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Abstract: The termination or interruption of agro-forestry practices for a long period gradually
results in abandoned land. Abandoned land parcels do not match the requirements to access to the
basic payment of the European Common Agricultural Policy (CAP). Therefore, the identification
of those parcels is key in order to return fair subsidies to farmers. In this context, the present
work proposes a methodology to detect abandoned crops in the Valencian Community (Spain) from
remote sensing data. The approach is based on the assessment of multitemporal Sentinel-2 images
and derived spectral indices, which are used as predictors for training machine learning and deep
learning classifiers. Several classification scenarios, including both abandoned and active parcels,
were evaluated. The best results (98.2% overall accuracy) were obtained when a bi-directional Long
Short Term Memory (BiLSTM) network was trained with a multitemporal dataset composed of twelve
reflectance time series, and a derived bare soil spectral index (BSI). In this scenario we were able to
effectively distinguish abandoned crops from active ones. The results revealed Sentinel-2 features
are well suited for land use identification including abandoned lands, and open the possibility of
implementing this type of remote sensing based methodology into the CAP payments supervision.

Keywords: Sentinel-2; abandoned crops; deep learning; European Common Agricultural Policy
(CAP)

1. Introduction

The Common Agricultural Policy (CAP) is one of the most important European Com-
missions (EC) initiatives. It was created in 1962 with the objective of ensuring affordable
and quality food across Europe, while supporting European farmers. With this aim, a sys-
tem of agricultural subsidies was implemented. Within the European Green Deal (EGD) [1],
policies were implemented to ensure a transition towards a more sustainable agriculture.
From 2021 to 2027, there is a total budget of 365 billion Euros assigned for the CAP, which
represents 28.5% of the overall EU budget for this period. About 265 billion Euros is used
for direct payments to the farmers. The process for accessing subsidies requires declarations
from the farmers indicating the extension of their parcels, and which type of agricultural
activity is performed. If those activities do not fit the CAP requirements, payments could
be cancelled. Every European member state (MS) has to supervise the declarations, which
is carried out by state paying agencies. These agencies are responsible for supervising the
declarations, a process that is typically done by in-situ checks or photo interpretation of
high resolution images taken from airborne or satellite platforms. However, these methods
are time consuming, require expert knowledge, and are unsuitable to be done over big
areas. For this reason, the 2018 CAP regulation [2] proposed the use of data coming from
Earth Observation (EO), in particular from the Copernicus program, to supervise the CAP
2020+ farmers declarations. The goal is to apply automated supervision for the majority
of cases, based on Sentinel-1 and Sentinel-2 data, and leave cases (ideally up to 5% of the
territory) that cannot be supervised by this procedure to the other methods (e.g., in situ
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checks and photo interpretation). Another strength of this approach could be the regular
updating of state Land Parcel Identification Systems (LPIS), which allows paying agencies
to uniquely identify land parcels in space, have a record of the given land use (and its
evolution), and ultimately ease the declaration procedure to both farmers and paying agen-
cies. CAP requirements are subject to the land cover extension, land cover use, and also
to an optimum state of the parcel. This means that parcels without proper conditions
for agricultural activities, or even abandoned parcels, do not match CAP requirements to
access subsidies.

Crop type identification from EO is a widely covered topic that uses remote sensing
data, with multiple works over the years, and some recent publications related to CAP sub-
sidies monitoring [3–5]. However, cropland abandonment identification still presents some
challenges from a remote sensing perspective, as it is a complex phenomenon with some
different causes and possible outcomes [6]. The first attempts for crop type identification
and abandonment detection relied on hand-crafted features based on spatial and temporal
dynamics of vegetation [7,8]. However, machine learning and deep learning methods have
become state of the art for this task. While the first require feeding the algorithms with
meaningful features, deep learning architectures excel in extracting these features encoded
in the data [9], and usually achieve very high accuracies in crop identification tasks [10,11],
and also in abandonment detection [12]. Despite their excellent results, the majority of
deep learning models are considered as “black-boxes”, whereby another relevant trend is
seeking interpretability of these algorithms, for improved decision making [13].

In this context, this paper aims to assess the potential of Sentinel-2 time series for land
abandonment detection in the Valencia province in Spain. The approach is based on the
evaluation of Sentinel-2 derived spectral indices’ time series, and on the assessment of
the classification power of different machine learning and deep learning algorithms for
discriminating abandoned parcels.

2. Materials and Methods
2.1. Study Area and Ground Truth

The study area of this work is located in the Valencia Community (East of Spain). It
covers 344,600 ha and is observed by two Sentinel-2 tiles, 30SXJ and 30SYJ (see Figure 1).
The typical climate of this region is Mediterranean, with an average temperature and
humidity of 18 ◦C and 65%, respectively.

Figure 1. Location of the study area (green shape) in the Valencian Community (blue shape), East of
Spain. The area is covered by two Sentinel-2 tiles, 30SYJ (red) and 30SXJ (yellow).

