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Abstract: Bupleurum (Apiaceae) is widely used in traditional Chinese medicine to treat inflammatory
and infectious diseases. Although roots are the only used parts in China, other countries use the
whole plant. The yield and quality of Bupleurum depend mainly on fertilizers, especially nitrogen.
The current study aimed to assess the relationship between the nitrogen fertilization level and the
quality and metabolomic response of different parts (flowers, main shoots, lateral shoots and roots)
of Bupleurum to three nitrogen fertilization levels (control group: 0 kg·ha−1; low-nitrogen group:
55 kg·ha−1; high-nitrogen group: 110 kg·ha−1). The results showed that a high nitrogen level
increases Bupleurum yield and quality parameters only in aerial parts, especially flowers, but has
no significant effect on roots. The HPLC method was exploited for simultaneous quantification of
three saikosaponins (A, C and D), which are the main bioactive components in the plant. It was
found that the total content of saikosaponins decreased with high nitrogen fertilization in roots but
significantly increased in flowers. Moreover, nitrogen fertilizer promoted the content of saikosaponin
A but inhibited saikosaponins C and saikosaponins D in most parts of the plant. To study the
response of primary metabolites, we adopted gas chromatography–mass spectrometry (GC−MS)
analysis; 84 metabolites were identified that were mostly up-regulated with a high nitrogen level in
flowers but down-regulated in roots. Four differential metabolites—D-fructose, lactose, ether and
glycerol—were recognized as key metabolites in Bupleurum under nitrogen fertilization. Meanwhile,
The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results explained that the impact
of nitrogen fertilization on Bupleurum was attributed to the C-metabolism, N-metabolism, and lipids
metabolism. This research put forward new insights into potential mechanisms and the relationship
between the quality and yield of Bupleurum and nitrogen fertilization.

Keywords: Bupleurum L.; metabolite profiles; nitrogen application; GC−MS

1. Introduction

Among the essential plant nutrients, nitrogen (N), phosphorus (P) and potassium
(K) are considered indispensable macronutrients for plant growth, development, and
yield; thus, they play vital roles in many aspects of plant metabolism [1]. Nitrogen is
the most important nutrient element for plant growth, physiology and the regulation of
carbohydrates. It is a constituent of proteins, chlorophyll, alkaloids and amino acids [2]. In
modern agriculture, nitrogen fertilizer is largely used to improve quality, increase yield and
nourish plants. With the help of cell division, nitrogen fertilizer facilitates plant growth,
protein percent, sucrose content and growth rate in sweet sorghum [3]. So far, lots of
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research has been done on the absorption, assimilation and uptake of nitrogen fertilizer and
its influence on plant development [4,5]. Therefore, proper nitrogen supplies are imperative
to enhance yield and quality, as well as to promote plant viability under biotic [6] and abiotic
stresses [7]. However, excessive application of fertilizer may disturb the nutrient balance,
reduce the efficiency of fertilizer utilization and result in environmental pollution [8,9].
The quality and development of Bupleurum are restricted by nutritional requirements—too
little or too many nutrients may restrain the growth and development. Furthermore, it is
imperative to investigate the effect of nitrogen application on the metabolism of Bupleurum
to guarantee the quality and yield.

Bupleurum L. is one of the largest genera in the Apiaceae family, with about 200 species
all over the world. Forty-two species, including 20 endemics [10], are recorded in the
flora of China. The dried roots of Bupleurum scorzonerifolium Wild. and Bupleurum chinense
DC. are known as Radix Bupleuri (Chaihu), which is formally included in the Chinese
Pharmacopoeia [11]. As traditional Chinese medicine, roots have great therapeutic effects
on the treatment of common coughs, fevers and influenza hepatitis, malaria, menoxenia
and so on [12–14]. Bupleurum L. are annual or perennial herbs, but excessive growth of
Bupleurum extremely reduces the root biomass accumulation and secondary metabolite
biosynthesis [15]. The biomasses of the aboveground part of Bupleurum account for about
38.1% of the whole plant, while the roots could not account for 20% [16]. Therefore, the
aboveground parts of Bupleurum are used as anti-inflammatory drugs or topical antisep-
tics [17]; however, in the southeast area of China, all plant parts are used as medicines. To
determine whether the aerial parts of Bupleurum could be used instead of roots or not, it is
necessary to reveal the discrepancy in the types of metabolites among the different organs
of Bupleurum.

