

Tmax’ = 1.00 × Tmax +
0.59

Tmin’ = 0.98 × Tmin −
1.06 Rs’ = 1.02 × Rs − 0.72 RH’ = 0.91 × RH +

11.54 Ws’ = 1.02 ×Ws − 0.23

Elvas Tmax’ = 0.96 × Tmax +
2.36

Tmin’ = 0.95 × Tmin −
0.28 Rs’ = 0.99 × Rs − 0.18 RH’ = 0.87 × RH +

12.62 Ws’ = 0.83 ×Ws − 0.44

Estremoz Tmax’ = 0.97 × Tmax
− 0.36

Tmin’ = 0.89 × Tmin +
0.06 Rs’ = 1.03 × Rs − 1.22 RH’ = 0.91 × RH +

11.54 Ws’ = 0.62 ×Ws − 0.62

Évora
Tmax’ = 0.95 × Tmax +

1.82
Tmin’ = 0.93 × Tmin −

0.63 Rs’ = 0.93 × Rs − 0.28 RH’ = 0.76 × RH +
22.88 Ws’ = 1.07 ×Ws − 0.75

Ferreira do
Alentejo

Tmax’ = 0.95 × Tmax +
2.41

Tmin’ = 1.02 × Tmin −
1.31 Rs’ = 0.96 × Rs + 0.01 RH’ = 0.82 × RH +

19.02 Ws’ = 0.70 ×Ws − 0.73

Moura Tmax’ = 0.95 × Tmax +
2.52

Tmin’ = 1.01 × Tmin −
2.38 Rs’ = 0.94 × Rs + 0.19 RH’ = 0.86 × RH +

15.85 Ws’ = 0.67 ×Ws − 0.81

Odemira Tmax’ = 0.79 × Tmax +
3.95

Tmin’ = 0.92 × Tmin −
0.82 Rs’ = 1.00 × Rs − 0.11 RH’ = 0.86 × RH +

15.09 Ws’ = 0.67 ×Ws − 0.78

Redondo Tmax’ = 0.97 × Tmax +
1.56

Tmin’ = 0.94 × Tmin +
0.77 Rs’ = 0.96 × Rs + 0.00 RH’ = 0.87 × RH +

12.07 Ws’ = 1.23 ×Ws − 0.70

Serpa Tmax’ = 0.96 × Tmax +
1.78

Tmin’ = 0.91 × Tmin +
0.34 Rs’ = 1.03 × Rs − 1.51 RH’ = 0.80 × RH +

19.47 Ws’ = 0.69 ×Ws − 0.67

Viana do
Alentejo

Tmax’ = 1.01 × Tmax
− 0.28

Tmin’ = 0.92 × Tmin −
0.39 Rs’ = 0.97 × Rs − 0.18 RH’ = 0.93 × RH +

11.12 Ws’ = 0.80 ×Ws − 0.13

Vidigueira Tmax’ = 0.95 × Tmax +
2.17

Tmin’ = 0.94 × Tmin −
0.02 Rs’ = 1.02 × Rs − 0.39 RH’ = 0.89 × RH +

12.63 Ws’ = 0.77 ×Ws − 0.67

X’—bias corrected NASA POWER X weather variable.

3.2. Evaluation of Maximum Temperature Accuracy

Table 4 presents the mean and range values of the accuracy metrics relative to NASA
POWER maximum temperature with and without bias correction. Results show that NASA
POWER successfully simulate maximum temperature data, with an excellent accuracy, even
if no bias correction is performed, with a R2 and EF higher than 0.82 and 0.68, respectively, a
mean NRMSE of 7.59% and an average NMBE equal to−2.56%. If a regional bias correction
is applied, results show a slightly better performance: mean b increases by 2.2% (to 1.00),
while the average RMSE decreases 9.2% (1.74 ◦C day–1), and the mean MBE increases
104.4% (to 0.03 ◦C day–1). Similarly, if a local bias correction is adopted, the accuracy
metrics tend to improve with the mean RMSE, MBE and EF: the mean root mean square
error decreases 17.0% (RMSE = 1.59 ◦C day–1), the average mean bias error decreases 97.5%
(MBE = −0.02 ◦C day–1) and the mean modelling efficiency increases by 2.8% (EF = 0.95).