Ground truth was provided by regional Valencian authorities (see Table 1). Two major
classes of parcels were considered: active and abandoned, both of them containing the
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following 8 subclasses: Vineyards (VI), Arable Land (AL), Fruits-Vineyard (FV), Fruits
(FR), Olive grove (OL), Citrus (CI), Dried Fruit (DF) and Vineyard-Olive grove (VO). This
database has been built by expert technical agronomists through several in-situ inspections
in 2018.

Table 1. Ground truth: number of pixels for every class.

VI AL FV FR OL CI DF VO Total

Abandoned 16,547 1619 812 159 86 1756 566 188 21,733
Active 20,000 20,000 2023 12,707 3083 20,000 20,000 1555 119,742

2.2. Sentinel-2 Data

Sentinel-2 images were downloaded through the Google Earth Engine (GEE) platform.
This platform provides a planetary scale catalogue of peta-bytes of images from several
missions that can be accessed freely. Sentinel-2 provides imagery every 5 days, and carries
on board a spectral sensor called MultiSpectral Instrument (MSI). MSI allows to acquire
images in 13 spectral bands distributed in the spectral range of 443 nm to 2190 nm, however,
data from the band 10 (cirrus band) was excluded as it does not provide relevant ground
information. The features of the used bands are shown in Table 2. Concretely, the level
2A product, which provides top-of-canopy surface reflectance data was used. Altogether,
67 cloud-free images from 26 May 2017 to 11 March 2020 were included.

Table 2. Sentinel-2 bands used in the study.

Band Central λ Bandwidth Spatial Resolution
(nm) (nm) (m)

B1 443 21 60
B2 492 66 10
B3 560 35 10
B4 665 31 10
B5 705 15 20
B6 740 15 20
B7 783 20 20
B8 842 106 10
B8A 865 21 20
B9 945 20 60
B11 1610 90 20
B12 2190 180 20

2.3. Spectral Indices

Five spectral indices (SI) were considered for assessing the temporal differences
between abandoned and active parcels. The selected indices were:

• Normalized Vegetation Difference Index (NDVI). This vegetation index is a normal-
ized difference between near-infrared and red reflectance:

NDVI =
B8 − B4

B8 + B4
. (1)

It is sensitive to chlorophyll content, water content and vegetation fraction cover. Thus,
it has been used for widely for remote sensing applications, including vegetation
phenology monitoring [14], vegetation productivity, and also NDVI time series had
been used before to distinguish cropland abandonment from fallow [8].



Agronomy 2021, 11, 654 4 of 16

• Soil Adjusted Vegetation Index (SAVI) [15]. In scenarios with intermediate levels of
vegetation coexisting with soil, the SAVI minimizes the brightness produced by the
latter. SAVI is defined as

SAVI =
B8 − B4

B8 + B4 + L
× (1 + L), (2)

and allows to describe a wider range of canopies with intermediate vegetation, by in-
troducing the soil correction factor L, which depends on the fractional vegetation
cover. In this work, L was set to 0.5, an intermediate value that works well in the
majority of scenarios.

• Normalized Burn Ratio (NBR) [16]. This SI is built as a normalized difference between
near-infrared and short wave infrared reflectance:

NBR =
B8 − B12

B8 + B12
. (3)

NBR is related with the vegetation water content. It has been widely used in wildfire
severity mapping, but recently it has been also used to detect drastic reductions in
vegetation biomass, for example when crops are harvested.

• Bare Soil Index (BSI) [17]. This spectral index results from a combination of NDVI and
Normalized Built, which is a bare soil index. In terms of the bands of Sentinel-2,

BSI =
(B12 + B4)− (B8 − B2)

(B12 + B4) + (B8 − B2)
(4)

BSI varies from −1 to 1, taking higher values where there is higher soil bareness.
• Red edge chlorophyll index (CIre). The selected chlorophyll index [18] is defined as

CIre =
B7

B5
− 1 (5)

in terms of Sentinel-2 bands. This ratio has proven to be more precise in estimating
chlorophyll content than other Sentinel-2 indices [19].

2.4. Interclass Separability

In this study, the Jeffries–Matusita (JM) and Bhattacharyya (BH) [20] distances were
used to evaluate the class separability. The JM distance allows to quantify the similarity
between samples of two distributions and is defined as

Jij = 2(1− e−Bij) (6)

where Bij is the multivariate Bhattacharyya distance,

Bij =
1
8
(µj − µi)

t
[Σi + Σj

2

]−1

(µj − µi) +
1
2

ln

 |Σi + Σj|/2√
|Σi||Σj|

 (7)

where µi, µj are the mean vectors of the classes and Σi, Σj their covariance matrices. JM
distance is constrained in the interval [0, 2], so when two classes are totally separated
the JM distance is 2. Moreover, if 1.9 < JM < 2.0 we consider that separability is good,
1.8 < JM < 1.9 corresponds to intermediate separability, and JM < 1.8 to poor
separability [21].

