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Abstract: The use of seeds with high physiological quality allows rapid growth and establishment
of seedlings in the field to be obtained. Therefore, the accuracy of the information obtained during
the determination of the physiological quality of seeds is of great importance. The objective was to
use generalized linear models, investigating which link function (Probit, Logit and Complementary
log-log) is suitable to predict T50 and uniformity during germination of soybean and corn seeds.
To perform the experiments, we used seeds from five commercial hybrids and/or cultivars of corn
and soybean. The germination speed was calculated by counting the germinated seeds and the
results were expressed in the form of proportions. Germination uniformity was calculated by the
difference in the times required for germination. The best model was selected according to the criteria
of the test of Deviance, AIC and BIC. The Logit model showed accurate results for most cultivars.
The evaluation of germination in the form of proportions considering the assumption of binomial
response is satisfactory, and the choice of the link function is dependent on the characteristics of
each lot and/or species evaluated. The use of this methodology makes it possible to estimate any
germination time and uniformity.

Keywords: physiological quality; vigor; Zea mays L.; Glycine max (L.) Merrill; link functions

1. Introduction

Physiological seed quality is the ability of the seed to perform vital functions, charac-
terized by germination, vigor and longevity, which directly affects the implantation of a
culture under field conditions. High-potential seeds guarantee the growth and develop-
ment of plants and the eventual yield of crops [1–3].

The correct identification of lots and/or cultivars with seeds of high physiological po-
tential is one of the main tasks of researchers and professionals working in seed physiology
and technology. For this, two basic physiological components are taken into account—
germination and vigor—these being the factors that theoretically govern the ability of seeds
to express their vital functions under biotic and abiotic conditions [4,5].

There are several ways to assess the physiological quality of a seed lot; however, the
most common method is the germination test [2,6]. As a result, the germination test is
performed to determine the final germination percentage of the seed lots. However, the
time for 50% of the seeds to germinate (T50) and the germination uniformity, which is the
time difference between two percentage germinations and other defined parameters [7–10],
complement the germination data and can indicate the performance of seeds in the field.

To assess which seed lot has superior physiological quality, the response variable
(percentage of germinated seeds) is commonly assessed by non-linear regressions, such as
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the Hill function [7,10,11]. Another way used to analyze the germination data is through
linearization, in which a link function is used, highlighting the Probit function as the most
used [12–14].

However, such approaches are imprecise, as they consider the response variable
to be continuous. For instance, in the use of non-linear regressions, the proportions of
germinated seeds are cumulative and residual autocorrelation may occur [15], whereas
in the use of linearization, the germination percentages are transformed into Probit units,
considering that the data follow normal distribution, which ends up generating inaccurate
models or simply a lack of linearization [14,16].

As the germination process is qualitative, with a binary result—that is, the seed does
or not germinate—errors are not normally distributed. Thus, the classic regression analysis
approach is not indicated [15]. An alternative for analyzing this type of data is the theory
of generalized linear models, with the binomial distribution being a particular case and
indicated for proportion data [13,17,18]. Therefore, our hypothesis is that the generalized
linear models are more indicative, since it may provide the most accurate information
about the problem exposed [19].

In this context, the objective of this work was to use the generalized linear models,
investigating which link function (Probit, Logit and Complementary log-log) is suitable to
predict T50 and uniformity during germination of soybean and corn seeds.

2. Materials and Methods
2.1. Plant material

The commercial corn seeds used were: AS 1633 PRO3, 2B587 RR, 2A401PW, AL
Bandeirante and BRS 4103. The first three refer to hybrid corn seeds, while the last two are
cultivars. The commercial soybean cultivars used were: DS59716 IPRO, CD2737 RR, CD251
RR, CD2820 IPRO and CD2857 RR. Corn seeds were produced in the center of southern
Brazil and soybean seeds were produced in the central region of Brazil (Goiás Province)
grown in the crop season of 2016/17.

2.2. Germination, T50 and Uniformity Study

The corn and soybean seeds were distributed on sheets of paper towels, moistened
with an amount of water equivalent to 2.5 times the dry paper mass in Petri dishes. For each
hybrid and/or cultivar, 20 seeds were used with four replications at 15 independent points
in time. Then, the Petri dishes were transferred to a BOD (Biochemical Oxygen Demand)
germinator type, set at a constant temperature of 25 ◦C. In Table 1, the average water
content of seeds for each hybrid and/or cultivar used in this research is demonstrated.

