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Abstract: Understanding the link between the protective role of potassium silicate (K2SiO3) against
water shortage and the eventual grain yield of maize plants is still limited under semiarid conditions.
Therefore, in this study, we provide insights into the underlying metabolic responses, mineral
nutrients uptake and some nonenzymatic and enzymatic antioxidants that may differ in maize plants
as influenced by the foliar application of K2SiO3 (0, 1 and 2 mM) under three drip irrigation regimes
(100, 75 and 50% of water requirements). Our results indicated that, generally, plants were affected by
both moderate and severe deficit irrigation levels. Deficit irrigation decreased shoot dry weight, root
dry weight, leaf area index (LAI), relative water content (RWC), N, P, K, Ca, Fe, Zn, carotenoids, grain
yield and its parameters, while root/shoot ratio, malondialdehyde (MDA), proline, soluble sugars,
ascorbic acid, soluble phenols, peroxidase (POD), catalase (CAT), polyphenol oxidase (PPO), and
ascorbate peroxidase (APX) were improved. The foliar applications of K2SiO3 relatively alleviated
water stress-induced damage. In this respect, the treatment of 2 mM K2SiO3 was more effective
than others and could be recommended to mitigate the effect of deficit irrigation on maize plants.
Moreover, correlation analysis revealed a close link between yield and the most studied traits.
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1. Introduction

Semiarid regions are considered a pattern of drylands where the annual precipitation is not
sufficient to meet the needs to grow vegetation all year. Generally, the rainfall in these regions
ranges from 200 to 750 mm/year. This means the ratio between the total annual rainfall/the potential
evapotranspiration reaches approximately 0.20 to 0.50 [1,2]. Currently, water scarcity is predicted
to become the most severe environmental challenge that affects the agricultural sector and multiple
socio-economic activities in many regions worldwide, especially with frequent climatic changes [3].
The harmful effects of drought stress on plants are usually associated with several events at cellular,
biochemical, physiological and molecular levels that may enable the plants to adapt or tolerate such
conditions [4–6]. These responses include the rapid generation of reactive oxygen species (ROS) [7],
development of an array of complex antioxidant (nonenzymatic and enzymatic) systems [8], regulation
of the expression of tolerance related genes [9] and alternation of nutrient uptake [10].

Maize (Zea mays) represents the third most important cereal crops cultivated worldwide after wheat
and rice [11]. It has a high nutritional value for both human and animals; it contains approximately 72%
starch, 10% protein and 4% fat, supplying an energy density of 365 Kcal/100 g [12]. Furthermore, maize
provides suitable raw materials for several industries such as starch, fodder, silage and biofuels [13–15].
It is well documented that maize is highly sensitive to drought stress during any period of its growth
cycle [16]. Water stress can cause considerable loss in the grain yield ranging from approximately
40–65% according to the genotype, stage of plant growth (the reproductive stage is more sensitive than
the vegetative stage) and both the intensity and duration of exposure [17].

Potassium (K) is an essential macronutrient with broad effects on higher plants. In maize,
K alleviates the harmful effects of drought stress by different strategies, including the improvement of
net carbon assimilation and phloem transport of sugars from leaves to roots [18]. Moreover, K can
enhance leaf area, total yield, grain filling and water use efficiency (WUE) in the stressed plants by
decreasing leaf evapotranspiration [19]. In addition, K could play a key role in preventing oxidative
damage of the maize plants by maintaining ROS homeostasis and enhancing antioxidant capacity [20].

Although silicon (Si) is not considered an essential mineral nutrient, several lines of evidence
confirmed its benefits for plants, particularly under biotic and abiotic stresses [21]. It can promote
photosynthesis by increasing the concentration of chlorophyll [22], and affect the activities of RuBisCO
and PEP-carboxylase that are required for CO2 fixation [23]. Furthermore, Si regulates antioxidant
enzyme systems under diverse stress conditions [21]. Under drought stress, Si deposits in the cell walls
of xylem vessels could prevent their compression caused by the high rate of transpiration [24], and it
can improve the hydraulic conductivity of the roots in the radial direction leading to enhance uptake of
water [25] and several essential nutrients [26]. Moreover, many previous reports indicated that Si could
alleviate water deficit stress by improving osmotic adjustment and compatible solutes accumulation,
i.e., proline, soluble sugars, free amino acids and polyamines, in several plant species [25,27].

Potassium silicate (K2SiO3) is a soluble source of potassium and silicon; it can be used as a fertilizer to
maximize the benefits of both elements on plant growth and productivity. In this study, we provide insights
into the underlying metabolic changes, uptake of mineral nutrients and some nonenzymatic and enzymatic
antioxidants that may differ in maize plants as influenced by the foliar application of K2SiO3 under three
irrigation regimes. These results may help to understand the link between the protective role of K2SiO3

against drought stress and the eventual yield of grains, especially under semiarid conditions.