Results (Supplementary Table S1 and Figure S1) show that only 14% of the weather
stations show an NRMSE ≤ 6.5% if no bias correction, contrasting with the results obtained
when a local bias correction is performed where 57% of the weather stations present an
NRMSE ≤ 6.5%. When no bias correction is performed, 28% of the weather stations
show an NMBE ranging −2.5 to 2.5%; however, when a correction is applied, for the
same NMBE range, the frequency increases to 71 and 100%, for regional and local bias
correction, respectively. Additionally, if Tmax is locally bias corrected, an EF higher that
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0.95 is obtained for 79% of all locations; if no bias correction is performed, only 29% of the
location perform equally.

Table 4. Mean and range values of the accuracy metrics relative to NASA POWER maximum temperature with and without
bias correction for the full data set of all 14 locations.

Bias Correction
Scheme

b R2 RMSE NRMSE

Mean St.
Dev. Range Mean St.

Dev. Range Mean St.
Dev. Range Mean St.

Dev. Range

No Bias Correction 0.98 0.02 0.95 to 1.03 0.95 0.04 0.82 to 0.97 1.91 0.31 1.36 to 2.67 7.95 1.53 5.73 to 12.55
Regional Bias

Correction 1.00 0.03 0.97 to 1.06 0.95 0.04 0.82 to 0.97 1.74 0.34 1.38 to 2.8 7.25 1.81 5.70 to 13.12

Local Bias
Correction 1.00 0.00 0.98 to 1.00 0.95 0.04 0.82 to 0.97 1.59 0.18 1.36 to 2.04 6.60 1.00 5.64 to 9.59

Bias Correction
Scheme

MBE NMBE EF

Mean St.
Dev. Range Mean St.

Dev. Range Mean St.
Dev. Range

No Bias Correction −0.64 0.65 −1.40 to 0.57 −2.56 2.69 −5.71 to 2.68 0.92 0.07 0.68 to 0.97
Regional Bias

Correction 0.03 0.65 −0.72 to 1.30 0.22 2.84 −2.93 to 6.12 0.93 0.08 0.65 to 0.97

Local Bias
Correction −0.02 0.12 −0.42 to 0.08 −0.08 0.52 −1.85 to 0.31 0.95 0.04 0.81 to 0.97

St. Dev.—standard deviation; b—coefficient of regression; R2—coefficient of determination; RMSE—root mean square error; NRMSE—normalized root
mean square error; MBE—mean bias error; NMBE—normalized mean bias error; EF—modelling efficiency.

3.3. Evaluation of Minimum Temperature

Mean and range values of the accuracy metrics relative to minimum temperature
(Table 5) show that NASA POWER can successfully estimate daily Tmin data with a R2

higher than 0.85, showing an excellent accuracy of NASA POWER when compared with
observed data. These results were obtained when adopting the calibrated and validated
bias correction equations presented in Table 3. If no bias correction is performed, min-
imum temperature can be estimated with an EF averaging 0.84, with a mean RMSE of
2.01 ◦C day–1 and a mean MBE of 1.03 ◦C day–1. Results tend to improve when a bias cor-
rection is applied: for a regional correction, mean b decreases by 8.9% (to 0.99), while
the mean RMSE and MBE show a decrease of 16.4% (to 1.68 day–1) and 105.2% (to
−0.05 ◦C day–1), respectively; if a local bias correction is applied, the average RMSE
is even lower (with a decrease of 21.3% to 1.58 ◦C day–1) with mean MBE equal to
2.01−0.02 ◦C day–1, representing a decrease of 101.8% when compared with raw data.
The modelling efficiency tends to increase on both correction schemes to an average 0.89
and 0.90 for regional and local bias correction, respectively.