Saikosaponins are the main active components of Bupleurum belonging to the penta-
cyclic triterpenoid oleanane-type compound. The biosynthesis of saikosaponins is mainly
through the mevalonic acid (MVA) pathway in the cytoplasm and methylerythritol phos-
phate (MEP) pathway in the plastid [18]. The MVA pathway uses acetyl-CoA as the starting
substrate and undergoes a six-step condensation reaction to generate IPP, and the MEP
pathway uses pyruvate and glyceraldehyde 3-phosphate as the starting substrate to syn-
thesize IPP through a seven-step reaction [19]. Among them, the MVA pathway plays
a leading role in the biosynthesis of triterpene saponins [20–22]. These pathways in the
early stages of biosynthesis provide a variety of precursors for secondary metabolites, for
example, the aromatic amino acids tyrosine, tryptophan and phenylalanine. The exact link
between primary metabolites and saikosaponins accumulation remains largely unknown,
but it is closely related to pyruvate, acetyl-CoA and glyceraldehyde 3-phosphate. Due
to the important role of Bupleurum as a medicinal compound, it is necessary to solve this
problem. The regulation of saikosaponins and main compounds significantly affects the
metabolic composition of the whole plant of Bupleurum.

Metabolomics have been proverbially used as a formidable method to analyze a
lot of compounds from plant species, supplying a wide vision for the shoots to adjust
metabolic processes [23,24]. Metabolomics include the quantitative, qualitative and dy-
namic research of the whole endogenous small molecules within organisms, organs, tissues
and even cells under specific environmental conditions and at a specific time. Actually,
many metabolomics studies have been conducted to comprehend the mechanism of a
plant’s response to abiotic stress, for example, drought [25,26], salinity [27,28], heat [29],
flooding [30], radiation [31–33], chilling [34], heavy metal toxicity [35,36] and combined
multiple stresses [37–39]. Plant metabolomics have unique advantages in the identification
and quality evaluation of Chinese medicinal materials. It can distinguish between differ-
ent genes, different origins and even different growth cycles of medicinal plants [40,41].
Meanwhile, metabolomics research was conducted on biosynthetic pathways [42], signal
transduction [43,44] and the ecological environment [45] of secondary metabolites of medic-
inal plants. This technique is gaining interest as a diagnosis tool for crop improvement and
breeding [46]. Moreover, plant metabolomics integrate with genomes [47,48], transcrip-
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tomes, proteomes and other omics in order to carry out quality control and germplasm
improvement of medicinal plants effectively.

In order to analyze and compare the metabolite profiles of Bupleurum dependent on
nitrogen fertilizer, we performed the technique of gas chromatography–mass spectrometry
(GC–MS) to compare four different organs (roots, main shoots, lateral shoots and flowers)
of Bupleurum. We aimed to: (1) evaluate the effect of different levels of nitrogen fertiliza-
tion on yield and quality trait parameters of above and underground parts of Bupleurum;
(2) reveal the effect of low and high nitrogen treatment on the total sakosaponins content
and on the percentage of three saikosaponins in the different tissues of Bupleurum; (3) elicit
changes in the metabolite profiles of Bupleurum’s different tissues caused by nitrogen fertil-
ization; (4) compare metabolic changes to explain key metabolites involved in biosynthesis
regulation.

2. Results
2.1. Comparative Analysis of Quality Traits Parameters among Different Nitrogen
Fertilization Groups

In this experiment, the whole Bupleurum plants, growing under three levels of nitrogen
fertilization (control nitrogen group (CN), low-nitrogen group (LN) and high-nitrogen
group (HN)), were divided into four parts, including flower (F), main shoot (MS), lateral
shoot(LS) and root (R) (Figure 1A). Bupleurum showed different biomass accumulation
under nitrogen fertilization. At the LN level, shoots were thicker, the flowers were more
flourishing and roots became slightly thicker. However, at the HN level, the increase in
stem thickness and flowers flourishing was more significant than that at LN. Meanwhile, no
significant increase in root thickness was observed at HN (Figure 1B). Figure 1C showed that
the fresh weight of aboveground (flowers, main shoots and lateral shoots) and underground
(roots) tissues in Bupleurum increased with application of the LN level. However, at HN
levels, no significant increase in root fresh weight was observed, while the fresh weight of
aerial parts, especially flowers, was extremely increased. Although there was no obvious
discrepancy between HN and LN observed in root length, the total length was significantly
higher at HN supply (Figure 1D), indicating that a high level of nitrogen fertilizer plays a
greater role in promoting the growth of the aerial parts than roots in Bupleurum.