2. Materials and Methods

2.1. Experimental Layout and Growth Conditions

Two field experiments were carried out during the seasons of 2018 and 2019 on a private farm,
Ahmed Orabi Association, Cairo-Ismailia desert road, Qalyubia Governorate, Egypt. To investigate
the effect of foliar application of potassium silicate (K2SiO3) at 0, 1 and 2 mM on growth, yield and
some physiological and biochemical attributes of maize plants grown under three different levels of
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drip irrigation (100, 75 and 50% water requirements). Before the establishment of the experiments,
samples of soil were collected by an Auger T-Handle at depth 30–60 cm for physical and chemical
analyses (Table 1). Climatic data were recorded by an agrometeorological station, Ismailia, to monitor
the environmental conditions during the experiment (Table 2).

Table 1. Physical and chemical analysis of the experimental soil before cultivation in the seasons of
2018 and 2019.

Season pH EC
µS cm−1

CaCO3%
Cation meq/L Anion meq/L

Ca++ Mg++ Na+ HCO3− CL− SO4−−2

2018 7.84 0.41 2.87 5.52 0.38 1.03 1.59 1.20 1.74
2019 7.61 0.47 3.13 7.04 0.50 0.80 2.14 1.38 1.62

N, P, K
N P K

Sand% Silt% Clay% Soil texture
(ppm)

2018 2.88 6.38 1.17
91.95 4.81 3.24 Sandy

2019 2.03 6.22 0.91

EC: Electrical conductivity.

Maize seeds of white single cross hybrid (Hytech 2030) produced by Misr Hytech Seed Int., Egypt
was sown on 17th of May 2018 and 2019, respectively. The experiment was arranged in a split plot
design with three replicates. A surface drip irrigation system with three levels (100, 75, and 50%
of water requirements) was implemented in the main plots, and the foliar applications of K2SiO3

treatments (0, 1, and 2 mM) were randomly distributed in the subplots. The experimental unit area
was 60 m2 (15 m length × 4 m width) consisting of 5 rows with 0.8 m distance between rows. The plant
distance was 30 cm apart on one side. Maize plants were irrigated using drippers of 4 L h−1 capacity
and 0.3 m distance between drippers. A flow meter was installed for each irrigation level treatment,
and three rows were left without irrigation as a border between different irrigation levels.

Table 2. Monthly averages of solar radiation, precipitation, wind speed, air temperature and relative
humidity during the period of cultivation (May–September) in the season 2018 and 2019.

Date
Solar

Radiation
Dgt [MJ/m2]

Precipitation
[mm] Wind Speed [m/s] Air Temperature [◦C] Relative

Humidity [%]

Average Sum Average Max Average Min Max Average

2018

May 671.29 0.0 1.4 8.9 23.9 11.8 38.5 62.5
June 654.76 0.0 1.3 5.6 26.6 13.4 38.2 67.4
July 616.47 0.0 0.9 4.8 27.7 16.9 37.4 75.5

August 542.00 0.0 0.5 3.7 27.5 17.4 38.0 75.0
September 424.92 0.0 0.7 3.8 25.2 14.7 36.2 73.5

2019

May 689.12 0.0 1.3 6.5 23.9 12.7 36.1 58.1
June 535.47 0.0 1.3 5.2 27.6 15.7 39.6 65.6
July 472.97 0.0 1.1 5.0 27.5 17.8 37.2 71.0

August 415.72 0.0 1.0 4.6 27.3 17.0 37.5 73.4
September 327.05 0.0 1.0 5.3 25.8 14.6 41.2 69.8

2.2. Calculations of Water Regimes

Data of class A pan (Epan) for the experimental site expressed in mm/day were obtained from an
agrometeorological station located close to the site. Water requirements (Table 3) for different irrigation
levels were calculated for 105 days, and then irrigation was stopped for 11 days before the harvesting
date (117 days after sowing). The calculation was made according to Doorenbos [28].
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Table 3. Average amounts of the water requirements for the maize plants in the seasons of 2018 and 2019.

Days Date Stage KC*

Irrigation Level
(m3·ha−1)

100% 75% 50%

10 days 17/5:26/5
initial

0.3 299.52 299.52 299.52

10 days 27/5:5/6 0.6 694.08 694.08 694.08

Starting date of different irrigation regimes

15 days 6/6:20/6 development 0.9 953.28 714.96 476.64
20 days 21/6:10/7 1.0 1114.56 835.92 557.28
20 days 11/7:30/7

Mid-season
1.2 1319.04 989.28 659.52

20 days 31/7:19/8 1.0 1085.76 814.32 542.88
10 days 20/8:29/8 Last season 0.9 1097.28 822.96 548.64

11 days 30/8:11/9 Not irrigated before harvest
Total amount (m3 ha−1)

116 Days 6563.52 5171.04 3778.56

KC*: Crop coefficient.

2.3. Foliar Application and Sampling

Maize plants were subjected to the foliar application of distilled water as a control and K2SiO3

(1 or 2 mM) four times: first at 24 days after sowing (DAS) then the subsequent applications were
applied every 15 days. Tween 20 at 0.05 mL L−1 was used as a wetting agent for all foliar treatments
(K2SiO3-treated and control plants). To determine plant growth and physiological and biochemical
changes in response to applications, plants samples were collected twice, first after 10 days of the last
foliar application. Four plants were randomly collected from the inner rows to determine the vegetative
growth (shoots and roots) in each experimental unit. Biochemical analyses were conducted using the
4th fully expanded leaf from the top, which was randomly collected from 3 plants of each experimental
plot. In addition, two plants were randomly selected to collect the 4th fully expanded leaf from the
top to determine mineral nutrients after drying in an oven at 105 ◦C. At the end of the experiment
(117 DAS), grain yield per plant and its related traits were estimated, while the grain yield per hectare
was determined from one inner row that was left for this purpose (12 m2/experimental unit).