If no bias correction is performed, 86% of the weather stations show an NRMSE
higher than 18%. If the bias of Tmin is regionally corrected, the most frequent NRMSE
ranges from 22 to 26% (36% of all weather stations), while when a local bias correction is
performed 57% of the weather stations present an NRMSE ≤ 18%. When no bias correction
is performed, 14% of the weather stations show an NMBE ranging −5 to 5%, while if a
local bias correction is applied, Tmin is estimated with an NMBE lower than ±5% for
all locations. If Tmin is locally bias corrected, an EF higher that 0.84 is obtained for all
locations. Full results of the accuracy metrics for minimum temperature are presented in
Supplementary Table S2 and Figure S2.
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Table 5. Mean and range values of the accuracy metrics relative to NASA POWER minimum temperature with and without
bias correction for the full data set of all 14 locations.

Bias
Correction

Scheme

b R2 RMSE NRMSE

Mean St.
Dev. Range Mean St.

Dev. Range Mean St.
Dev. Range Mean St.

Dev. Range

No Bias
Correction 1.08 0.04 0.99 to 1.15 0.90 0.02 0.85 to 0.93 2.01 0.38 1.57 to 3.17 20.51 5.28 14.98 to 37.05

Regional Bias
Correction 0.99 0.03 0.90 to 1.05 0.90 0.02 0.85 to 0.93 1.68 0.28 1.28 to 2.50 17.10 3.90 12.93 to 29.2

Local Bias
Correction 0.99 0.01 0.98 to 1.00 0.90 0.02 0.85 to 0.93 1.58 0.25 1.29 to 2.25 16.12 3.53 12.36 to 26.35

Bias
Correction

Scheme

MBE NMBE EF

Mean St.
Dev. Range Mean St.

Dev. Range Mean St.
Dev. Range

No Bias
Correction 1.03 0.54 −0.15 to 2.24 10.65 6.05 −1.41 to 26.22 0.84 0.07 0.65 to 0.91

Regional Bias
Correction −0.05 0.53 −1.20 to 1.16 −0.35 5.52 −11.52 to 13.59 0.89 0.03 0.82 to 0.93

Local Bias
Correction −0.02 0.05 −0.15 to 0.08 −0.19 0.52 −1.33 to 0.76 0.90 0.03 0.84 to 0.93

St. Dev.—standard deviation; b—coefficient of regression; R2—coefficient of determination; RMSE—root mean square error; NRMSE—normalized root
mean square error; MBE—mean bias error; NMBE—normalized mean bias error; EF—modelling efficiency.

3.4. Evaluation of Solar Radiation

Solar radiation (Table 6) was the most accurate NASA POWER weather variable
evaluated. All stations present a R2 value higher than 0.91, as high as 0.97 for Redondo
and Vidigueira (Table S3), representing an excellent accuracy. NASA POWER Rs present
a RMSE lower than 2.73 MJ m–2 d–1 with a normalization of 16.12% and a mean EF
of 0.93. NASA POWER tends to slight overestimate solar radiation (MBE averaging
0.65 MJ m–2 d–1). If NASA POWER Rs bias is regionally corrected, all accuracy metrics
tend to increase resulting in a b, RMSE, MBE and EF averaging 1.00, 1.99 MJ m−2 day−1,
−0.01 MJ m−2 day−1 and 0.94, respectively. For all locations, the accuracy metrics
show an even better goodness of fit and agreement between the observed and simu-
lated solar radiation when the bias is locally corrected with mean RMSE decreasing 10.2%
(RMSE = 2.10 MJ m−2 day−1), mean MBE decreases 98.6% (MBE = 0.01 MJ m−2 day−1) and
a modelling efficiency improving by 1.5% (EF = 0.94).

Therefore, errors are relatively small for Rs, with more frequent (Supplementary
Figure S3) NRMSE lower than 13.5%, even without a bias correction. Additionally, the most
frequent EF is higher than 0.93 for 93% of all locations, when the bias is both regionally and
locally corrected; also, the most frequent NMBE ranges from −4.0 to 4.0 with and without
a bias correction, showing low under or overestimation of Rs data.

Table 6. Mean and range values of the accuracy metrics relative to NASA POWER solar radiation with and without bias
correction for the full data set of all 14 locations.

Bias
Correction

Scheme

b R2 RMSE NRMSE

Mean St.
Dev. Range Mean St.

Dev. Range Mean St.
Dev. Range Mean St.