2.5. Machine Learning and Deep Learning

A range of classifiers were used for classifying land uses and abandoned parcels. They
include the Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis
(QDA), which fit a gaussian distribution to each class of the training data, and then assigns



Agronomy 2021, 11, 654 5 of 16

an incoming observation of the class with maximum posterior probability. The difference
between these two methods is that the covariance matrices of LDA are independent of
the class while for QDA the covariance matrices are class-dependent. Non-parametric
classifiers like k-NN, Decision Trees (DT) and Random Forest (RF) were also trained. k-
NN [22] is a simple but effective algorithm that assigns a new observation to the most
frequent class among the k-nearest neighbours, according to a distance measurement
(e.g., Euclidean or Mahalanobis distances) in the feature space. A DT is a set of hierarchical
rules that splits the feature space in subsets [23]. The rules are thresholds set over the
features, with the goal of maximizing the purity (or entropy) of the resultant subsets. RF is
an ensemble algorithm based on training a forest of DTs with randomly selected features
(predictors) and randomly selected samples [24]. Random selection of samples and features,
as well as the voting of multiple DTs, result in robustness against noisy observations and
usually competitive accuracies.

Two deep learning models were also trained, specifically, a Long Short Term Memory
(LSTM) network and its bi-directional version (BiLSTM). LSTM is a special type of Recurrent
Neural Network (RNN) designed to deal with the problem of the vanishing gradient,
and learn long-term dependencies [25]. This special architecture is well suited to deal
with sequential data, like the RS time series considered in this study. Every LSTM cell
contains three gates that control the information flow and decide its relevance: the input
gate (it), forget gate (ft), and output gate (ot). At a time step t, one hidden unit receives
the input data xt, and the previous hidden state xt−1. Its combination is modulated by an
hyperbolic tangent,

c̃t = tanh(Wcxt + Ucht−1 + bc) (8)

where Wc, Uc, y bc are the initial weights, the recurrent weights and the bias, respectively.
A sigmoid-like input gate decides which of the information is stored in the cell,

it = σ(Wixt + Uiht−1 + bi) (9)

and similarly, the forget gate decides which information is removed from the current
cell state.

ft = σ(W f xt + U f ht−1 + b f ) (10)

The memory cell is updated by adding information coming from input gate and forget
gate, which means that new information is given by ct, and part of the information at the
current memory is discarded,

ct = it � c̃t + ft � ct−1 (11)

Eventually, the output hidden state results from a combination of the output gate and the
updated memory cell,

ht = ot � tanh(ct) (12)

where the output gate ot is given by

ot = σ(Woxt + Uoht−1 + bo) (13)

LSTM units can be combined in order to obtain a BiLSTM network. These units are
composed of two LSTM units at each time step, and have in consideration both past
and future hidden states, meaning that BiLSTM networks learn from the full time series
at each iteration [26]. In this work, we trained LSTM and BiLSTM networks with the
following architecture:

1. One entry layer containing the 67 Sentinel-2 images with 13 predictors.
2. Two layers of neurons with 100 hidden units, each one followed by a 50% dropout

layer to avoid overfitting.
3. One fully connected layer connecting the activation functions from the hidden units

to the following layer.
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4. One softmax layer that computes the probability assigned by the network for each class.
5. Output layer with the final predictions.

2.6. Experiments

Firstly, the temporal behaviour of the selected spectral indices was compared to in-
vestigate possible differences in the temporal evolution of indices over abandoned and
non-abandoned lands. This leads to a first approximation of knowledge about the aban-
donment scenario. Then, the JM distance was computed in order to assess the separability
among pairs of classes (including abandoned and non abandoned). The average distance
between every pair of classes was computed. It was also evaluated how the separability
increases as more images are stacked to the feature space, which is more representative
of the inter-class separability since the predictors used for the classification are the full
time series.

Finally, and according to the two major classes (abandoned and active) and the 8 sub-
classes, three different classification tasks (using the ML and DL algorithms listed in
Section 2.5) were considered to evaluate the Sentinel-2 capabilities over all three scenarios:

• Scenario 1: we considered only the eight subclasses for the abandoned parcels. This
problem is related to the ability to identify the former crop type of the abandoned field.

• Scenario 2: we considered all classes, i.e., eight classes of active parcels and their
respective eight classes of abandoned fields. This is on paper the hardest scenario,
where we aimed to distinguish abandoned from active cropland and distinguish every
crop type.

• Scenario 3: we considered eight classes of active land and one major class containing
all the abandoned samples.

For every task and classifier, a dataset of dimensions (n× 13× 67), corresponding
respectively to the number n of samples, the number of predictors, and the number of
Sentinel-2 images used in the study was built. The first twelve predictors are the Sentinel-2
reflectance bands, and the last one corresponds to one of the spectral indices described in
Section 2.3. Then, every dataset was split in two subsets, one corresponding to the 70% of
the samples for training the models, and the remaining 30% used to test the accuracy of the
models (see Section 3.3). This is the preferred split selection when there is enough available
reference data.

3. Results
3.1. Spectral Indices Time Series

In this section, we show the temporal behaviour of selected spectral indices over
abandoned and active parcels. For the sake of brevity, we only show two of the most
representative classes, vineyard and citrus (Figure 2). From VI time series, one observes
that the phenological profile of the abandoned classes and the active one are shifted with
respect to active crops. This suggests that new vegetation species appear in the parcel
once it is abandoned, allowing to differentiate better between abandoned and active crops.
Another feature of vegetation that allows to differentiate cropland from scrubs is fraction
of vegetation cover (FVC). For instance, arable land parcels have strong seasonal variations
due to high FVC, which results in higher separability from abandoned crops. Lastly,
SIs values of CI are high throughout all the year (or lower, for BSI), which can be the
main reason for the high separability of abandoned classes, using either single images or
multitemporal inputs.