2.4. Studied Parameters

2.4.1. Vegetative Growth

Shoot and root dry weights were determined by drying four plants from each experimental unit
in an air-forced ventilated oven at 105 ◦C. The dry weight ratio of root/shoot ratio was calculated.
Leaf area index (LAI) was calculated as described by Iqbal and Hidayat [29].

2.4.2. Leaf Relative Water Content (RWC)

Leaf relative water content was determined according to Ünyayar et al. [30]. Leaf discs
(1.8 cm diameter) from 10 fully expanded young leaves (ear leaf) were taken from 6–8 plants at
the mid-canopy position before irrigation. Then the discs were weighed (FW) and placed immediately
in distilled water for 2 h at 25 ◦C then their turgid weights (TW) were recorded. The samples were
dried in an oven at 110 ◦C for 24 h (DW). Relative water content (RWC) was calculated using the
following formula: RWC = (FW − DW)/(TW − DW) × 100.

2.4.3. Membranes Lipid Peroxidation

Lipid peroxidation was measured by the determination of malondialdehyde (MDA) as described by
Heath and Packer [31]. Frozen leaf tissues were homogenized in 0.1% (w/v) trichloroacetic acid (TCA).
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The absorbance (A) of the supernatant was measured at 535 nm and corrected for nonspecific turbidity at
600 nm using a spectrophotometer (Chrom Tech CT-2200, Taiwan). The MDA concentration (nmol g−1 FW)
was calculated using ∆OD (A532-A600) and the extinction coefficient (ε =155 mM−1 cm−1).

2.4.4. Proline and Soluble Sugars

Proline levelswere determined using the method of acid-ninhydrin reagent as described by Bates et al. [32].
Soluble sugars were determined by anthrone-sulfuric acid reagent as described by Plummer [33].

2.4.5. Determination of Mineral Nutrients

Dry leaves were ground and digested using sulfuric acid and hydrogen peroxide. Leaf mineral
concentrations of N, P, K, Ca, Fe and Zn were determined according to Cottenie et al. [34]. Nitrogen (N)
was determined by the Kjeldahl method (Velp Scientifica, Europe). The colorimetric method by UV/VIS
spectrophotometer was used to determine P; potassium (K) was determined by a Flamephotometer
(Jenway, UK). Meanwhile, Ca, Fe and Zn were determined by atomic absorption spectrophotometry
(AAS-Hitachi, Tokyo, Japan).

2.4.6. Determination of Carotenoids, Ascorbic Acid and Total Soluble Phenols

Carotenoids were determined using the acetone and petroleum ether method as described by de
Carvalho et al. [35]. Ascorbic acid (AsA) was determined using the 2, 6-Dichloroindophenol titrimetric
method according to Association of Official Analytical Chemists (A.O.A.C) [36]. Total soluble phenols
were determined according to the method of Folin-Denis as described by Skalindi and Naczk [37].

2.4.7. Quantification of Antioxidant Enzymes

Leaf tissue of maize plants (0.5 g) was homogenized in 4 mL 0.1 M K-phosphate buffer (pH 7.0)
containing 1% (w/v) polyvinylpyrrolidone (PVP) and 0.1mM Ethylenediaminetetraacetic acid (EDTA).
The homogenate was centrifuged at 10,000 rpm for 15 min and the supernatant was used as a crude
enzyme extract. All the preparation steps of the enzyme extract were carried out at 0–4 ◦C. Total soluble
protein was determined according to Bradford [38].

Peroxidase (EC1.11.1.7) activity was quantified by the method of Hammerschmidt et al. [39].
The absorbance was recorded every 30 s for 3 min at 470 nm using a spectrophotometer (Chrom Tech
CT-2200). Catalase (CAT) (EC 1.11.1.6) activity was determined according to the method of Cakmak et al. [40].
Polyphenol oxidase (PPO) (EC 1.14.18.1) activity was measured according to Oktay et al. [41]. The reaction
mixture consisted of 100 µL crude enzyme, 600 µL catechol and 2.3 mL phosphate buffer (0.1 M, pH
6.5). The absorbance at 420 nm was recorded at zero time and after 1 min. Ascorbate peroxidase (APX)
(EC 1.11.1.11) activity was measured according to the method of Nakano and Asada [42] by monitoring the
decrease of absorbance at 290 nm following the ascorbate oxidation for 3 min. The reaction was initiated by
the addition of H2O2. All enzyme activities were expressed as ∆OD min−1 mg−1 protein.

2.4.8. Determination of Yield Parameters

Maize ears were harvested at 117 DAS and averages of ear length, ear diameter, number of
grains·ear−1, weight of grains·ear−1, weight of grains·plant−1 were estimated from 10 random plants
per each experimental unit. Eventually, total grain yield (t ha−1) was calculated using the average yield
of grains/12 m2 (one inner row was left for this purpose in each experimental unit).