Dev. Range

No Bias
Correction 1.03 0.03 0.95 to 1.08 0.94 0.02 0.91 to 0.97 2.10 0.31 1.51 to 2.73 12.44 1.92 8.75 to 16.12

Regional
Bias

Correction
1.00 0.03 0.92 to 1.05 0.94 0.02 0.91 to 0.97 1.99 0.30 1.48 to 2.53 11.72 1.64 8.92 to 14.87

Local Bias
Correction 1.00 0.00 0.99 to 1.01 0.94 0.02 0.91 to 0.97 1.89 0.27 1.43 to 2.50 11.15 1.53 8.62 to 14.73

St. Dev.—standard deviation; b—coefficient of regression; R2—coefficient of determination; RMSE—root mean square error; NRMSE—normalized root
mean square error; MBE—mean bias error; NMBE—normalized mean bias error; EF—modelling efficiency.
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Table 6. Cont.

Bias
Correction

Scheme

MBE NMBE EF

Mean St.
Dev. Range Mean St.

Dev. Range Mean St.
Dev. Range

No Bias
Correction 0.65 0.59 −0.84 to 1.62 3.93 3.51 −0.65 to 9.86 0.93 0.02 0.89 to 0.97

Regional
Bias

Correction
−0.01 0.59 −1.49 to 0.96 0.06 3.39 −8.24 to 5.84 0.94 0.02 0.9 to 0.96

Local Bias
Correction 0.01 0.07 −0.11 to 0.16 0.05 0.44 −0.68 to 0.97 0.94 0.02 0.9 to 0.97

St. Dev.—standard deviation; b—coefficient of regression; R2—coefficient of determination; RMSE—root mean square error; NRMSE—normalized root
mean square error; MBE—mean bias error; NMBE—normalized mean bias error; EF—modelling efficiency.

3.5. Evaluation of Relative Humidity

Accuracy metrics for NASA POWER relative humidity as compared to local obser-
vations is shown in Table 7. Results, when adopting the calibrated and validated bias
correction equations shown in Table 3, present a mean R2 of 0.82 (as high as 0.88). How-
ever, for Odemira (Table S4) the coefficient of determination is equal to 0.40, showing low
correlation and with fit between observed and simulated RH; this may be due to the station
closeness to the sea, and the influence of both Atlantic Ocean and Mediterranean Sea. The
EF values average 0.61 and range from –0.08 to 0.79. Additionally, for raw NASA POWER
RH data, the RMSE averages 9.24% day–1 (with an NRMSE of 13.00%), with MBE averaging
–5.17% day–1(with an NMBE of –7.27%). However, the bias is corrected, results improve
significantly with both correction schemes showing an increase of the mean b of 7.7% (to
1.01) and a mean EF increasing by 30.7% 8 to 0.80). The mean RMSE decreases to 28.8
and 30.0% for a regional and local bias correction, respectively, with normalizations below
9.25%. The most frequent EF (Supplementary Figure S4) for both schemes is higher than
0.80, with more than 93% of all stations having an NMBE between −1.0 and 1.0%.

Table 7. Mean and range values of the accuracy metrics relative to NASA POWER relative humidity with and without bias
correction for the full data set of all 14 locations.

Bias
correction

scheme

b R2 RMSE NRMSE

Mean St.
Dev. Range Mean St.

Dev. Range Mean St.
Dev. Range Mean St.

Dev. Range

No Bias
Correction 0.93 0.01 0.92 to 0.96 0.82 0.12 0.40 to 0.88 9.24 0.84 7.81 to 11.18 13.00 0.98 11.41 to 14.57

Regional Bias
Correction 1.01 0.01 0.99 to 1.04 0.82 0.12 0.40 to 0.88 6.58 0.92 5.50 to 9.24 9.25 1.18 7.60 to 12.04

Local Bias
Correction 1.01 0.01 1.00 to 1.02 0.82 0.12 0.40 to 0.88 6.47 0.99 5.44 to 9.30 9.10 1.26 7.45 to 12.12

Bias
Correction

Scheme

MBE NMBE EF

Mean St.
Dev. Range Mean St.