Table 1. Average water content for corn and soybean hybrids and/or cultivars.

Corn Soybean

Hybrids/Cultivars * (%U) Cultivars * (%U)

AS 1633 PRO3 10.72 DS59716 IPRO 11.73
2B587 RR 11.36 CD2737 RR 11.82
2A401PW 12.00 CD251 RR 12.00

AL Bandeirante 11.15 CD2820 IPRO 12.26
BRS 4103 11.42 CD2857 RR 12.60

* (%U) = average water content calculated based on wet weight [20].

The counting of the germinated seeds was carried out at regular intervals of 6, 12 and
24 h and continued until 204 h (15 independent points in time), with the protrusion of the
primary root ≥2 mm being adopted as the germination criterion [20]. The results were
expressed by the percentage of the number of seeds germinated in each time interval and
the number of viable seeds obtained at the end of the experiment, given by a sequence of
Bernoulli tests.
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2.3. Binomial Regression Models and Selection Criteria

Since the response variable, that is, the proportion of seeds germinated over time, has
an exponential distribution, the use of the generalized linear models proposed by [21] was
considered. These models are made up of three parts: a random component of the model
in which the response variable has a distribution belonging to the exponential family;
a systematic component formed by a set of independent variables; and the link function,
which makes the link between the random component and the systematic component.

The default distribution assumed for the random variable Yi, i = 1,...n, which is the
number of seeds germinated, is the binomial with parameter mi and probability of success
πi—that is, Yi ~ Binomial (mi, πi). Thus, the link functions used for binomial regression
were Probit, Logit and Complementary log-log. The canonical forms of these models are
presented below and, according to [17], the use of these functions in canonical form has
as advantages an adequate scale for modeling with practical interpretation of the model
parameters and the simplification of the estimation algorithms. Thus, these models in
canonical form are:

g(µi) = Φ−1 (µi/mi) = Φ−1(πi) (1)

g(µi) = log
(

µi
mi − µi

)
= log

(
πi

1− πi

)
(2)

g(µi) = log
{
−log

(
1− µi

mi

)}
= log{−log(1− πi)} (3)

in which µi is the mean and Φ−1 is the standard normal cumulative distribution function.
The model parameters were obtained using the maximum likelihood method. It is

recommended to use the maximum likelihood method due to its excellent, consistent
and asymptotic properties [17,21]. When the parameters β0 and β1 were obtained, the
adjustment was verified by the Deviance criteria and Akaike (AIC) and Bayesian (BIC)
information criteria.

The Deviance criterion is used as a measure of discrepancy, measuring the quality of
fit of the models; for this reason, the log likelihood rate statistic is used. By this criterion,
a model is considered ideal when it results in a significantly small value of the deviation,
that is, generating evidence that, for a small number of parameters, an adjustment as good
as the saturated model is obtained [21,22]. With regard to binomial distribution, Deviance
was defined by:

DB = 2
n

∑
i=1

[
yi log

(
yi
µ̂i

)
+ (mi − yi)log

(
mi − yi
mi − µ̂i

)]
(4)

in which yi represents the realization of the random variable; mi = n: sample size; µ̂i, i = 1,
2,..., n, are the adjusted values for the model of interest.

Thus, when Deviance, divided by the number of degrees of freedom, is not close to 1,
there is an indication that the model may be poorly adjusted, since the binomial models
have a dispersion parameter ψ = 1, which is fixed. Values with parameter dispersion ψ < 1
and ψ > 1 indicate underdispersion and overdispersion, respectively.

The checked sub-effect or overdispersion is incorporated into a constant parameter
dispersion (ψ) using the maximum estimation method of “quasi-likelihood”. The disper-
sion parameter ψ was estimated from the square root of the Deviance quotient by the
degrees of freedom. Thus, with this new dispersion parameter, the standard errors of the
parameters (β0 and β1) were corrected, and the inferences in the significance tests were
reformulated. Such correction was performed as described by Equation (5):

SEcorrected = ψ̂ × SE (5)

in which SE and SEcorrected is the standard error and standard error corrected, respectively.
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Among the more specific criteria and those used in the literature to assess quality
setting are the Akaike (AIC) [23] and Bayesian (BIC) information criteria [24]. Both criteria
penalize the lack of adjustment to the data and the complexity of the model, so that the
lowest values are preferred [19]. The expressions are shown in (6) and (7), respectively.