On the other hand, classes where the senescence periods from the active class and
scrubs do not differ greatly, or FVC is not especially high, may be less likely to be well
distinguished, being the case for OL, VO, and DF.
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Figure 2. Temporal series of the five considered spectral indices, for the classes vineyards (VI)
and citrus (CI).
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3.2. Separability

Results for separability analysis are shown in Table 3. The first 8 × 8 box accounts
for JM distances between abandoned classes (e.g., VI − AL), which corresponds to the
aforementioned scenario 1, meanwhile the full table corresponds to scenario 2. The cor-
responding active classes are denoted with an additional subscript (e.g., V̂ I − ÂL). Since
the JM are symmetric, the lower part of the table corresponds to the average distance
between pairs of classes, and the upper part to the distances calculated when 15 images are
stacked together.

The results show that when using single images, the obtained JM distances between
pairs of classes are considerably lower than 1.8, meaning that the data distributions of the
classes are highly overlapped. This is especially notorious for some classes, like VI, which
presents high confusion with FS, D̂F, ÔL, and F̂V. FV is also highly overlapped with other
classes like DF, VO, or F̂V. On the other hand, CI and OL show greater distances with the
rest of the classes, noting that only single images were considered.

As expected, JM distances obtained with stacked images as inputs are much greater
than those obtained with unitemporal inputs. For the majority of cases, JM is greater than
1.9, and close to 2, meaning that those pairs of classes are likely to be well distinguished by
classification algorithms. The greater overlapping is found between F̂V and ÔL, VI, FV, DF
and V̂O classes, with JM distances generally ranging from 1.8 to 1.9.

Table 3. JM distances between considered classes. The upper part shows the JM distances obtained
after stacking 15 Sentinel-2 images, while in the lower part the average distance for the 67 images is
shown. On the other hand, VI stands for abandoned Vineyard, while V̂ I stands for the corresponding
active class, following the same distinction for the rest of the classes.

VI AL FV FR OL CI DF VO V̂ I ÂL F̂V F̂R ÔL ĈI D̂F V̂O

VI 1.96 1.97 2.00 2.00 1.99 1.91 2.00 1.96 2.00 1.84 1.97 1.83 1.98 1.90 1.87
AL 0.59 1.99 2.00 2.00 1.98 1.99 2.00 2.00 2.00 1.97 1.97 1.98 1.99 1.99 1.99
FV 0.50 0.98 2.00 2.00 2.00 1.93 1.97 2.00 2.00 1.87 2.00 1.99 2.00 1.99 1.99
FR 1.29 1.46 1.40 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
OL 0.99 1.24 1.15 1.18 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
CI 1.00 1.04 1.33 1.19 1.12 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00 2.00
DF 0.58 0.86 0.44 1.50 1.27 1.42 1.99 2.00 2.00 1.89 2.00 1.99 2.00 1.98 1.98
VO 0.79 1.26 0.71 1.57 1.29 1.51 0.80 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
V̂ I 1.18 1.55 1.34 1.89 1.75 1.77 1.36 1.36 2.00 1.98 2.00 1.99 2.00 1.97 1.97
ÂL 0.89 0.97 1.16 1.70 1.49 1.43 1.11 1.38 1.34 2.00 2.00 2.00 2.00 1.99 1.99
F̂V 0.45 0.87 0.49 1.56 1.30 1.39 0.47 0.89 1.11 1.03 2.00 1.76 1.99 1.89 1.88
F̂R 0.91 0.82 1.30 1.58 1.36 0.95 1.28 1.46 1.52 1.06 1.14 1.99 1.96 1.99 1.99
ÔL 0.60 0.77 0.79 1.49 1.21 1.17 0.72 1.09 1.30 0.98 0.38 0.93 1.99 1.96 1.93
ĈI 1.38 1.23 1.61 1.75 1.60 1.13 1.58 1.69 1.74 1.42 1.49 0.68 1.22 2.00 2.00
D̂F 0.59 0.96 0.67 1.60 1.35 1.39 0.61 0.98 0.98 0.86 0.45 1.18 0.66 1.51 1.93
V̂O 0.60 1.03 0.78 1.63 1.37 1.41 0.74 0.89 0.94 1.08 0.32 1.14 0.46 1.46 0.58

Lastly, the results for the third classification problem are shown in Figure 3, where the
left panel shows the average JM distances between active classes and the abandonment
class (AB) for unitemporal inputs. These indicate that unitemporal inputs are not enough
to distinguish between samples from AB and the active crop classes. Special overlapping
exists for FV, OL, FS and VO, while VI and CI are more differentiated, but still far from
acceptable separability thresholds (i.e., 1.8). Otherwise, when we calculate JM distances for
multitemporal inputs we find that the separability keeps increasing as more images are
stacked together. This results in much greater JM distances, beyond the 1.8 limit for most
pairs of classes (see Figure 3 (right)). Similarly to the unitemporal case, VI, CI and AL are
the classes with higher distinction, while OL, FV, VO and DF appear to be more overlapped
with AB. Another relevant finding here is the importance of the dates chosen to calculate
the distances, since the average distance shown in Figure 3 (left) is greater than the first
JM distance in Figure 3 (right) for some classes (e.g., CI) and lower for others (e.g., VO).
This is related to the phenological state of vegetation in the date of selection, therefore, we
selected images covering the complete phenological cycle for the calculation of stacked
JM distances.
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Figure 3. Jeffries–Matusita (JM) distances between active crop classes and the general class containing
all the abandoned samples. To the left, the average distance is shown. To the right, the increase in JM
distance as more images are stacked together is plotted.