Dev. Range Mean St.
Dev. Range

No Bias
Correction −5.17 0.88 −6.23 to −2.93 −7.27 1.22 −9.02 to −4.28 0.61 0.21 −0.08 to

0.79
Regional Bias

Correction 0.74 0.90 −0.17 to 3.04 1.07 1.33 −0.24 to 4.45 0.80 0.15 0.26 to 0.88

Local Bias
Correction 0.78 0.41 0.09 to 1.51 1.09 0.57 0.13 to 2.07 0.80 0.15 0.25 to 0.88

St. Dev.—standard deviation; b—coefficient of regression; R2—coefficient of determination; RMSE—root mean square error; NRMSE—normalized root
mean square error; MBE—mean bias error; NMBE—normalized mean bias error; EF—modelling efficiency.

3.6. Evaluation of Wind Speed

Among all the weather variables evaluated, NASA POWER’s wind speed is the least
accurate. When using the calibrated and validated wind speed bias correction equations



Agronomy 2021, 11, 1207 13 of 17

(Table 3), the maximum value of R2 (0.79) was recorded for Beja while the minimum values
of R2 (0.52) was obtained for Elvas (Table S5), showing a moderate to high fit between
reanalysis and observed wind speed data. Results for the uncorrected NASA POWER wind
speed data (Table 8) show a mean coefficient of regression of 1.40, with an average RMSE of
1.10 m s−1, a mean NRMSE equal to 62.50% and an average modelling efficiency of −0.88.
Wind speed is overestimated by NASA POWER for all weather stations, with an MBE that
varies from 0.12 to 1.44 m s–1. Bias correction increases the accuracy of NASA POWER wind
speed estimation significantly. The mean EF increased to 0.40 (an improvement of 146.3%),
for a regional correction, and to 0.53 (an increase of 160.7%), when locally correcting the
bias. The RMSE decreased 37.4% (to 0.69 m s−1), for the former, and 45.7% (to 0.60 m s−1*,
for the latter. The most frequent (Supplementary Figure S5) NMBE and EF for the raw
NASA POWER wind speed data is higher than 60% (42% of all locations) a lower than 0
(71% of all locations), respectively; however, if the dataset is locally bias corrected, the most
frequent NMBE ranging −10.0 to 10.0%, with more than 60% of the stations showing an EF
higher than 0.50.

Table 8. Mean and range values of the accuracy metrics relative to NASA POWER wind speed with and without bias
correction for the full data set of all 14 locations.

Bias
Correction

Scheme

b R2 RMSE NRMSE

Mean St.
Dev. Range Mean St.

Dev. Range Mean St.
Dev. Range Mean St.

Dev. Range

No Bias
Correction 1.40 0.24 0.96 to 1.79 0.67 0.07 0.52 to 0.79 1.10 0.29 0.62 to 1.63 62.50 25.93 23.08 to 105.62

Regional Bias
Correction 0.95 0.17 0.65 to 1.2 0.67 0.07 0.52 to 0.79 0.69 0.17 0.52 to 1.14 36.60 6.92 27.22 to 46.37

Local Bias
Correction 0.86 0.10 0.64 to 0.98 0.67 0.08 0.51 to 0.79 0.60 0.11 0.4 to 0.79 32.51 8.41 19.59 to 50.46

Bias
Correction

Scheme

MBE NMBE EF

Mean St.
Dev. Range Mean St.

Dev. Range Mean St.
Dev. Range

No Bias
Correction 0.85 0.39 0.12 to 1.44 49.86 28.01 4.54 to 94.54 −0.88 1.21 −3.03 to 0.71

Regional Bias
Correction −0.12 0.38 −0.84 to 0.38 −2.85 18.26 −33.15 to 22.75 0.41 0.14 0.23 to 0.67

Local Bias
Correction −0.20 0.17 −0.5 to 0.04 −12.25 10.50 −32.68 to 2.03 0.53 0.17 0.16 to 0.73

St. Dev.—standard deviation; b—coefficient of regression; R2—coefficient of determination; RMSE—root mean square error; NRMSE—normalized root
mean square error; MBE—mean bias error; NMBE—normalized mean bias error; EF—modelling efficiency.