AIC = −2LL + 2p (6)

BIC = −2LL + p log(n) (7)

in which p is the number of parameters estimated in the model, LL is the log likelihood
evaluated at the value of the estimated parameters; and n is the total number of observa-
tions used.

2.4. Germination Times and Germination Uniformity

After selecting the most parsimonious model, the times needed to germinate were
calculated at 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90 and 99% for each corn and soybean
hybrid and/or cultivar, by repetition. Germination uniformity was calculated by the
difference in germination times of 75 and 25% (U7525).

The following formulas and Table 2 were used to calculate each time already men-
tioned, depending on the model selected:

Probit
(
θ̂p
)
=

1
β̂1

[
Φ−1(p)− β̂0

]
(8)

Logit
(
θ̂p
)
=

1
β̂1

[
log
(

p
1− p

)
− β̂0

]
(9)

CLL
(
θ̂p
)
=

1
β̂1

{
log[− log(1− p)]− β̂0

}
(10)

in which θ̂p is specific time for a determined p-value and (β̂0, β̂1) is the pair of estimates for
a simple linear regression model.

Table 2. Standard table for calculating the germination probabilities obtained by the Probit, Logit and Complementary
log-log (CLL) functions.

% Germination
Probability Probit * Logit ** CLL ***

p = (%Germination/100) Φ−1(p) log(p/(1−p)) log[−log(1−p)]

1 0.0100 −2.3263 −4.5951 −4.6001
2 0.0200 −2.0537 −3.8918 −3.9019
3 0.0300 −1.8808 −3.4761 −3.4914
4 0.0400 −1.7507 −3.1781 −3.1985
5 0.0500 −1.6449 −2.9444 −2.9702
6 0.0600 −1.55478 −2.7515 −2.7826
7 0.0700 −1.4758 −2.5867 −2.6232
8 0.0800 −1.4051 −2.4423 −2.4843
9 0.0900 −1.3408 −2.3136 −2.3612

10 0.1000 −1.2816 −2.1972 −2.2504
16 0.1600 −0.9945 −1.6582 −1.7467
20 0.2000 −0.8416 −1.3863 −1.4999
25 0.2500 −0.6745 −1.0986 −1.2459
30 0.3000 −0.5244 −0.8473 −1.0309
40 0.4000 −0.2533 −0.4055 −0.6717
50 0.5000 0.0000 0.000 −0.3665
60 0.6000 0.2533 0.4055 −0.0874
70 0.7000 0.5244 0.8473 0.1856
75 0.7500 0.6745 1.0986 0.3266
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Table 2. Cont.

% Germination
Probability Probit * Logit ** CLL ***

p = (%Germination/100) Φ−1(p) log(p/(1−p)) log[−log(1−p)]

80 0.8000 0.8416 1.3863 0.4759
84 0.8400 0.9945 1.6582 0.6057
90 0.9000 1.2816 2.1972 0.8340
91 0.9100 1.3408 2.3136 0.8788
92 0.9200 1.4051 2.4423 0.9265
93 0.9300 1.4758 2.5867 0.9780
94 0.9400 1.5548 2.7515 1.0344
95 0.9500 1.6449 2.9444 1.0972
96 0.9600 1.7507 3.1781 1.1690
97 0.9700 1.8808 3.4761 1.2546
98 0.9800 2.0537 3.8918 1.3641
99 0.9900 2.3263 4.5951 1.5272

* Values in Probit units; ** Values in Logit units; *** Values in CLL units.

2.5. Statistical Analysis of Germination Times

The germination times T10, T50, T99 and U7525 (uniformity) were submitted to the
Shapiro–Wilk (modified) normality test [25], followed by univariate analysis, considering the
completely randomized design with the application of Fisher’s LSD test, at 5% probability.

Subsequently, aiming to know the germination behavior of corn and soybean hybrids
and/or cultivars globally, the germination times (T10, T20, T30, T40, T50, T60, T70, T80,
T90 and T99) and uniformity (U7525) were submitted to the multivariate classificatory tech-
nique of grouping by the Ward method, using the Euclidean distance, by the standardized
data matrix for each variable by the formula:

Z =
X− X

S
(11)

in which Z is the standardized value observed; X is the observed value; X is the average of
the observed values; and S is the standard deviation of the observed values.

2.6. Computational Aspects

The work was carried out using SAS Software (Version 9.4, Cary, NC, USA) through
GENMOD procedures for model adjustments and selection, and GLM for univariate analy-
ses. For multivariate analysis and preparation of graphics, we used MINITAB Statistical
Software (Version 17, State College, PA, USA).