In all cases, these results reinforce the need to use multitemporal reflectance data as
an input to differentiate between crop types, and abandoned parcels.

3.3. Classification Accuracy

We assessed the performance of every algorithm based on the overall accuracy (OA)
obtained in the test set. Also, for the best performing algorithm and dataset we computed
the confusion matrix, i.e., a double entry table where row entries represent the actual
classes (labels in the testing data) and column entries the predicted classes.

For scenario 1 (Figure 4), the obtained accuracies are high (OA > 89%), except for
the parametric classifiers (LDA and QDA). The best performing algorithms are RF with
100 trees (RF-100), and deep LSTM and BiLSTM networks, with accuracies higher than 95%,
with the best case being the model obtained with BiLSTM and the BSI dataset, with a 96.4%
OA. We also noted that in this first problem, all the indices performed similarly. However,
NBR showed slightly lower OA values (1–2%) than the other models, which could be
attributed to the higher similarity of the NBR temporal profiles for all the abandoned crops.
The per-class User Accuracy (UA) values were high, with the exception of the VO class
(86.4%). The lowest per-class Producer Accuracy (PU) values were found in DF, FV and
AL classes (with 67.8%, 68.9% and 82.6% PU, respectively). These classes present large
omission errors due to incorrect assignations to VI, the class with the highest number
of samples.

Lower accuracy values were achieved in the most challenging problem (scenario 2,
Figure 5) considering eight classes of abandoned fields. In this case, we obtained the
highest accuracy with BiLSTM trained with the BSI dataset, resulting in 91.8% OA, whereas
the accuracies of the remaining algorithms were below 90%. Here, the confusion is higher
among active crop classes, with lower UA and PA for FV, DF, OL and VO, and also active
vineyards.

Lastly, in Figure 6 we show the results for scenario 3. Here, we considered active
crops, and a general class of abandoned ones (denoted as AB). In this case, we obtained the
best performing approaches. In particular, for the BiLSTM network trained with BSI and
CIre we obtained OAs of 98.2% OA and 97.6%, respectively. Moreover, UA are high in the
majority of cases. The lowest PA was found in OL, FV and VO classes (89.8%, 85.6% and
79.6%, respectively). The higher rate of omission errors in these classes could be explained
by (1) class imbalances in the training dataset (i.e., fewer samples of OL, FV and VO),
and (2) higher spectral confusion among these classes. This confusion was observed in
the previous separability analysis, revealing that OL, FV and VO are classes with less
distinctive seasonal variations in comparison with CI, VI or AL.
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Figure 4. Results for the scenario 1: (top), accuracies. (bottom), confusion matrix of best model
(2-BiLSTM trained with the BSI dataset).

Figure 5. Cont.
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Figure 5. Results for the scenario 2: (top), accuracies. (bottom), confusion matrix of the best model
(2-BiLSTM trained with the BSI dataset).
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Figure 6. Results for scenario 3: (top), accuracies. (bottom), confusion matrix of the best model
(2-BiLSTM trained with the BSI dataset).

3.4. Effect of Dataset Training Size

The higher misclassification rates found in the classes that were poorly represented
in the training data shows the importance of feeding well constructed datasets into the
algorithms. In the latest case, the ones that benefit most from this feature (i.e., LDA-QDA,
DT and LSTM-BiLSTM) showed much better performance, with suggests that in scenario 3
we reached the optimal configuration in terms of considered classes. As a final experiment,
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we tested the role of training dataset size (Figure 7) in the best case scenario (i.e., scenario 3
using the 2-BiLSTM trained with the BSI dataset).
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Figure 7. Effect of increasing training dataset size.

The results show that when using small training datasets, RF-100 performs better than
deep architectures. However, LSTM and especially BiLSTM networks outperform the rest
of algorithms when an increased number of training data is available.

4. Discussion

Land use classification of agricultural cropland admits several approaches in terms
of data selection and methodology, in order to distinguish every vegetation cover. One
approach is, for instance, to calculate temporal series of a spectral index and handcraft a
model with parameters that describe the temporal variations of the vegetation over the
year, which are caused by senescence. Then the parameters are adjusted for every class
and new observations are identified with the models that better describe their variations.
However, this approach is limited limited for a number of reasons: (i) requirement of expert
knowledge to handcraft the best possible model; (ii) need of a rigorous pre-processing
chain to detect possible outliers that confuse the model; (iii) while using vegetation indices,
the full information contained in images is under-exploited.