4. Discussion

Based on the results presented we can conclude that NASA POWER is capable of
predicting most weather variables accurately for the Alentejo Region. Table 9 presents the
mean and standard deviation values of all the accuracy metrics relative to NASA POWER
weather variables, with and without bias correction. NASA POWER’s raw maximum and
minimum temperature and solar radiation show to be accurate with the high agreement
and goodness of fit, with very little under and over estimations, when compared to the
observations. When performing a bias correction, results tend to improve. In average,
MBE values improve from −0.64 and 1.03 to −0.02 ◦C day–1 for Tmax and for Tmin, and
from 0.65 to 0.01 MJ m−2 day−1 for Rs. Additionally, a local bias correction of NASA
POWER Tmax, Tmin and Rs improved the mean RMSE values from 1.91 ◦C, 2.01 ◦C and
2.10 MJ m−2 day−1 to 1.59 ◦C, 1.58 ◦C and 1.89 MJ m−2 d−1, respectively. Similar results for
those variables were found by Bai et al. [24] in China, by Monteiro et al. [26] in Brazil and
by Negm et al. [25] in Italy. White el al. [23], for continental USA, and Aboelkhair et al. [1],
for Egypt, also reported similar results and concluded that NASA POWER can accurately
estimate maximum and minimum temperature. Therefore, the presented results show that
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NASA POWER can simulate maximum, minimum temperatures and solar radiation with a
high goodness of fit and agreement, when compared with observed data.

NASA POWER’s relative humidity also shows good accuracy for inland locations
when compared with observed data with, after bias correction, an average RMSE and
MBE of 6.47% day–1 and 0.78% day–1, respectively. This represent an improvement from
raw RH data, where a mean RMSE of 9.24% day–1 and a mean MBE of −5.71% day–1

were found. However, for coastal stations the estimation still needs improvement. Similar
conclusions were drawn by Negm et al. [25], Monteiro et al. [26] and Aboelkhair et al. [1].
Nonetheless, one can conclude that NASA POWER can simulate RH with good accuracy,
when compared with observed data.

Among all weather variables, NASA POWER’s wind speed is the one that performs
the worst. Raw data show RMSE and MBE values averaging 1.10 and 0.85 m s−1 with
a coefficient of regression equal to 1.40. Results tend to improve with a bias correction;
however, the lowest NRMSE is of 19.6%, thus one can conclude that wind speed lacks
the performance showed by the remaining weather variables. Previous studies [25,26,32]
also found that NASA POWER fails to estimate wind speed with acceptable accuracy.
Despite the improvements if a bias correction is performed, the NASA POWER wind speed
reanalysis data show unsatisfactory correlation and does not agree with most of the ground
observations and still needs improvement.

Table 9. Mean and standard deviation values of all the accuracy metrics relative to NASA POWER weather variables, with
and without bias correction.

Variable Bias
Correction

Accuracy Metric

b RMSE NRMSE MBE NMBE EF

Maximum
Temp.

No Bias
Correction 0.98 (±0.02) 1.91 (±0.31) 7.95 (±1.53) −0.64

(±0.65)
−2.56

(±2.69) 0.92 (±0.07)

Regional Bias
Correction 1.00 (±0.03) 1.74 (±0.34) 7.25 (±1.81) 0.03 (±0.65) 0.22 (±2.84) 0.93 (±0.08)

Local Bias
Correction 1.00 (±0.00) 1.59 (±0.18) 6.60 (±1.00) −0.02

(±0.12)
−0.08

(±0.52) 0.95 (±0.04)

Minimum
Temp.

No Bias
Correction 1.08 (±0.04) 2.01 (±0.38) 20.51 (±5.28) 1.03 (±0.54) 10.65 (±6.05) 0.84 (±0.07)

Regional Bias
Correction 0.99 (±0.03) 1.68 (±0.28) 17.10 (±3.9) −0.05

(±0.53)
−0.35

(±5.52) 0.89 (±0.03)

Local Bias
Correction 0.99 (±0.01) 1.58 (±0.25) 16.12 (±3.53) −0.02

(±0.05)
−0.19

(±0.52) 0.90 (±0.03)

SolarRadiation

No Bias
Correction 1.03 (±0.03) 2.10 (±0.31) 12.44 (±1.92) 0.65 (±0.59) 3.93 (±3.51) 0.93 (±0.02)