2.2. Total Saikosaponins Content Accumulated in Bupleurum Different Tissues under Three Levels
of Nitrogen Fertilization

Initially, this study exploited an HPLC method for the simultaneous quantification of
three saikosaponins: saikosaponin A, saikosaponin C and saikosaponin D. Simultaneously,
we also measured the total content of saikosaponins in different Bupleurum tissues under
the three levels of nitrogen fertilization. For the different nitrogen fertilization levels, the
total saikosaponins display an analogous tendency and mostly accumulated in the flowers
and the roots. In addition, the LN level decreased the total saikosaponins content in flowers
and roots; however, at the HN level, flowers showed a significant increase in the total
saikosaponins content, while the total content in roots remained stable (Figure 2A). When
the total saikosaponins content was fixed, we compared saikosaponin A, saikosaponins
C and saikosaponins D. We found that the percentage of saikosaponins A was lower
than that of saikosaponins C and saikosaponins D without nitrogen. Nitrogen fertilizer
promoted the content of saikosaponin A, and its increment was accompanied by a decrease
in saikosaponins C in aerial parts (flowers, main shoots and lateral shoots); however, it was
accompanied by a decrease in saikosaponins D in roots (Figure 2B).
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Figure 1. Growth performances of Bupleurum at three nitrogen fertilization levels within four organs. (A) The whole Bu-
pleurum was divided into four organs, including root, main shoots, lateral shoots and flower; (B) Appearances of Bu-
pleurum growing under CN, LN and HN, respectively; (C) The four organs’ fresh weights (n = 3); (D) The length of the 
whole plant and the different parts (n = 3). Three nitrogen fertilization levels—CN: control nitrogen group, LN: 
low-nitrogen group, and HN: high-nitrogen group; four organs—R: root, MS: main shoots, LS: lateral shoots, F: flower, 
and W: whole plant. * and ** signify significant (p < 0.05) and extremely significant (p < 0.01), respectively. 
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Figure 1. Growth performances of Bupleurum at three nitrogen fertilization levels within four organs. (A) The whole
Bupleurum was divided into four organs, including root, main shoots, lateral shoots and flower; (B) Appearances of
Bupleurum growing under CN, LN and HN, respectively; (C) The four organs’ fresh weights (n = 3); (D) The length of the
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group, and HN: high-nitrogen group; four organs—R: root, MS: main shoots, LS: lateral shoots, F: flower, and W: whole
plant. * and ** signify significant (p < 0.05) and extremely significant (p < 0.01), respectively.
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Figure 2. Saikosaponins content at three nitrogen fertilization levels within four organs. (A) Total saikosaponins content,
including saikosaponin A, saikosaponin C and saikosaponin D; (B) The percentage of saikosaponin A, saikosaponin C
and saikosaponin D content. Three nitrogen fertilization levels: control nitrogen group (CN), low-nitrogen (LN) and
high-nitrogen group (HN); four organs: flower (F), main shoots (MS), lateral shoots (LS) and root (R).
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2.3. Overview of the Metabolites Profiles in Response to Three Levels of Nitrogen Fertilization

Under nitrogen fertilization, the metabolomic analysis of Bupleurum based on GC-MS
resulted in the identification of 84 metabolites, which were divided into 9 classes, including
28 organic acids and derivatives, 16 sugars, 6 polyols, 8 amino acid and derivatives,
3 glycosides, 6 alkaloids, 7 lipids and derivatives, 9 alkyl and 1phenylpropanoid (Figure 3A,
Table 1). To further clarify the difference between metabolites and accumulation patterns
among the different plant organs under nitrogen fertilization levels, we adopt normalized
numerical methods to accomplish cluster analysis and a heat map (Figure 3B). The heat
map indicated that metabolites within some organs under the low-nitrogen fertilization
level were up-regulated but down-regulated under the high-nitrogen fertilization level,
suggesting that Bupleurum growing under the low-nitrogen fertilization level undergo
significantly different metabolic processes compared with Bupleurum under the high-
nitrogen fertilization level. Notably, the low-nitrogen fertilization level mostly caused an
increased abundance of metabolites in flowers and roots. However, high nitrogen mostly
increased the abundance of metabolites in flowers and reduced it in roots.
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Table 1. Classification of 84 metabolites based on Bupleurum.

Classification Quantity Metabolites

Organic acids and derivatives 28

1-
Aminocyclopentanecarboxylic
acid
5-O-Feruloylquinic acid
Benzoic acid
Butanedioic acid
Caffeic acid
Chlorogenic acid
Citric acid
D-Gluconic acid
Galactaric acid
Gallic acid
Glycolic acid
Hydroxybenzoic acid
Isophthalic acid
Lactic Acid
Malic acid
Oxalic acid
Palmitic Acid
Phenyllactic acid
Phosphonic acid
Phthalic acid
Pipecolic acid
Propanedioic acid
Propenoic acid
Protocatechoic acid
Quininic acid
Succinic acid
Sulfurous acid
Trifluorobenzoic acid

Sugars 16

Sucrose
Arabinofuranose
Arabinose
D-Cellobiose
D-Fructose
D-Glucose
D-Mannose
D-Xylose
Erythritol
Galactoseoxime
Lactose
Levoglucosan
L-Rhamnose
Maltose
Sedoheptulose
α-Mannobiose

Polyols 6

Benzylaminooctanol
Benzenediol
Cuminyl alcohol
Inositol
Muco-Inositol
Ribitol

Glycosides 3
α-Lyxofuranoside
α-D-glucopyranoside
L-Galactopyranoside
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Table 1. Cont.