3. Results and Discussion

In Figure 1 (experimental data), we present the representations of the germination
process for the different hybrids and/or cultivars of corn and soybeans. Initially, germi-
nation is slow, with a low proportion, then there is a period of acceleration and finally,
stabilization with all viable seeds germinating.
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Figure 1. Germination process of corn and soybean hybrids and/or cultivars (mean ± standard deviation of germination
proportions at 15 independent points in time).
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When adjusting the Probit, Logit and Probit, and Logit and Complementary log-log
link functions for the 10 hybrids and/or cultivars tested, it was observed that no cultivar
presented adequate adjustment simultaneously by the link functions when considering
the Deviance criterion. The corn hybrid and soybean cultivars with dispersion parameter
closest to 1 were AS 1633 PRO3 and CD251 RR, both adjusted by the Logit link function. The
overdispersion phenomenon was observed in six cultivars simultaneously, with functions
by link values to Deviance from 1.3, whereas only the 4103 corn cultivar BRS presented
underdispersion, indicated by three functions being used (Table 3).

Table 3. Criteria for adjustment and selection of models for corn and soybean hybrids and/or cultivars.

Corn

Cultivars Functions Deviance AIC BIC

AS 1633 PRO3
Probit 1.2323 94.97 99.16
Logit 1.0959 89.24 92.81
* CLL 2.3024 139.92 143.49

2B587 RR
Probit 2.1019 175.06 179.11
Logit 1.7032 153.53 157.58
* CLL 4.2072 288.75 292.8

2A401PW
Probit 0.6858 63.7 67.27
Logit 0.5467 57.86 61.43
* CLL 1.7637 108.97 112.54

AL Bandeirante
Probit 1.8101 102.83 105.99
Logit 1.8553 104.36 107.53
* CLL 2.2246 116.92 120.09

BRS 4103
Probit 0.3884 77.05 80.43
Logit 0.4170 78.14 81.52
* CLL 0.3350 75.02 78.4

Soybean

Hybrids/Cultivars Functions Deviance AIC BIC

DS59716 IPRO
Probit 1.5779 104.76 107.93
Logit 1.6267 106.42 109.59
* CLL 2.0302 120.14 123.31

CD2737 RR
Probit 1.4961 100.38 103.55
Logit 1.3030 93.81 96.98
* CLL 2.8422 525.07 529.18

CD251 RR
Probit 1.1934 89.73 92.9
Logit 1.0035 83.27 86.44
* CLL 2.4862 133.69 136.85

CD2820 IPRO
Probit 1.8319 133.17 136.83
Logit 1.7514 129.47 133.21
* CLL 3.1479 193.71 197.45

CD2857 RR
Probit 4.3249 259.93 263.67
Logit 2.8754 193.25 196.99
* CLL 7.6990 415.14 418.88

* Complementary log-log; Akaike information criterion (AIC) and Bayesian information criterion (BIC).

The phenomena of under- and overdispersion were defined by [17], as a variance
of the response variable above or below the variance expected by the model adopted.
The main consequences of these phenomena are the estimation of standard errors, which
consequently can induce an inappropriate choice of models, potentially compromising the
conclusions [26]. Even in the face of researchers’ efforts to control experimental conditions,
the occurrence of phenomena such as overdispersion is common for agricultural systems,
as there is great variability [27,28].
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Among the tested link functions, the complementary log-log was the one that gave
the highest values for Deviance—in other words, most models formulated with that link
function are overdispersed, except BRS 4103. While functions Probit and Logit showed the
smallest deviations, the latter being closer, the Logit function was the one that provided
the best adjustments, presenting the appropriate adjustment in 7 of the 10 hybrids and/or
cultivars used in this research (Table 3).

These results demonstrate the importance of considering the choice of the correct
link function, since the use of inaccurate models is potentially generating misleading
conclusions [26,28]. Although the logit model is currently preferred in some areas—for
example, in biometrics [22,29,30]—in this study, smaller deviances were obtained for most
hybrid and/or cultivar studied; it is necessary to study this by comparing the link seeking
functions that best describe the probability of interest [31].

For all hybrids and/or cultivars tested, there was agreement between the Deviance
criterion and the AIC and BIC information criteria—that is, those functions with the least
deviations were also those with the lowest AIC and BIC values (Table 3). This agreement
facilitated the selection of the most parsimonious models to evaluate the germination of
corn and soybean seeds. Thus, the Probit model was chosen to evaluate the germination of
two cultivars, the Logit model of seven cultivars and the Complementary log-log of one
cultivar (Table 4).