Regional Bias
Correction 1.00 (±0.03) 1.99 (±0.30) 11.72 (±1.64) −0.01

(±0.59) 0.06 (±3.39) 0.94 (±0.02)

Local Bias
Correction 1.00 (±0.00) 1.89 (±0.27) 11.15 (±1.53) 0.01 (±0.07) 0.05 (±0.44) 0.94 (±0.02)

Relative
Humidity

No Bias
Correction 0.93 (±0.01) 9.24 (±0.84) 13.00 (±0.98) −5.17

(±0.88)
−7.27

(±1.22) 0.61 (±0.21)

Regional Bias
Correction 1.01 (±0.01) 6.58 (±0.92) 9.25 (±1.18) 0.74 (±0.9) 1.07 (±1.33) 0.80 (±0.15)

Local Bias
Correction 1.01 (±0.01) 6.47 (±0.99) 9.10 (±1.26) 0.78 (±0.41) 1.09 (±0.57) 0.8 (±0.15)

Wind Speed

No Bias
Correction 1.40 (±0.24) 1.10 (±0.29) 62.50

(±25.93) 0.85 (±0.39) 49.86
(±28.01)

−0.88
(±1.21)

Regional Bias
Correction 0.95 (±0.17) 0.69 (±0.17) 36.60 (±6.92) −0.12

(±0.38)
−2.85

(±18.26) 0.41 (±0.14)

Local Bias
Correction 0.86 (±0.10) 0.60 (±0.11) 32.51 (±8.41) −0.20

(±0.17)
−12.25
(±10.5) 0.53 (±0.17)
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5. Conclusions

Weather data is one of the key elements for crop and water management. However,
the quality or availability of data in remote regions is questionable. Therefore, evaluating
the potential of using daily reanalysis data—such the data provided by NASA POWER—as
an alternative to ground observations is needed.

The results presented in this study demonstrated that NASA POWER is capable of
estimating most weather data—maximum and minimum temperatures, solar radiation—
with high accuracy for Alentejo Region, Southern Portugal. Though, for wind speed and
coastal relative humidity, NASA POWER estimations still need improvements. However,
we suggest a local bias correction of all variables, allowing improvement to the accuracy of
the estimated data. It can be concluded that NASA POWER could be useful for genera-
tion of weather data sets where ground weather stations data is missing or unavailable,
improving weather information for a better decision making. Nonetheless, additional
studies are recommended to better assess the use of such data for the estimation of derived
products such as yield and water requirements estimations, and weather impacts on crop
management and practices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11061207/s1: Table S1: Accuracy metrics relative to NASA POWER maximum
temperature with and without bias correction for all 14 locations, Table S2: Accuracy metrics relative
to NASA POWER minimum temperature with and without bias correction for all 14 locations, Table
S3: Accuracy metrics relative to NASA POWER solar radiation with and without bias correction for
all 14 locations, Table S4: Accuracy metrics relative to NASA POWER relative humidity with and
without bias correction for all 14 locations, Table S5: Accuracy metrics relative to NASA POWER wind
speed with and without bias correction for all 14 locations, Figure S1: Frequency (%) distribution of
the accuracy metrics measuring the performance of NASA POWER maximum temperature (Tmax)
without bias correction compared with adopting a regional bias correction and a local bias correction,
Figure S2: Frequency (%) distribution of the accuracy metrics measuring the performance of NASA
POWER minimum temperature (Tmin) without bias correction compared with adopting a regional
bias correction and a local bias correction, Figure S3: Frequency (%) distribution of the accuracy
metrics measuring the performance of NASA POWER solar radiation (Rs) without bias correction
compared with adopting a regional bias correction and a local bias correction, Figure S4: Frequency
(%) distribution of the accuracy metrics measuring the performance of NASA POWER relative
humidity (RH) without bias correction compared with adopting a regional bias correction and a
local bias correction, Figure S5: Frequency (%) distribution of the accuracy metrics measuring the
performance of NASA POWER wind speed (Ws) without bias correction compared with adopting a
regional bias correction and a local bias correction.
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