2.4.9. Statistical Analysis

Data of the two seasons were subjected to combined analysis following the two way ANOVA
procedure as described by Snedecor and Cochran [43] using MSTAT-C software (Michigan State
University, USA). Duncan’s test based on a probability of p ≤ 0.05 was used to determine the significant
differences between means.
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All data were expressed as means ± standard deviation (SD). The correlation coefficient between
the grain yield (t ha−1) and different physiological and biochemical aspects was also estimated.

3. Results

3.1. The Main Effects of the Irrigation Levels and K2SiO3 Foliar Applications

Reduction of irrigation (moderate or severe level) caused significant (p ≤ 0.05) decreases in shoot
dry weight and root dry weight. Furthermore, a substantial reduction in the LAI, RWC, N, P, K,
Ca, Fe, carotenoids, ear length, ear diameter, number of grains/ear, weight of grains/plant and grain
yield (ton/ha) was observed when compared to the well-irrigated plants (Table 4), while, Zn was only
decreased when plants were exposed to the irrigation level of 50% WR. In contrast, root/shoot ratio,
MDA, proline, soluble sugars, ascorbic acid and soluble phenols, as well as the activities of peroxidase
(POD), catalase (CAT), polyphenol oxidase (PPO), and ascorbate peroxidase (APX) were significantly
increased (Table 4). The foliar applications of K2SiO3 at 1 or 2 mM significantly increased all studied
variables except root/shoot ratio, MDA, proline and Zn. The treatment of 2 mM K2SiO3 was more
effective in enhancing yield and its parameters than the lower concentration (1 mM).

Table 4. Mean comparison shows the main effects of the irrigation levels (100, 75, and 50 % of water
requirements) and the foliar applications of K2SiO3 (0, 1, and 2 mM). KSi 0: K2SiO3 -untreated plants,
KSi 1: K2SiO3 (1 mM) and KSi 2: K2SiO3 (2 mM). On the vegetative growth, water status, lipid
peroxidation, osmolytes, mineral nutrients, non-enzymatic antioxidants, antioxidant enzymes, yield
and its parameters of maize plants.