Other approach (the one used in this work) consists of acquiring large temporal series
that also describe vegetation senescence, and then using these as inputs for supervised
classification. Some studies have shown that a relatively small set of images properly
distributed in time can be sufficient to obtain high accuracies [4]. Since temporal resolution
of recent satellites (e.g., Landsat 8, Sentinel missions) has increased, this is not a problem
anymore and usually multitemporal approaches are now preferred over single observation
ones. Also, some studies have shown that data fusion of reflectances with other sources
like Radar or Lidar can be beneficial in order to improve results [5]. Lastly, it is worth
mentioning the rise of deep learning as an alternative over more traditional machine
learning methods. Results show that recurrent neural networks can be used successfully to
classify remote sensing sequential data [10,11].

Regarding the case of land abandonment, there are studies relying on handcrafted
models to detect abandoned croplands [8], and also others based on supervised
classification [6,27]. In previous works related to abandonment detection in the Valencian
Community, single orthophotos (0.25 m spatial resolution) have been used to identify
abandoned citrus crops [28], whereas in the present study we have shown that a different
approach relying on multitemporal Sentinel-2 data (10 m spatial resolution and 5-day
revisit time) is possible. The proposed methodology uses machine learning and state-of-
the-art deep learning classification methods, and offers a number of advantages for its
use. Sentinel-2 MSI has a rich spectral signature that allows to monitor land cover and
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vegetation dynamics [29,30]. With our approach, it is possible to fully exploit these capabil-
ities, along with spectral indices for enhancing the class discrimination. Fully exploiting
temporal and spectral information of Sentinel-2A and 2B has led to very high accuracies in
detecting abandoned crops over a large area.

The high temporal frequency of Sentinel-2 (around 70 images per year) was enough
to capture the temporal behaviour of classes. On the other hand, improved spatial resolu-
tion of these satellites (in comparison to MODIS) has allowed us to perform this type of
identification task in a study zone like the Valencian province, where the average parcel
is small (5 ha). Moreover, we have adopted a pixel-based classification strategy, while it
is also possible to perform object-based classification. This approach often requires an
additional preprocessing, consisting of the image segmentation in compact, connected
objects (e.g., parcels). The authors of [31] performed a comparison between object-based
and pixel-based crop identification, finding that an object-based approach does not neces-
sarily improve accuracy, while a pixel-based one is more efficient in terms of computation.
On other side, CAP regulations contemplate the possibility of partial abandonment, where
only a fraction of the parcel is unsuited for agricultural activity. Thus, it is reasonable to
opt for pixel-based detection of abandonment, since it can be useful for later assessment of
partial subsidies in semi-abandoned crops.

Abandonment can be caused by many different factors, and result in different out-
comes. When the land is left unused, the parcels are slowly invaded by the local ecosystem.
This implies that the results of land abandonment can be very different depending on
the environmental conditions of the region. In our study zone, it is common that land
abandonment results in parcels covered by abundant shrubs. In our work, we have studied
the temporal profiles of abandoned and active crops for all considered classes. While
active classes can be distinguished according to some particular traits like senescence and
FVC, abandoned ones show a much more similar behaviour, in fact similar to the one
expected for shrubs. This allows to distinguish active from abandoned classes, with higher
accuracies for crops with very distinctive variations in terms of phenological parameters
and vegetation cover (e.g., VI and CI crops).

For all the considered scenarios, OA is higher than 90% in the best case performance.
Moreover, the results show that, among the considered spectral indices to be included as a
13th predictor, BSI is the one that reports the best results. On the other hand, NBR shows
the lowest performance, especially in the first experiment, where we only considered aban-
doned crops. This can be explained by the similarity of temporal profiles in all abandoned
subclasses. However, NBR is useful to distinguish between active and abandoned crops
(scenarios 2 and 3). This can be explained by the different phenological variations that
grasslands and shrubs show in comparison to cropland. While the latter sometimes suffer
from variations induced by agronomical practices (e.g., harvesting), grasslands present
natural phenological patterns due to seasonal and meteorological effects [32]. With respect
to the SIs built around visible red-edge and NIR, performance is similar, with slightly
higher accuracies for CIre, which suggests that red-edge information can be useful and it
could be worth including an NDVI or SAVI version using red-egde bands.

Another point to discuss is the fact that we can associate a higher number of mis-
classifications of classes under-represented in the training dataset (i.e., minority or rare
classes). It is well known that in classification problems, a key aspect is disposing of
abundant, well balanced and representative samples datasets, since many algorithms fail
when these conditions do not exist. If the training dataset presents imbalances between
classes and does not reflect the actual population, it can lead to a big bias in classification,
i.e., in scenario 1, where we obtained some commission errors in VI class. We noticed that
this fact is not caused by overlapping between VI and the rest of the classes, but by the
over-representation of VI in the training dataset. In scenarios 2 and 3, we aimed to correct
the imbalances by down sampling some of the majoritarian classes, obtaining results that
are more consistent with previous separability study. Although acquiring sufficient ground
truth data is one of the major problems in remote sensing classification tasks, we conclude
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that for future studies more field work would be required to reduce sampling bias by
improving the statistical representativity of minority classes.