Classification Quantity Metabolites

Alkyl 9

Cyclohexene
Decane
Disiloxane
Ether
Heptane
Nonane
Silane
Trisiloxane
Undecane

Phenylpropanoid 1 Dihydroxybenzoate

Alkaloids 6

Isoquinolinium
Ethanolamine
Copper phthalocyanine
Heptabarbital
Benzopyran-4-one
Carbamate

Amino acid and derivatives 8

Alanine
Aminobutanoic acid
Glycine
L-5-Oxoproline
L-Proline
Serine
Urea
L-Valine

Lipids and derivatives 7

Glyceric acid
Glycerol monostearate
Stearic acid
Glycerol
Ribonic acid
Adenosine
1-Monopalmitin

2.4. Identification of Differential Metabolites Relationships under Nitrogen Fertilization

In order to reveal the differential metabolites relationships under nitrogen fertilization,
PLS-DA analysis was conducted on 84 metabolites. Our results revealed that the differ-
ences in the metabolomic profiles among the three levels of nitrogen fertilization groups
were greater within roots and flowers of Bupleurum than that within the main shoots and
lateral shoots. For flowers of Bupleurum, the samples of CN, LN as well as HN basically
accomplished a better classification. The model prediction illustrating the gap between
R2X and R2Y were not large, showing an excellent model (Figure 4A). According to the
characteristic variables, differential metabolites in flowers were D-gluconic, lactose, glyc-
erol, silane, l-rhamnose, phenyllactic acid, gallic acid, 5-o-feruloylquinic acid, phosphonic
acid and isophthalic acid. PLS-DA of lateral shoots samples were distinctly segregated,
and the model prediction results demonstrated a high-quality model (Figure 4B). The
loading plot of lateral shoots demonstrated that lactose, 5-o-feruloylquinic acid, succinic
acid, d-fructose, isoquinolinium, pipecolic acid, glycerol, phthalic acid, trisiloxane and
D-xylose were differential metabolites. PLS-DA of the main shoots completely displays
no separation, which indicted a bad model quality (Figure 4C). Propenoic acid, pipecolic
acid, benzoic acid, isophthalic acid, caffeic acid, chlorogenic acid, copper phthalocyanine,
urea, sucrose, and citric acid were the principal metabolites that contribute to dispersion
for the main shoots. The score plots of roots metabolites displayed clear cluster trends
(Figure 4D), with the red (HN) located between the green (CN) and blue (LN). Furthermore,
the predictability of pattern goodness was noticed, demonstrating this model was evidently
predictable and categorizable. D-xylose, α-mannobiose, lactose, silane, phthalic acid, ether,
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propanedioic acid, aminobutanoic acid, citric acid and D-fructose contribute to different
metabolites. Hence, we can say that various metabolites were potential biomarkers for
different organs of Bupleurum growing under nitrogen fertilization. However, we need to
further find out the key metabolites that affect the metabolism of Bupleurum under nitrogen
fertilization.
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Figure 4. PLS−DA score plot classifying the CN, LN and HN groups from metabolites of Bupleurum in flowers, lateral
shoots, main shoots and roots (A–D), respectively. Different markers and colors represent different meanings: • represents
roots (R), u represents flowers (F), N represents lateral shoots (LS),F represents main shoots (MS); red, green and blue
represent high nitrogen (HN) groups, low nitrogen (LN) and control nitrogen (CN), respectively.

2.5. Metabolite Profiling of Bupleurum under Nitrogen Fertilization in KEGG Enrichment
Analysis and Volcanic Map

In order to seek out the key metabolites under different levels of nitrogen fertiliza-
tion, metabolites with a fold change ≤ 0.5 and a p-value ≥ 1 were selected for further
screening. The discrepancy in metabolite expression could be found clearly by volcano
plots. Comparing CN with LN, there were 14 metabolites with an obvious change, in-
cluding 11 up-regulated (3 F, 1 LS, 5 MS, 2 R) and 3 down-regulated metabolites in the
roots (Figure 5A). Twenty-four metabolites had been changed when comparing HN to LN
(Figure 5C), with 9 up-regulated (5 F, 4 R) and 15 down-regulated metabolites (4 F, 4 LS,
4 MS, 3 R). Compared with CN, 27 metabolites were significantly changed in HN group,
including 24 up-regulated (14 F, 5 LS, 2 MS, 3 R) and 3 down-regulated metabolites in the
root (Figure 5E).
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Figure 5. (A–F) The volcanic map of differential metabolites and enrichment analysis of the Kyoto Encyclopedia of Genes
and Genomes (KEGG). The green and red represent metabolism contents that were down−regulated and up−regulated
significantly under nitrogen fertilization, respectively. High nitrogen (HN) groups, low nitrogen (LN) and control nitrogen
(CN); H represents roots; N represents main shoots; � represents lateral shoots; • represents flowers. The p−value means
degree of enrichment; the smaller the p-value, the more significant enrichment degree. The size of the dot means the number
of differential metabolites. (G) The Venn diagram of differential metabolites.
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According to the KEGG annotation and enrichment results, the impact of different
nitrogen fertilization levels (LN vs. CN, LN vs. HN, and HN vs. CN) on metabolites was
mainly associated with the C-metabolism, N-metabolism and lipids metabolism. For LN
vs. CN, metabolic pathways of differential metabolites were involved with the reductive
carboxylate cycle (CO2 fixation), glyoxylate and dicarboxylate metabolism, carbon fixation
in photosynthetic organisms, pentose phosphate pathway, D-alanine metabolism and
galactose metabolism (Figure 5B). For HN vs. LN, the difference of KEGG enrichment
classification was also related on six metabolic pathways: insulin signaling pathway,
reductive carboxylate cycle (CO2 fixation), streptomycin biosynthesis, carbon fixation in
photosynthetic organisms, glyoxylate and dicarboxylate metabolism, galactose metabolism
and so on (Figure 5D). In HN vs. CN, various metabolites were mostly enriched in the
glycerolipid metabolism, pentose phosphate pathway, starch and sucrose metabolism,
galactose metabolism and the glyoxylate and dicarboxylate metabolism (Figure 5F).