Table 4. Estimation of the parameters of the binomial regression models adjusted to the proportion data in the germination
of corn and soybeans.

Corn

Hybrids/
Cultivars Functions Parameter Estimated SE SEcorrected p Value p

Valuecorrected

AS 1633
PRO3

Logit
β̂0 −8.6418 0.7731 0.8093 <0.0001 <0.0001
β̂1 0.1653 0.0158 0.0165 <0.0001 <0.0001
ψ 1.0468 - - - -

2B587 RR Logit
β̂0 −5.9099 0.3861 0.5039 <0.0001 <0.0001
β̂1 0.1009 0.0074 0.0096 <0.0001 <0.0001
ψ 1.3051 - - - -

2A401PW Logit
β̂0 −12.9499 1.2264 0.9068 <0.0001 <0.0001
β̂1 0.2417 0.0237 0.0175 <0.0001 <0.0001
ψ 0.7394 - - - -

AL
Bandeirante Probit

β̂0 −5.8063 0.4596 0.6183 <0.0001 <0.0001
β̂1 0.1616 0.0126 0.0170 <0.0001 <0.0001
ψ 1.3454 - - - -

BRS 4103 CLL
β̂0 −6.0826 0.4315 0.2497 <0.0001 <0.0001
β̂1 0.1521 0.0108 0.0063 <0.0001 <0.0001
ψ 0.5788 - - - -

Soybean

Cultivars Functions Parameter Estimated SE SEcorrected p value p
valuecorrected

DS59716
IPRO Probit

β̂0 −4.4746 0.3207 0.4028 <0.0001 <0.0001
β̂1 0.1291 0.0091 0.0114 <0.0001 <0.0001
ψ 1.2562 - - - -

CD2737 RR Logit
β̂0 −7.1362 0.5913 0.6749 <0.0001 <0.0001
β̂1 0.2666 0.0214 0.0245 <0.0001 <0.0001
ψ 1.1415 - - - -

CD251 RR Logit
β̂0 −7.5645 0.6589 0.6600 <0.0001 <0.0001
β̂1 0.2810 0.0238 0.0239 <0.0001 <0.0001
ψ 1.0017 - - - -



Agronomy 2021, 11, 588 9 of 16

Table 4. Cont.

Corn

Hybrids/
Cultivars Functions Parameter Estimated SE SEcorrected p Value p

Valuecorrected

CD2820
IPRO

Logit
β̂0 −7.4894 0.5670 0.7504 <0.0001 <0.0001
β̂1 0.1410 0.0116 0.1110 <0.0001 <0.0001
ψ 1.3234 - - - -

CD2857 RR Logit
β̂0 −6.0158 0.4445 0.7537 <0.0001 <0.0001
β̂1 0.1799 0.0130 0.0221 <0.0001 <0.0001
ψ 1.6957 - - - -

Estimated parameters at the 5% probability level; β̂0 = intercept; β̂1 = slope; ψ = scale parameter calculated by the deviation divided by the
degrees of freedom; SE = standard error; and SEcorrected = standard error corrected.

The information criteria presented penalize the lack of adjustment to the data and
the complexity of the model; therefore, models with lower values were chosen [19,32].
According to these criteria, the Logit function stands out as a good alternative to evaluate
the germination of corn and soybean seeds, generating theoretical bases for other areas,
such as, for example, in seed science and technology, countering the idea that the model
Probit should always be used to assess physiological quality, from germination to longevity
in thermal models [12,14].

Keeping the focus on the estimation of the dispersion parameter, the selected models
had their standard errors of the estimates corrected by quasi-likelihood using Deviance
to estimate the constant dispersion parameter, where it was used in the procedure in (5).
With the application of this correction, as expected, standard errors showed an increase for
models with overdispersion and a decrease for models with subdispersion; however, the
significance of the parameters was not affected (Table 4).

The use of quasi-likelihood to correct estimated standard errors is recommended
by [33] and has been adopted in seed germination studies [18,29], in entomology data [34,35],
in the assessment of ecological data [26], and in the modeling of the number and dry mat-
ter mass of Rhizobium nodules in bean culture [28]. Therefore, there is a solid body of
literature on the use of this methodology.