Variables
Irrigation Level Foliar Application

100% 75% 50% KSi 0 KSi 1 KSi 2

Shoot dry weight (g.plant−1) 318.4 A 242.1 B 208.1 C 232.6 C 260.3 B 275.7 A

Root dry weight (g.plant−1) 45.32 A 38.20 B 33.01 C 36.52 B 39.43 A 40.58 A

Root/shoot ratio 0.144 B 0.158 A 0.159 A 0.157 A 0.153 A 0.150 A

LAI 7.15 A 5.19 B 4.08 C 4.62 C 5.44 B 6.35 A

RWC (%) 88.11 A 73.13 B 67.79 C 75.52 B 77.17 A 76.34 AB

MDA (nmol.g−1 FW) 5.82 C 11.99 B 13.62A 11.08 A 10.27 B 10.09 B

Proline (µg.g−1 FW) 183.3 C 314.0 A 241.6 B 285.0 A 241.5 B 212.2C

Soluble sugars (mg.g−1 DW) 24.50 B 45.54 A 44.53 A 35.13 C 37.99 B 41.44 A

N (mg.g−1 DW) 85.29 A 71.00 B 62.14 C 70.39 B 71.31 B 76.72 A

P (mg.g−1 DW) 2.24 A 1.91 B 1.50 C 1.77 B 1.93 A 1.96 A

K (mg.g−1 DW) 11.74 A 9.90 B 8.81 C 8.02 C 10.65 B 11.79 A

Ca (mg.g−1 DW) 7.25 A 6.52 B 5.22 C 6.07 B 6.31 AB 6.61 A

Fe (µg.g−1 DW) 203.9A 180.5 B 161.7 C 169.7 C 180.7 B 195.6 A

Zn (µg.g−1 DW) 46.3A 47.0 A 41.0 B 48.6 A 42.9 B 42.8 B

Carotenoids (mg.g−1 FW) 0.332 A 0.308 B 0.288 C 0.277 C 0.317 B 0.334 A

Ascorbic acid (µmol.g−1 FW) 1.36 C 1.78 A 1.67 B 1.57 B 1.61 AB 1.64 A

Soluble phenols (µg.g−1 FW) 13.97 C 16.39 B 17.29 A 15.27 C 15.87 B 16.49A

POD (∆ O.D. min−1.mg protein) 14.3 C 33.6 B 35.6 A 25.92 B 28.90 A 28.67 A

CAT (∆ O.D. min−1.mg protein) 2.64 C 4.17 A 3.57 B 3.19 B 3.58 A 3.60 A

PPO (∆ O.D. min−1.mg protein) 6.95 C 8.59 B 9.69 A 7.97 B 8.57 A 8.67 A

APX (∆ O.D. min−1.mg protein) 2.83 C 4.36 A 4.01 B 3.40 B 3.85 A 3.94 A

Ear length (cm) 23.3 A 19.1 B 15.7 C 18.2 C 19.4 B 20.5 A

Ear diameter (cm) 4.7 A 4.4 B 3.3 C 4.00 C 4.17 B 4.30 A

Number of grains/ear 332.4 A 271.8 B 226.3 C 264.7 B 281.2 A 284.6 A

Weight of grains/ear (g) 109.7 A 84.5 B 66.2 C 79.5 C 88.8 B 92.2 A

Weight of grains/plant (g) 172.8 A 127.6 B 95.0 C 118.1 C 135.0 B 142.4 A

Grain yield (ton·ha−1) 7.94 A 5.82 B 4.39 C 5.33 C 6.14 B 6.68 A

Data of the two seasons of 2018 and 2019 were subjected to combined analysis with 3 replicates in each season.
The different superscript capital letters within a row indicate significantly different values according to Duncan’s
multiple range tests (p < 0.05). LAI, leaf area index; RWC, relative water content; MDA, malondialdehyde; POD,
peroxidase; CAT, catalase; PPO, polyphenol oxidase; APX, ascorpate peroxidase.
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3.2. Changes in Plant Growth

The progressive reduction in the irrigation level significantly (p ≤ 0.05) inhibited plant growth
in terms of shoot dry weight, root dry weight and LAI. In contrast, root/shoot ratio was not affected
compared to the well-irrigated control (Figure 1). When plants were treated with K2SiO3 (1 or 2 mM),
a significant increase was observed in shoot dry weight and LAI either under nonstressed or stressed
conditions. Meanwhile, this trend was just obvious in root dry weight under water shortage conditions.
Root/shoot ratio revealed a significant decrease in the K2SiO3-treated plants under well-irrigated
conditions. Generally, the highest concentration of the K2SiO3 treatments (2 mM) was more effective in
this respect (Figure 1).Agronomy 2020, 10, x FOR PEER REVIEW 10 of 21 
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2: K2SiO3 (2 mM). Data of the two seasons of 2018 and 2019 were subjected to combined analysis. 
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Figure 1. Shoot dry weight (A), root dry weight (B), root/shoot ratio (C) and leaf area index (LAI) (D)
of the maize plants at 80 days after sowing (DAS) as influenced by the foliar application of K2SiO3

(0, 1 and 2 mM) under three irrigation regimes: 100% (white), 75% (green) and 50% (orange) of water
requirements. CK: well-watered control, KSi 0: K2SiO3-untreated plants, KSi 1: K2SiO3 (1 mM) and
KSi 2: K2SiO3 (2 mM). Data of the two seasons of 2018 and 2019 were subjected to combined analysis.
Means were presented ± SD. Different letters are significant differences, according to Duncan’s multiple
range tests (p < 0.05).

3.3. Changes in RWC, MDA, Proline and Soluble Sugars

Plants that were exposed to deficit irrigation demonstrated a significant (p ≤ 0.05) increase in
MDA, proline and soluble sugars, whereas RWC was diminished compared to the well-irrigated
conditions (Figure 2). The foliar applications of K2SiO3 significantly enhanced RWC under both
investigated deficit-irrigation levels, while this tendency was conspicuous in soluble sugars under
moderate level of deficit irrigation. Conversely, MDA and proline generally exhibited a significant
decrease in K2SiO3-treated plants compared to the untreated ones under stressed conditions. Overall,
the treatment of 2 mM K2SiO3 was more efficient than the other treatments.
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Figure 2. Leaf relative water content (RWC) (A), membranes lipid peroxidation as indicated by
malondialdehyde (MDA) (B), proline (C) and soluble sugars (D) of t maize plants at 80 DAS as
influenced by the foliar application of K2SiO3 (0, 1 and 2 mM) under three irrigation regimes: 100%
(white), 75% (green) and 50% (orange) of water requirements. CK: well-watered control, KSi 0:
K2SheiO3-untreated plants, KSi 1: K2SiO3 (1 mM) and KSi 2: K2SiO3 (2 mM). Data of the two seasons
of 2018 and 2019 were subjected to combined analysis. Means were presented ± SD. Different letters
are significant differences, according to Duncan’s multiple range tests (p < 0.05).

3.4. Changes in Mineral Nutrients

To evaluate the nutritional status of plants under continuous deficit irrigation and K2SiO3 foliar
applications, N, P, K, Ca, Fe and Zn were quantified (Figure 3). The general tendency was that deficit
irrigation obviously and significantly (p ≤ 0.05) decreased N, K, Ca and Fe in K2SiO3 nontreated
plants under both examined deficit levels of irrigation (75% and 50%). In comparison, P and Zn were
only affected under the severe level of deficit irrigation (50%). Applied K2SiO3, specifically at 2 mM,
significantly improved the concentration of N, P, K, Ca and Fe under unstressed conditions. In contrast,
a significant reduction in Zn was manifested in K2SiO3-treated plants under well-irrigated conditions.
When plants were subjected to continuous deficit irrigation, the treatment of 2 mM K2SiO3 exhibited
the highest significant increases in N, K and Fe under both investigated levels of deficit irrigation.
A similar trend was only observed in P under a moderate level of irrigation.