2.6. Metabolic Network Diagram and Potential Metabolites in Bupleurm under Three Levels of
Nitrogen Fertilization

The appraisal of potential metabolites involved into nitrogen stress might contribute
to the growth and development of Bupleurum. We performed a Venn diagram (Figure 5G)
to depict shared metabolites of different expressions among HN vs. CN, CN vs. LN
and HN vs. CN. We found that the abundances of D-fructose, lactose, ether and glycerol
had an obvious change in the response to nitrogen fertilization; therefore, these four
overlapping metabolites could be regarded as key metabolites. Moreover, 1, 4 and 6
differential metabolites existed solely in (LN vs. CN) vs. (HN vs. LN), (LN vs. CN)
vs. (HN vs. CN) and (HN vs. LN) vs. (HN vs. CN), respectively. Furthermore, on
the basis of the KEGG annotation and enrichment data, significant metabolites were
mapped to C-metabolism, N-metabolism, lipids metabolism pathways to guarantee clear
changes in the metabolic regulation of nitrogen (Figure 6). The overlap of differentially
expressed metabolites was observed, suggesting the partial similarity of mechanisms of
Bupleurum in response to nitrogen fertilization. The metabolic network diagram went
on to verify the above hypothesis. Responses to nitrogen fertilization of Bupleurum were
dynamic and included intricate pathways. Therefore, nitrogen fertilization may activate
some key physiological and metabolic activities that lead to the growth and development
of Bupleurum.
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Figure 6. Changes of metabolites in Bupleurum under nitrogen stress are mapped to metabolic pathways. The yellow
rectangle means that the content of metabolites is significantly up−regulated; the blue rectangle means that the content of
metabolites is significantly down−regulated; the green rectangles mean that there is no significant difference in metaboites
content. In each box, every row represents nitrogen treatment (upper row: CN; middle row: LN; lower row: HN), and every
column means various organs (F: flower; LS: lateral shoots; MS: main shoots; R: roots).

3. Discussion

Bupleurum is an outstanding traditional medicinal plant in China and broadly used
for treatment of inflammatory diseases. The yield and quality of Bupleurum mainly depend
on the availability of fertilizers, such as nitrogen, phosphorus and potassium, especially on
the availability of nitrogen. Thus, it is indispensable to probe the effect of different levels of
nitrogen fertilization on Bupleurum to improve its cultivation level.

3.1. Influences of Nitrogen Fertilizer on Bupleurum Quality and Yield

For the common nutrient elements—nitrogen, phosphorus and potassium—nitrogen
has the greatest effect under normal circumstances, followed by phosphorus and lastly
potassium fertilizer [49–51]. Nitrogen is a component of proteins, nucleic acids and many
cofactors, as well as of primary and secondary metabolites [44]. Nitrogen could also
ensure plant growth and development, and therefore, its addition is needed to increase the
plant yield.