There is another potential issue that we identified before the study, also related with the
database, since it corresponds to the 2018 update. The abandoned fields could have been left
unused just before the check inspection, or been in that state for some years. We supposed
that this could be problematic because it might happen that two parcels corresponding
to the same class could be in different stages of degradation. Based on the obtained
results, this is something that either has not happened, or if has happened our temporal
series were larger enough to distinguish the majority of abandoned crops, especially in
scenario 3. However, this opens a question on how to detect future abandonments as early
as possible. This is a slightly different problem that could may be approached from an
anomaly detection perspective [33], and where the temporal resolution of Sentinels can
play an important role.

Lastly, with respect to the algorithms used in the study, we observed that in this
particular classification task deep learning architectures were able to extract the most
information from the training data, and achieved the highest accuracy in all the proposed
experiments. This was especially the case in the third scenario, where training datasets
disposed the abundant samples for the majority of classes. It is worth mentioning that
in this scenario, BiLSTM overall accuracy was 2% higher than LSTM one. The fact that
this network is able to learn from both past and future states in such a complex way is
something that can set it apart from the rest of the classification algorithms. However,
random forest performed even better than deep learning architectures in scenarios with
limited training data, being a good alternative to DL algorithms.

5. Conclusions

In this work, the Sentinel-2 capabilities were assessed to detect cropland abandonment
in the Valencian Community in Spain. The methodology is based on building multitempo-
ral datasets based on Sentinel-2 reflectances and derived spectral indices. Time profiles of
spectral indices revealed differences in the temporal behaviour of abandoned lands and
active classes. In addition, three classification experiments using machine learning and
deep learning algorithms fed by different number of classes were undertaken.

The results reported good accuracies for all experiments, being able to distinguish
the majority of samples with the selected classification algorithms. The considered deep
learning techniques outperformed the machine learning algorithms when large datasets
were used. In the case of reduced data for the training process, the random forest is able
to perform at the same level, and even better than the deep learning techniques. The best
case scenario was found when a BiLSTM was used for classifying eight classes of active
crops and one class containing abandoned parcels. In this case, the predictors were the
twelve Sentinel-2 bands plus the bare soil index, and the BiLSTM network reported an
OA of 98.2%. This scenario is optimal in terms of class configuration, since it allows to
distinguish the main active crops in the Valencia Community and also detects abandoned
parcels. The proposed methodology could potentially be implemented in an automated
procedure to supervise the CAP requirements to access subsidies.

Author Contributions: E.P.-J., M.C.-T., F.J.G.-H., and M.A.G., significantly contributed to all phases
of the investigation. They contributed equally to the preparation, analysis, review and editing of this
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Department of Agriculture, Rural Development, Climate
Emergency and Ecology Transition (Generalitat Valenciana) through agreement S847000.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Agronomy 2021, 11, 654 15 of 16

Acknowledgments: Te authors acknowledge the Department of Agriculture, Rural Development,
Climate Emergency and Ecology Transition (Generalitat Valenciana) for providing ground truth data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. European Union. Commission Implementing Regulation (EU) No 1306/2013 of the European Parliament and of the Council

of 17 December 2013 on the financing, management and monitoring of the common agricultural policy and repealing Council
Regulations (EEC) No 352/78, (EC) No 165/94, (EC) No 2799/98, (EC) No 814/2000, (EC) No 1290/2005 and (EC) No 485/2008.
Off. J. Eur. Union 2013, 56, 1–59.

2. European Union. Commission Implementing Regulation (EU) 2018/746 of 18 May 2018 amending Implementing Regulation
(EU) No 809/2014 as regards modification of single applications and payment claims and checks. Off. J. Eur. Union 2018, 61, 1–7.

3. Estrada, J.; Sánchez, H.; Hernanz, L.; Checa, M.J.; Roman, D. Enabling the Use of Sentinel-2 and LiDAR Data for Common
Agriculture Policy Funds Assignment. ISPRS Int. J. Geo-Inf. 2017, 6, 255. [CrossRef]

4. Sitokonstantinou, V.; Papoutsis, I.; Kontoes, C.; Lafarga Arnal, A.; Armesto Andrés, A.P.; Garraza Zurbano, J.A. Scalable
parcel-based crop identification scheme using Sentinel-2 data time-series for the monitoring of the common agricultural policy.
Remote Sens. 2018, 10, 911. [CrossRef]

5. Campos-Taberner, M.; García-Haro, F.J.; Martínez, B.; Sánchez-Ruíz, S.; Gilabert, M.A. A copernicus Sentinel-1 and Sentinel-2
classification framework for the 2020+ European common agricultural policy: A case study in València (Spain). Agronomy 2019,
9, 556. [CrossRef]

6. Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment from
spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 2018, 210, 12–24. [CrossRef]

7. Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop type mapping using spectral–temporal profiles and phenological information.
Comput. Electron. Agric. 2012, 89, 30–40. [CrossRef]

8. Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping farmland abandonment and recultivation
across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [CrossRef]