On the other hand, no significant differences were detected in Ca between K2SiO3 nontreated and
the treated plants under both deficit irrigation levels (75% and 50%). Meanwhile, Zn was significantly
decreased by the treatments of K2SiO3 under the moderate level of irrigation. This effect did not occur
under the lower level of irrigation (50%).
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Figure 3. Leaf mineral content including N (A), P (B), K (C) Ca (D), Fe (E) and Zn (F) of the maize
plants at 80 DAS as influenced by the foliar application of K2SiO3 (0, 1 and 2 mM) under three irrigation
regimes: 100% (white), 75% (green) and 50% (orange) of water requirements. CK: well-watered control,
KSi 0: K2SiO3-untreated plants, KSi 1: K2SiO3 (1 mM) and KSi 2: K2SiO3 (2 mM). Data of the two
seasons of 2018 and 2019 were subjected to combined analysis. Means were presented ± SD. Different
letters are significant differences, according to Duncan’s multiple range tests (p < 0.05).

3.5. Changes in Nonenzymatic Antioxidants

Nonenzymatic antioxidant capacity of plants was investigated by the determination of carotenoids,
ascorbic acid and soluble phenols (Figure 4). Plants that were not applied by K2SiO3 and exposed
to continuous deficit irrigation demonstrated a significant (p ≤ 0.05) increase in ascorbic acid and
soluble phenols compared to the well-watered conditions, whereas carotenoids did not show any
significant differences in this respect. Applied K2SiO3 (1 or 2 mM) significantly enhanced carotenoids
and ascorbic acid, while soluble phenols were not changed under well-irrigated conditions. Similarly,
K2SiO3 applications, in particular at the highest concentration (2 mM), exhibited the highest significant
increases in carotenoids and soluble phenols under both investigated levels of deficit irrigation
(75 and 50%). On the other hand, ascorbic acid revealed an opposite trend by the treatment of 2 mM
K2SiO3 under the moderate (75%) and lower (50%) levels of irrigation.
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Figure 4. Nonenzymatic antioxidants including carotenoids (A), ascorbic acid (AsA) (B) and total
soluble phenols (C) in the leaves of the maize plants at 80 DAS as influenced by the foliar application of
K2SiO3 (0, 1 and 2 mM) under three irrigation regimes: 100% (white), 75% (green) and 50% (orange) of
water requirements. CK: well-watered control, KSi 0: K2SiO3-untreated plants, KSi 1: K2SiO3 (1 mM)
and KSi 2: K2SiO3 (2 mM). Data of the two seasons of 2018 and 2019 were subjected to combined
analysis. Means were presented ± SD. Different letters are significant differences, according to Duncan’s
multiple range tests (p < 0.05).

3.6. Changes in Antioxidant Enzymes

The activities of antioxidant enzymes (POD, CAT, PPO, and APX) were determined in this study
under deficit irrigation conditions and the exogenous application of K2SiO3 (Figure 5). No significant
differences were observed between K2SiO3-treated, and nontreated plants in the activity of all studied
antioxidant enzymes under well-irrigated conditions. Reducing irrigation levels significantly (p ≤ 0.05)
increased the activity of these enzymes compared to the well-irrigated conditions. Applied-K2SiO3

significantly enhanced the activity of CAT, PPO and APX under the moderate level of irrigation
(75%), whereas POD was not affected. When plants were exposed to severe deficit irrigation (50%),
POD exhibited a significant increase by the treatment of 1 mM K2SiO3. At the same time, the highest
activity of CAT and PPO were obtained by the treatment of 2 mM K2SiO3. On the contrary, APX did
not reveal any significant differences between K2SiO3-treated and nontreated plants under the lower
level of irrigation.
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Figure 5. Activities of antioxidant enzymes including POD (A), CAT (B), PPO (C) and APX (D) in the
leaves of maize plants at 80 DAS as influenced by the foliar application of K2SiO3 (0, 1 and 2 mM)
under three irrigation regimes: 100% (white), 75% (green) and 50% (orange) of water requirements. CK:
well-watered control, KSi 0: K2SiO3-untreated plants, KSi 1: K2SiO3 (1 mM) and KSi 2: K2SiO3 (2 mM).
Data of the two seasons of 2018 and 2019 were subjected to combined analysis. Means were presented
± SD. Different letters are significant differences, according to Duncan’s multiple range tests (p < 0.05).

3.7. Changes in Yield Parameters

Grain yield and its parameters, including ear length, ear diameter, number of grains·ear−1, weight
of grains·ear−1, weight of grains·plant−1 and total grain yield (t ha−1) were estimated in this investigation
(Figure 6). Concerning K2SiO3-untreated plants, reducing irrigation level led to significant (p ≤ 0.05),
and gradual decreases in all yield parameters studied in parallel with the severity of deficit irrigation.
Generally, except for the number of grains·ear−1 under the lower level of irrigation, applied-K2SiO3,
specifically at 2 mM, significantly improved all studied traits regardless of the level of irrigation.