With the selected models (Table 4), it is possible to estimate the germination times of
interest to the researcher, using the formulas presented in (8), (9) and (10). The average
germination time or time required for 50% of the seeds used in the germination experiments
(T50) is considered to be the preferred one to describe the germination and physiological
quality of the seeds submitted to different treatments or to compare different batches of
seeds [7–9,11,14].

In the case of the Probit and Logit models, the T50 can be obtained easily, since the
parameters β0 and β1 form a linear equation of the type y = a ± bx, where, upon equaling
the terms of the equation to zero, the T50 is obtained, because both models have symmetry
around zero. Thus, to calculate the T50, we can use the following formula:

T50 = − β̂0

β̂1
(12)

in which β̂0 is the intercept and β̂1 the slope angle.
Table 5 shows the values for T50 obtained in the 10 hybrids and/or cultivars, adopting

the models provided in Table 4 and the expected interval for this parameter obtained
in an experimental way. Thus, we can consider the methodology of generalized linear
models, adopting the efficient binomial distribution to evaluate the germination of corn
and soybeans, since all the results estimated by the chosen functions are contained in the
experimental intervals.
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Table 5. Estimates of the T50 obtained from the equations in Table 4 and the experimental interval in
which the T50 is contained.

Hybrids/Cultivars T50 (95% CI)
T50 (Experimental

Interval)

Corn

AS 1633 PRO3 52.23 (48.90; 56.76) h 48–60 h
2B587 RR 58.57 (54.42; 62.27) h 48–60 h
2A401PW 53.57 (49.67; 57.52) h 48–60 h

AL Bandeirante 35.93 (32.02; 39.87) h 30–36 h
BRS 4103 37.59 (33.65; 41.50) h 36–42 h

Cultivars T50 (95% CI)
T50 (Experimental

Interval)

Soybean

DS59716 IPRO 34.66 (29.56; 39.70) h 30–36 h
CD2737 RR 26.77 (21.73; 31.87) h 24–30 h
CD251 RR 26.92 (21.86; 32.01) h 24–30 h

CD2820 IPRO 53.12 (48.31; 58.45) h 48–60 h
CD2857 RR 33.44 (28.38; 38.52) h 30–36 h

95% CI = 95% confidence interval.

As much as authors defend the use of linear models to estimate germination times, con-
sidering the assumption of normality of the data [12,14,36], often a simple transformation
of the percentages of germination using a certain link function, such as the Probit model
(inv. Norm function in Microsoft Excel) does not allow the dataset to be linearized [14,16].
Thus, an approach considering germination as a binary variable, in which seeds may or
may not germinate, has been more indicated [13,18].

It is worth mentioning that another differential of the work is that the calculated
germination times are obtained based on the number of viable seeds—that is, the correct
definition for the T50 in this research is the time required for 50% of the viable seeds
to germinate, not requiring additional formulas to calculate the actual amount of germi-
nated seeds.

In addition to the traditional T50, other parameters can be used to evaluate the
germination of a seed batch; for example, it is possible to calculate the time for 10% of
viable seeds to germinate, or it is also necessary to identify whether two batches with
final germinations have the same germination uniformity or even understand germination
as a global process, not being restricted to just a few parameters that can lead to false
conclusions about the physiological quality of a seed lot.

As an example of using other parameters to assess germination, we have the work
of [7,11], using Hill’s nonlinear function of four parameters to estimate beyond T50, the
maximum germination time and germination uniformity, which is the time interval be-
tween two predefined germinations. The germination times of 10 and 90% of the seeds
have also been calculated [14,37] to evaluate the physiological quality of seeds. However,
the two most widespread statistics for evaluating the germination of a seed lot are the T50
and germination uniformities [7,10,37].

For uniformity of germination in contrast to the T50, there is no standardization, being
adopted in several ways: U9010 (time for 90% germination—time for 10% germination) [37],
U8416 (time for 84% germination—time for 16% germination) [10], U7525 (time for 75%
germination—time for 25% germination) [7], the latter being the most traditional.

Thus, seed lots or cultivars that exhibit the lowest values of T50 or any other germina-
tion time can be considered of higher physiological quality; the same reasoning is valid for
germination uniformity [7,8,37].

Currently, research involving the evaluation of seed germination to determine previ-
ously mentioned parameters largely uses non-linear models or some link function directly
on the percentage data, without paying attention to the type of variable studied and its
probability distribution, which often causes convergence problems or even severe errors in
parameter estimation [7,10,14]. However, when we use generalized linear models, these
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difficulties are overcome, as we are working with a simple linear equation. As a demonstra-
tion, the germination of the corn cultivar BRS 4103 was modeled by the Complementary
log-log function, showing the T50 and the germination uniformity (see Figure 2). The sub-
stitution of T50 = 37.59 in the equation shown in Figure 2 will return the value of ~ −0.3665,
corresponding to 50% germination as indicated in Table 2.