Our results show that in the CN group, due to the lack of nitrogen, the shoots were
weak, the leaves color turned yellow, and they fall off prematurely. The current study
confirmed that plants could change the root system and leaf production to minimize
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adverse effects under low nitrogen stress [52,53]. The HN fertilizer treatment significantly
increased the biomass and the quality of Bupleurum; the shoots became thicker; the flowers
were more flourish; the fresh weight and total length also increased. However, no significant
effect happened to the roots. It is well documented that previous findings that high-nitrogen
level treatment significantly increased plant height and ear length [54], as well as protein
content and quality [55]. Additionally, Ottaiano [56] designed three nitrogen fertilization
levels (N0, N30, N60), and it seemed that plants under the highest N dose showed a higher
consumption of nitrogen, which is accumulated in leaves without increasing yield. In
other words, high nitrogen stress promoted the accumulation of the aboveground parts,
which had little effect on the yield of the underground parts. This was also consistent with
our point. Saikosaponins represent the principle secondary metabolites within Bupleurum
that have a wide range of pharmacological activities, such as their anti-inflammatory,
antioxidant and hepatoprotective activity [12]. In Bupleurum, saikosaponins A and D are the
most important bioactive constituents [57]. Our results showed that the total saikosaponins
display an analogous tendency and mostly accumulated in the flowers and roots. In
addition, the low-nitrogen level decreased the total saikosaponins content in flowers and
roots; however, at the high-nitrogen level, flowers showed a significant increase in the
total saikosaponins content, while the total content in roots remained stable. Moreover,
high nitrogen fertilizer increased the content of saikosaponin A, and its increment was
accompanied by a decrease in saikosaponins C in aerial parts (flowers, main shoots and
lateral shoots); however, it was accompanied by a decrease in saikosaponins D in roots,
indicating that high nitrogen promotes the quality of aboveground parts, especially flowers,
but reduces the quality of roots. Our results were consistent with previous research that
nitrogen fertilizer significantly increased the biomass and the content of saikosaponins
A in B. chinense roots but had no significant effect on root saikosaponin D content [58].
In addition, we found saikosaponin D content decreased in roots, which suggests that
saikosaponin D is less responsive to high nitrogen fertilization than saikosaponin A. In
addition, increased root yield and total saikosaponin content in B. falcatum in response
to nitrogen fertilizer was reported [59]. However, the application of moderate amounts
of nitrogen fertilizer is best, as over fertilization resulted in decreased concentrations of
medicinal compounds [60]. Either too little or too much nitrogen could be harmful to the
growth and development. The fruit commodity rate of three nitrogen levels was highest
in 5A and lowest in 3A [51].Hence, appropriate nitrogen fertilizer rate can promote plant
growth and maintain the content of active ingredients in specific parts.

3.2. Metabolic Profiling of Bupleurum Organs under Nitrogen Stress

PLS-DA is a multivariate statistical analysis method with supervised pattern recog-
nition, which can distinguish groups and identify different metabolites to the greatest
extent. Four groups were included in the PLS-DA: root, main shoots, lateral shoots and
flower. The flowers and roots separated clearly between the N-treatments and control
groups, suggesting that nitrogen fertilizer play a key role during Bupleurum growth and
fruit maturation [61,62]. Previous studies have supported the above result that N greatly
influences photosynthetic processes and grain growth during the maturation of wheat [63].
In addition, the differences in metabonomic characteristics between LN groups were greater
than those in HN groups. Compared with the LN group, more negative correlations of
metabolites were found in the HN group in roots, suggesting that the HN group caused
metabolic changes that were not conducive to the development of Bupleurum. Qu [64]
also came up with this conclusion; at higher nitrogen levels, the direct effects of stem–leaf
ratio and leaf area index on dry matter yield are both negative. In these models, R2X
and R2Y represented the interpretation rate to the X and Y matrices, respectively, and
Q2 represented the prediction ability. According to PLS-DA analysis, Q2 > 0.2 and 0 <
R2X-Q2Y < 0.2, suggesting there was an obvious difference between the N treatment group
and the control group, and all results confirmed the model was meaningful. The clustering
analysis findings were also consistent with PLS-DA. From this, we can guess that nitrogen
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is an essential element for plant growth and development, and nitrogen deficiency can
easily lead to metabolic disorders and environmental pollution [51,65–67].

3.3. KEGG Enrichment Analysis and Comprehensive Metabolic Pathways

The basis of the biological phenotype are metabolites, which facilitate a more intuitive
and efficient understanding of biological processes and mechanisms [68]. This research was
based on a non-targeted metabolic technique that detected 84 metabolites under nitrogen
stress (CN, LN and HN). A common feature of nitrogen metabolism is that abundant
nitrogen can significantly facilitate the biosynthesis and photosynthesis of proteins, amino
acids and organic acids in plants [69]. The primary metabolism is widespread in plants, and
the TCA cycle is most significant. Data analysis showed that the TCA cycle was extremely
restrained under nitrogen stress. Compared with the CN group, the contents of citric
acid, succinic acid and malic acid under nitrogen stress were lower (Figure 6). Moreover,
the contents of citric acid and succinic acid in HN were much lower than CN and LN.
Simultaneously, the reduced accumulation of malic acid was recorded under LN stress.
Indeed, the HN group led to major changes in the content of carbohydrates in Bupleurum,
which were mostly related to the glyoxylate and dicarboxylate metabolism and galactose
metabolism. Furthermore, in the HN group, the increase in available carbon resources (for
instance, glucose and sucrose) also clearly indicates a decrease in the metabolism of the
TCA cycle (Figure 6). The research suggested HN prevented the utilization of the carbon
skeleton by restraining the TCA cycle pathway [70]. In addition, high nitrogen might
lead to an increase in nitrogenous compounds, organic acids and lipids [71], while limited
nitrogen could promote the synthesis and accumulation of metabolites: flavones [72],
phenolic [73] and total alkaloids [74].