3.8. Relationships between Grain Yield and RWC, MDA, Osmolytes, Nutrients and Antioxidants

To elucidate the relationships between the grain yield of maize plants as influenced by the foliar
applications of K2SiO3 under different irrigation regimes and RWC, MDA, osmolytes, nutrients and
antioxidants, the correlation coefficient was analyzed (Figure 7). We observed that grain yield (t ha−1)
was significantly and positively correlated with leaf relative water content (RWC), carotenoids, N, P, K,
Ca and Fe. Meanwhile, MDA, soluble sugars, soluble phenols, POD and PPO demonstrated a negative
correlation. On the other hand, proline, ascorbic acid (AsA), CAT, APX and Zn did not reveal any
significant correlation in this respect.
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Figure 6. Yield and its parameters including averages of ear length (A), ear diameter (B), number of
grains/ear (C) weight of grains/ear (D), weight of grains/plant (E) and grain yield (t ha−1) (F) of the maize
plants at 80 DAS as influenced by the foliar application of K2SiO3 (0, 1 and 2 mM) under three irrigation
regimes: 100% (white), 75% (green) and 50% (orange) of water requirements. CK: well-watered control,
KSi 0: K2SiO3-untreated plants, KSi 1: K2SiO3 (1 mM) and KSi 2: K2SiO3 (2 mM). Data of the two
seasons of 2018 and 2019 were subjected to combined analysis. Means were presented ± SD. Different
letters are significant differences, according to Duncan’s multiple range tests (p < 0.05).
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Figure 7. Relationship between the grain yield of maize crop and RWC, MDA, osmolytes, nonenzymatic
antioxidants, antioxidant enzymes and mineral nutrients as influenced by the foliar application of
K2SiO3 (0, 1 and 2 mM) under three different irrigation regimes (100, 75 and 50% of water requirements).
Data of the two seasons of 2018 and 2019 were subjected to combined analysis. ns: not significant,
* p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001.
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4. Discussion

Under semiarid conditions, deficit irrigation is thought to be one of the most limiting factors
that can restrict plant growth and productivity. In this study, soil analysis and climatic data showed
that maize was exposed to high solar radiation and air temperatures with no precipitation during
the cultivation periods in the two seasons. All of these factors exhibited drought stress on the maize
plants during this study. It is well documented that drought stress reduces the growth of many
plant species due to the restriction of cell division and differentiation [44]. In this study, reducing
irrigation level exhibited significant decreases in shoot dry weight, root dry weight and LAI of the
water-stressed plants (Figure 1). These reductions could be attributed to the disruption that occurred
in the photosynthetic process through the degradation of pigments, limitation of stomatal conductance
and decreasing the photochemical quantum yield [8,45]. On the other hand, root/shoot ratio as dry
weight was unaffected under deficit irrigation (Figure 1). These results were in agreement with those
obtained by Ma et al. [46], and may imply that phloem transport and leaf carbon exportation were less
sensitive to water deficit under the circumstances of this study.

The positive effect of K2SiO3 on the shoot, root dry weight and LAI in the water-deficit stressed
plants could be attributed to the synergistic effect of both K and Si on photosynthesis and production
of assimilates [20,47]. In the present study, deficit irrigation negatively affected RWC while the K2SiO3

applications significantly mitigated this effect (Figure 2). Applied K positively affected leaf water
content under stress conditions by maintenance of turgor potential and enhancing the integrity of cell
membranes [48]. Additionally, Si could improve RWC by decreasing the rate of transpiration [49].
Lipid peroxidation is considered a pervasive biochemical response to stress in plant species due to
the uncontrolled release of ROS [8]. Applied K and/or Si can promote the antioxidant capacity of the
stressed plants [20,21]. This response may explain the significant decrease of MDA in the treated plants
with K2SiO3 under water-stressed conditions (Figure 2). Proline is considered a compatible osmolyte
and one of the most contributing factors that maintain intracellular redox homeostasis under stress
conditions [50]. Moreover, under drought stress, proline has a crucial role in protecting the integrity of
cell membranes and osmotic adjustments that allow the plant to uptake water [50,51]. Soluble sugars
are the second compatible osmolytes that were determined in this investigation. The accumulation of
soluble sugars during water deficit irrigation could be due to the up-regulation of genes involved in
the starch-sucrose pathway [52,53]. All of the above-mentioned responses may explain the dramatic
accumulation of proline and soluble sugars in the water-stressed plants under the circumstances of this
study (Figure 2). The exogenous application of K2SiO3 resulted in a notable decrease in proline and
a visible increase in soluble sugars. These effects indicate that K and/or Si may enhance the osmotic
potential of leaves by stimulating the conversion of starch into soluble sugars, particularly up to the
moderate level of irrigation [54,55]. Furthermore, the decrease of proline in the K2SiO3-treated plants
may highlight the significance of K and/or Si in the protection of cell membranes and maintenance of
RWC under deficit irrigation conditions (Figure 2).