Figure 2. Germination times of BRS 4103 corn cultivar estimated by the Complementary log-log link function. T25 = 31.80 h;
T50 = 37.59 h; T75 = 42.14 h and uniformity of germination U7525. At 5% probability.

Following selection of link functions better suited to evaluate the germination of
each plot, germination times T10, T50, T99 and U7525 were determined for all sampling
data, following which, analysis of variance was performed complemented with the means
test (LSD) in order to compare the physiological potential of corn and soybean cultivars.
According to the (modified) Shapiro–Wilk test [25], the four parameters evaluated have
a normal distribution. The results of the analysis of variance revealed that the F test
was significant for all corn parameters, whereas, for soybean cultivars, only germination
uniformity was not significant at 5% probability.

When evaluating T10, it was possible to observe that the corn cultivar 2A401PW was
the one that showed the slowest germination, while the cultivars AL Bandeirante and BRS
4103 showed faster germinations. For evaluated soybean varieties, cultivating CD2820
IPRO showed slower germination, different to other cultivars using twice the time to reach
10% germination, compared with cultivars CD251 RR and CD2737 RR (Table 7).

Table 6. Germination times and uniformity for corn and soybean hybrids and/or cultivars.

Hybrids/Cultivars T10(95% IC) * T50(95% IC) * T99(95% IC) * U7525(95% IC)
#

Corn

2A401PW 44.83 (41.43; 48.22) a 53.57 (49.67; 57.52) a 71.94 (59.73; 84.14) b 8.77 (4.33; 13.21) b
AS 1633 PRO3 40.15 (36.76; 43.55) ab 52.23 (48.90; 56.76) a 79.34 (67.14; 91.55) b 12.68 (8.24; 17.12) b

2B587 RR 37.44 (34.04; 40.83) b 58.57 (54.42; 62.27) a 102.07 (89.9; 114.3) a 20.91 (16.47; 25.35) a
AL Bandeirante 29.45 (26.06; 32.85) c 35.93 (32.02; 39.87) b 47.73 (35.53; 59.94) c 6.83 (2.40; 11.27) b

BRS 4103 25.26 (21.86; 28.65) c 37.59 (33.65; 41.50) b 49.96 (37.75; 62.16) c 10.28 (5.84; 14.72) b



Agronomy 2021, 11, 588 12 of 16

Table 7. Germination times and uniformity for corn and soybean hybrids and/or cultivars.

Cultivars T10(95% IC) * T50(95% IC) * T99(95% IC) * U7525(95% IC)
#

Soybean

CD2820 IPRO 40.30 (34.69; 45.90) a 53.12 (48.31; 58.45) a 80.74 (71.17; 90.30) a 13.08 (9.59; 16.58) ns
DS59716 IPRO 25.73 (20.12; 31.33) b 34.66 (29.56; 39.70) b 50.79 (41.22; 60.36) bc 9.37 (5.88; 12.86) ns

CD2857 RR 22.05 (16.44; 27.66) b 33.44 (28.38; 38.52) bc 57.29 (47.73; 66.86) b 11.40 (7.91; 14.90) ns
CD251 RR 19.44 (13.84; 25.05) b 26.92 (21.86; 32.01) c 42.62 (33.05; 52.18) c 7.50 (4.00; 10.99) ns
CD2737 RR 19.01 (13.40; 24.61) b 26.77 (21.73; 31.87) c 43.11 (33.55; 52.68) c 7.80 (4.30; 11.29) ns

* T10(95% CI), T50(95% CI) and T99(95% CI) = time required for germination of 10, 50 and 99% of viable seeds and 95% confidence interval; #

U7525(95% CI) = germination uniformity given by the difference between the 75th and 25% percentiles and 95% confidence interval; ns = not
significant at the 5% probability level; averages followed by equal lowercase letters in the columns do not differ between themselves by
Fisher’s LSD test at 5%.

The behavior of cultivars at T50 was altered in relation to T10, only for cultivar 2B587
RR, the corn cultivars AL Bandeirante and BRS 4103 were also faster in reaching 50%
germination in approximately 16 h. For soybeans, the cultivar CD2820 IPRO continued to
be less vigorous, whereas cultivars CD251 RR and CD2737 RR continued to exhibit greater
physiological quality (Table 7).