Several metabolites were significantly up-regulated under high nitrogen stress for
Bupleurum, which were mostly related to the C-metabolism and N-metabolism. In this
research, some important sugars related to the C-metabolism were found, such as sucrose,
mannose-6-P, fructose, glucose, ribose, galactose and sedoheptulose. The above-mentioned
metabolites contributed to the metabolism and biosynthesis of Bupleurum, which further
affect the yield of Bupleurum. The biosynthesis of saikosaponins [18,75] is mainly based
on the mevalonic acid (MVA) pathway and methylerythritol phosphate pathway (MEP).
Furthermore, the starting points of the above metabolic pathway are pyruvate, acetyl-
CoA and glyceraldehyde 3-phosphate [18,19], which are also related to fructose, fructose
6-phosphate and so on. Furthermore, it is noticeable that sucrose accumulated more in
flowers than in other organs. These similar results support the validity. Sucrose is the main
end-product of photosynthesis and the main form of carbohydrate transported over long
distances in the phloem from photosynthetic source organs (leaves) to fruits, roots and
shoot tips, which is extremely critical to the allocation of resources [76,77]. We predicted
that sucrose was transported from the flower to the root as a signal molecule, and the
essence may be due to the lack of nutrient nitrogen for root growth. In other words, more
sucrose accumulation allowed better root growth. For most plants, carbohydrates mean
the key energy storage [78–80]. Thus, high nitrogen stress can increase the utilization
rate of sugar, and sugar is one of the most significant determining factors of yield and
quality [54,81].

The TCA cycle could increase energy of amino acid synthesis [82] and thereby en-
hance the contents of protein and amino acid. Most amino acids are primarily related to
nitrogen storage and utilization [83,84]. Amino acids are downstream products of nitrogen
metabolism, and their abundance increases with elevated nitrogen levels [85,86]. Our
results are consistent with previous studies; the levels of serine, glycine, alanine and valine
shows a consistent pattern of change under high nitrogen. It is striking that proline and
leucine had an extremely high content in LN instead of HN, which were inconsistent
with other amino acids. In addition, in the N-metabolism, nitrogen usually accumulates
larger in the main shoots and lateral shoots, and with the increase in N stress, it accumu-
lates more. It is an active process of their absorption by the roots based on membrane
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transport proteins [87]. We speculated that higher or lower nitrogen stress may lead to
changes in amino acid biosynthesis flux to some extent [88]. There is a significant impact
on amino acid metabolism for abiotic stress, particularly in some amino acid biosynthesis
or degradation [71].

4. Conclusions

The findings of the current research highlighted the effect of nitrogen fertilizer on the
traditional Chinese medicine Bupleurum. The LN level seems to be an ideal dose for the
yield and quality of Bupleurum. The LN level significantly increased biomass accumulation
and made Bupleurum more fruitful. However, the total saikosaponins decreased in the
roots but increased significantly in the flowers under the HN level. Moreover, the non-
targeted metabolomics analysis identified 84 kinds of metabolites of Bupleurum under
nitrogen stress (CN, LN and HN). Under the HN level, most of the metabolites in flowers
were up-regulated but down-regulated in roots. Therefore, the HN level promotes the
quality and metabolites of flowers, while reducing those of roots. Because the root of
Bupleurum (Apiaceae) is a Chinese herbal medicine and widely used to treat inflammatory
and infectious diseases, we hope to accumulate more saikosaponins and metabolites in the
root. In addition, four differentially accumulated metabolites—D-fructose, lactose, ether
and glycerol—were identified as key metabolites under nitrogen stress of Bupleurum. The
identified metabolites were mostly organic acids, amino acids, carbohydrates and lipids
involved in carbon and nitrogen metabolisms, which set up a primary metabolic network
diagram associated with Bupleurum. Nevertheless, it is necessary to further explore the
relationship between saikosaponins and secondary metabolites in order to guide reasonable
fertilization (nitrogen, phosphorus and potassium).

5. Materials and Methods
5.1. Plant Source and Experimental Design

The medicinal plant used in our study was cultivar Bupleurum scorzonerifolium Willd.,
which was widely cultivated in the northeast of China. The dried roots of Bupleurum
chinense DC. And Bupleurum scorzonerifolium Willd. were the only two authentic sources of
Chaihu [11]. Two-year-old Bupleurum seedlings were cultivated in natural environmental
conditions at the research site of Lin Dian, Da Qing, Heilongjiang province, China (47◦18′ N,
124◦87′ E). The chemical prosperities of the soil [89] were pH 7.78; electrical conductivity,
134 us·cm−1; organic matter, 4.86 g·kg−1; total N 16.4 mg·kg−1; available N 2.1 mg·kg−1,
respectively. In the 2018~2019 growing season, the annual average sunshine hours at the
test site was 2807 h, the average annual temperature was 4 ◦C and the average annual
precipitation was 417.2 mm [90].