9. Campos-Taberner, M.; Romero-Soriano, A.; Gatta, C.; Camps-Valls, G.; Lagrange, A.; Le Saux, B.; Beaupere, A.; Boulch, A.;
Chan-Hon-Tong, A.; Herbin, S.; et al. Processing of extremely high-resolution Lidar and RGB data: Outcome of the 2015 IEEE
GRSS data fusion contest—Part A: 2-D contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5547–5559. [CrossRef]

10. Rußwurm, M.; Körner, M. Multi-temporal land cover classification with long short-term memory neural networks. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 551. [CrossRef]

11. Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443.
[CrossRef]

12. Ruiz, L.; Almonacid-Caballer, J.; Crespo-Peremarch, P.; Recio, J.; Pardo-Pascual, J.; Sánchez-García, E. Automated classification
of crop types and condition in a mediterranean area using a fine-tuned convolutional neural network. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2020, 43, 1061–1068. [CrossRef]

13. Campos-Taberner, M.; García-Haro, F.J.; Martínez, B.; Izquierdo-Verdiguier, E.; Atzberger, C.; Camps-Valls, G.; Gilabert, M.A.
Understanding deep learning in land use classification based on Sentinel-2 time series. Sci. Rep. 2020, 10, 1–12. [CrossRef]

14. Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from
satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [CrossRef]

15. Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
16. Key, C.H.; Benson, N.C. Landscape assessment (LA). In FIREMON: Fire Effects Monitoring and Inventory System; Gen. Tech. Rep.

RMRS-GTR-164; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006;
Volume 164.

17. Rikimaru, A.; Roy, P.; Miyatake, S. Tropical forest cover density mapping. J. Trop. Ecol. 2002, 43, 39–47.
18. Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms

for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [CrossRef]
19. Pasqualotto, N.; D’Urso, G.; Bolognesi, S.F.; Belfiore, O.R.; Van Wittenberghe, S.; Delegido, J.; Pezzola, A.; Winschel, C.; Moreno, J.

Retrieval of evapotranspiration from Sentinel-2: Comparison of vegetation indices, semi-empirical models and SNAP biophysical
processor approach. Agronomy 2019, 9, 663. [CrossRef]

20. Kailath, T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 1967, 15, 52–60.
[CrossRef]

21. Marcal, A.R.; Mendonca, T.; Silva, C.S.; Pereira, M.A.; Rozeira, J. Evaluation of the Menzies method potential for automatic
dermoscopic image analysis. CompIMAGE 2012, 2012, 103–108.

22. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
23. Sutton, C.D. Classification and regression trees, bagging, and boosting. Handb. Stat. 2005, 24, 303–329.
24. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
25. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
26. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]

http://doi.org/10.3390/ijgi6080255
http://dx.doi.org/10.3390/rs10060911
http://dx.doi.org/10.3390/agronomy9090556
http://dx.doi.org/10.1016/j.rse.2018.02.050
http://dx.doi.org/10.1016/j.compag.2012.07.015
http://dx.doi.org/10.1016/j.rse.2015.03.028
http://dx.doi.org/10.1109/JSTARS.2016.2569162
http://dx.doi.org/10.5194/isprs-archives-XLII-1-W1-551-2017
http://dx.doi.org/10.1016/j.rse.2018.11.032
http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2020-1061-2020
http://dx.doi.org/10.1038/s41598-020-74215-5
http://dx.doi.org/10.2307/3235884
http://dx.doi.org/10.1016/0034-4257(88)90106-X
http://dx.doi.org/10.1078/0176-1617-00887
http://dx.doi.org/10.3390/agronomy9100663
http://dx.doi.org/10.1109/TCOM.1967.1089532
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/78.650093


Agronomy 2021, 11, 654 16 of 16

27. Löw, F.; Prishchepov, A.V.; Waldner, F.; Dubovyk, O.; Akramkhanov, A.; Biradar, C.; Lamers, J. Mapping cropland abandonment
in the Aral Sea Basin with MODIS time series. Remote Sens. 2018, 10, 159. [CrossRef]

28. Morell-Monzó, S.; Sebastiá-Frasquet, M.T.; Estornell, J. Land Use Classification of VHR Images for Mapping Small-Sized
Abandoned Citrus Plots by Using Spectral and Textural Information. Remote Sens. 2021, 13, 681. [CrossRef]

29. Punalekar, S.M.; Verhoef, A.; Quaife, T.L.; Humphries, D.; Bermingham, L.; Reynolds, C.K. Application of Sentinel-2A data
for pasture biomass monitoring using a physically based radiative transfer model. Remote Sens. Environ. 2018, 218, 207–220.
[CrossRef]

30. Amin, E.; Verrelst, J.; Rivera-Caicedo, J.P.; Pipia, L.; Ruiz-Verdú, A.; Moreno, J. Prototyping Sentinel-2 green LAI and brown LAI
products for cropland monitoring. Remote Sens. Environ. 2021, 255, 112168. [CrossRef]

31. Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine
learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012,
118, 259–272. [CrossRef]

32. Xie, J.; Jonas, T.; Rixen, C.; de Jong, R.; Garonna, I.; Notarnicola, C.; Asam, S.; Schaepman, M.E.; Kneubühler, M. Land surface
phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 2020,
725, 138380. [CrossRef] [PubMed]
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