The time for 99% of germinated seeds was calculated in order to determine the
behavior of hybrids and/or cultivars when they are near to complete 100% germination.
Thus, it is observed that the corn hybrid 2B587 RR, which did not present statistical
difference in the previous times with the cultivar AS 1633 PRO3, showed difference in
more than 22 h. This differentiation may be due to uniformity since the corn hybrid 2B587
RR proved to be less uniform. The best performing corn cultivar in time T99 was AL
Bandeirante, also being the most uniform. For soybean cultivars at time T99, it was proved
that CD2820 IPRO is the least vigorous and the CD251 RR and CD2737 RR cultivars have
the highest physiological quality.

The lower or higher speed of germination of one cultivar in relation to the other is due
to the time spent in the restoration of the damaged organelles and tissues before beginning
the development of the embryonic axis, during the germination process [8,38]. According
to [38], cultivars or seed lots with higher germination speed and uniformity are considered
the most vigorous.

The effect of a seed lot can be defined as the sum of the properties that determine
the activity and performance of seed lots as acceptable in germination in a wide range of
environments [4,5]. Thus, the identification of high-performance seed lots or cultivars is an
important initiative for the success of agricultural production [2].

Under these assumptions, we list the corn cultivars AL Bandeirante and BRS 4103
and the soybean cultivars CD251 RR and CD2737 RR as those of greater vigor based on
germination and uniformity times. Several authors who, using a simple radicle count,
managed to predict the vigor of several species [8,39,40], support this statement.

The higher vigor of hybrids and/or cultivars is evidenced when analyzing germination
in a broader context, considering various germination times (T10, T20, T30, T40, T50, T60,
T70, T80, T90 and T99) and uniformity standard (U7525) through multivariate classificatory
analysis. In general, the cophenetic coefficient was above 0.90, indicating little distortion
with the original data matrix [41]. It was possible to verify the existence of three groups, in
the dendrogram, for both corn and soybeans (Figure 3).



Agronomy 2021, 11, 588 13 of 16

Figure 3. Dendrogram including germination and uniformity times for corn (A) and soybean (B) seeds. I, II and III = groups
formed are after multivariate analysis by the Ward method using the Euclidean distance.

The corn plants with smaller distance were AL Bandeirante and BRS 4103, with
Euclidean distance of 0.96 (Table 8), or had similar physiological quality, confirming the
results for T10, T50 and T99 (Table 7). The greatest difference in physiological quality
was observed between the cultivars BRS 4103 and 2B587 RR with Euclidean distance
greater than 7 (Table 8). Regarding soybean cultivars, the closest or less distant were
cultivars CD2737 and CD251 RR, with Euclidean distance equal to 0.15 (Table 8), confirming
the results introduced previously (Table 5). Additionally, the most distant physiological
potential was observed for the cultivar CD2820 IPRO with cultivars CD251 RR and CD2737
RR, with Euclidean distance equal to 8.02 (Table 8).
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Table 8. Euclidean distances between corn and soybean hybrids and/or cultivars obtained using Ward’s method.

Corn

Hybrids/Cultivars 2A401PW 2B587 RR AL Bandeirante AS 1633 PRO3 BRS 4103

2A401PW 0.00 0.00 0.00 0.00 0.00
2B587 RR 3.34 0.00 0.00 0.00 0.00

AL Bandeirante 5.26 7.15 # 0.00 0.00 0.00
AS 1633 PRO3 1.13 2.53 5.07 0.00 0.00

BRS 4103 5.22 6.71 0.96 ** 4.85 0.00

Soybean

Cultivars CD251 RR CD2737 RR CD2820 IPRO CD2857 RR DS59716 IPRO

CD251 RR 0.00 0.00 0.00 0.00 0.00
CD2737 RR 0.15 ** 0.00 0.00 0.00 0.00

CD2820 IPRO 8.02 # 8.02 # 0.00 0.00 0.00
CD2857 RR 2.61 2.54 5.79 0.00 0.00

DS59716 IPRO 2.32 2.31 5.72 1.11 0.00

** Smallest and # largest distance obtained.

4. Conclusions

Germination evaluation in the form of proportions, considering the assumption of
binomial response, is satisfactory, and the choice of the link function will depend on the
characteristics of each lot and/or species evaluated. The presented methodology allows
calculation of any germination time and uniformity in a more robust way.
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