The three nitrogen levels (N) were distributed in a randomized block design. Each
treatment was replicated three times, and each plot measured 3 m × 1.2 m. Based on
previous experience, urea (NH2)2CO was used as the nitrogen fertilizer. Bupleurum were
processed for CN, LN and HN treatments by adjusting the nitrogen concentration in the
current study [91–93]. The three nitrogen fertilization levels were: CN (0 kg·ha−1), LN
(55 kg·ha−1) and HN (110 kg·ha−1).

On the 30th day (August 2018) after the second application of the nitrogen fertilizer,
Bupleurum plants were harvested and divided into flowers, main shoots, lateral shoots
and roots. Then, they were transferred quickly within three hours to the laboratory. Each
group obtained three technical replicates, then the fresh weight and length were measured.
Simultaneously, each sample is divided into two batches: one batch was dried in a forced
air oven at 42 ◦C until constant weight and used for saikosaponins extraction (Section 5.2),
and the other batch was stored at −80 ◦C for samples processing of GC–MS (Section 5.3).

5.2. Determination of the Saikosaponins Content

In total, 500 mg of the sample was dissolved in 25.0 mL of 8% NH3 methanol. The
sample was sonicated at 30 ◦C for 30 min, filtered and evaporated, then diluted to a
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10 mL volumetric flask. The solution was passed through 0.45 µm filter membrane for
HPLC analysis. The content of saikosaponins A, saikosaponins C and saikosaponins D
were measured separately. A Hitachi HPLC system was equipped with an L-2000 high-
performance liquid chromatograph and L-2200 autosampler, and a reversed phase column
(Diamonsil C 18, 250 mm × 4.6 mm, 5 µm) was applied. Acetonitrile and methanol were
used as solvents A and B, respectively, which was applied to the gradient elution as follows:
0~50 min, A: 25~90% and B: 75~10%; 50~55 min, A: 90% and B: 10%. The flow rate was
maintained at 0.8 mL·min−1, and the detection wavelength was set at 210 nm.

5.3. Sample Preparation and Extraction

In total, 60 mg of different organs of Bupleurum (roots, main shoots, lateral shoots and
flowers) were moved to tubes. Each sample was extracted by the addition of 540 µL of
methanol and 60 µL of the internal standard, followed by vortexing for 2 min and sonicating
for 30 min. Then, 300 µL of chloroform and 600 µL of water were added, and the continued
vortexing and sonicating continued. Subsequently, it was centrifuged at 14,000 rpm for
10 min. The supernatant was evaporated to dryness with a fast centrifugal concentrator. The
dried residue was dissolved in 400 µL of methoxyamine pyridine solution and incubated
at 37 ◦C for 90 min. Subsequently, 400 µL N,O−Bis (trimethylsilyl) trifluoroacetamide
(BSTFA) and 60 µL Hexane were added, vortexed for 2 min and derivatized for 60 min at
70 ◦C. The solution was centrifuged at 12,000 rpm for 5 min to obtain the supernatant for
GC–MS analysis.

5.4. GC−MS Analysis

In total, 1 µL of the derivatization solution was injected into the 7890A-5975C GC-MS
of Agilent. The sample was separated using a non-polar DB-5 capillary column (length =
30 m, df = 0.25 µm, ID = 250 µm, I and W Scientific Folsom, CA, USA), and 1.0 mL·min−1

high-purity helium gas was used as carrier gas. The temperature program started from
60 and then raised to 125 ◦C at 8 ◦C min−1 temperature ramps, 210 ◦C at 4 ◦C·min−1

temperature ramps, 270 ◦C at 5 ◦C·min−1 temperature ramps, 305 ◦C at 10 ◦C·min−1

temperature ramps and a final maintenance at 305 ◦C. The electron impact ion source was
maintained at 260 ◦C with a filament bias of −70 V. Full scan mode (m/z 50–600) was
applied, with an acquisition rate of 20 spectrum·second−1.

5.5. Statistical Analysis

GC–MS data were converted into Computable Document Format (CDF) and peak
areas normalized to the internal stand. The metabolites were exhaustively contrasted by
adopting a heat map and partial least squares discriminant analysis (PLS-DA) methods.
In the Student’s t-test analysis, p-values of more than 1 and fold changes of less than 0.05
were statistically significant, and the volcano map was used to select the differentially
expressed metabolites. The Kyoto Encyclopedia of Genome and Genome (KEGG) (http:
//www.genome.jp/kegg/) was used to analyze the metabolic pathways that had the
greatest impact. The difference in the biomass and metabolites among CN, LN and HN
were tested using a one-way analysis of variance (ANOVA). The graphs involved were
drawn by GraphPad Prism 9.0.
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