Drought stress strongly affects the uptake of nutrients and it can restrict the translocation of some
nutrients acropetally between plant organs [56]. Furthermore, it negatively affects active transport,
permeability, and leaf transpiration [25,57]. In our study, plants exposed to moderate or severe
stress exhibited a significant decline in N uptake (Figure 3A). This could be due to decreases in
the activity of the N-uptake proteins (NRT1, NRT2) for inorganic nitrate (NO3

−) and (AMT1) or
ammonium (NH4

+) [58]. Additionally, the availability of N could be reduced under the inadequate
water supply [59]. The foliar application of K2SiO3 improved N-uptake under stressed and normal
conditions. Applied-K can ameliorate the deleterious effects of drought through the regulation
of stomatal movement, increasing root cell elongation, osmotic adjustment and detoxification of
ROS [48]. Furthermore, silicon improves photosynthesis, antioxidant activities, and absorption of
mineral nutrients of many crops [21,47]. These effects could explain the positive influence of K2SiO3

on N-uptake in our study. Concerning phosphorus (P), it was decreased under severe level of deficit
irrigation (50%) (Figure 3B). This decrease may be attributed to reducing the concentration and/or
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activity of the P-uptake protein (PHT1) [58]. Moreover, under drought stress, P may be quickly
converted into an immobile or insoluble form [60]. On the other hand, the increase in P-uptake prior
to K2SiO3 application was significantly under severe and moderate stress. These effects imply that
P-uptake in maize is highly dependent on the intensity of drought stress. Similarly, water stress
markedly exhibited K deficiency compared to all K2SiO3 untreated plants (Figure 3C). This effect
could be due to reduction in absorption by the roots and transpiration rate, which consequently
reduced water and nutrient transport via xylem [60]. Applied-K2SiO3 significantly increases K content
compared to the untreated plants. These results are in agreement with Jiang et al. [61], who found
that the application of K can significantly increase its concentration in the different parts of maize
plants such as grains and straw. In this study, Ca uptake was also inhibited by reducing water supply
(Figure 3D). This impact was clear under the lower level of stress. Furthermore, the foliar application
of K2SiO3 had no significant effect on Ca uptake under both examined treatments. Maize plants could
be severely affected by Ca deficiency under drought condition because Ca is relatively an immobile
nutrient and its uptake may require sufficient water supply [62].

Deficit irrigation manifestly suppressed the uptake of Fe in K2SiO3-untreated plants (Figure 3E).
In contrast, applied K2SiO3, specifically at the highest concentration (2 mM), improved Fe-uptake
under both treatments. Silicon (Si) can mitigate the symptoms of Fe deficiency in different plant
species including soybean, cucumber and rice [63,64]. It could play a crucial role in Fe uptake and its
translocation from roots to the aerial parts of the plant [65,66]. This impact could be attributed to the
fact that applied-Si can enhance citrate concentration, which acts as an Fe chelator and facilitates its
movement through the xylem [67]. The translocation of Zn from roots to leaves may be inhibited by Si
application. This effect may be due to the fact that Si precipitates with Zn as zinc silicate around the
root epidermis [68], which may reduce Zn translocation via xylem [69].

Under drought stress, plants develop a wide array of complex antioxidant systems that integrated
with each other simultaneously to reduce the accumulation of ROS and oxidative damages [70].
The foliar application of K2SiO3 induced dramatic improvement in the concentration of carotenoids
under different investigated levels of irrigation. The increase of carotenoids under water stress due to
K or Si supplementation could foster the antioxidant capacity of plants under deficit irrigation [71–74].
Under stress conditions, ascorbate (ASA) could be increased through the overexpression of its synthesis
related-genes such as GMP, GME, GalUR, DHAR, and MDHAR [75]. In this study, AsA was substantially
increased by reducing the irrigation level (Figure 4B). This response could help in scavenging ROS and
inducing the ascorbate–glutathione cycle [8,76]. Phenolic compounds could also be involved in plant
tolerance to drought stress and play a significant role as a sink for carbon under stress conditions [77,78].
These effects could explain the improvement in total soluble phenols by reducing the irrigation level in
this study (Figure 4C). The increase in total soluble phenols by the treatments of K2SiO3 could be due
to the effect of Si, which may induce several changes in the phenolic compounds under abiotic and
biotic stresses [79,80].

In the present study, our results showed that deficit irrigation increased the activities of POD,
CAT, PPO and APX in the leaves of maize plants (Figure 5). These findings could reflect the integrated
regulation between these enzymes in the tolerance of maize plants to water stress. Exogenous
applications of K2SiO3 induced a synergistic effect leading to an increase in the activities of all studied
antioxidant enzymes under deficit irrigation levels. Previous reports showed that K and/or Si could
enhance the antioxidant capacity of plants under stress conditions [20,21]. In this study, these effects
were confirmed by the enhancement of RWC and reduction of MDA.

It is well documented that water stress has several deleterious influences on the productivity of
maize plants [17,81]. It can affect different metabolic pathways, photosynthesis and translocation of
many metabolites required for grain filling [81]. Furthermore, water stress can increase the potential
for unsuccessful pollination and poor kernel setting of maize by affecting the anthesis and silking
stages [82]. In this study, reducing irrigation levels reduced the yield of grains (Figure 6). Applications
of K2SiO3 not only relatively reversed these adverse effects but also increased the ultimate yield of
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grains under water stress. These findings could be correlated with corresponding changes in several
biochemical and physiological aspects that were found during this work (Figure 7).

5. Conclusions

In this study, it was found that applied K2SiO3, particularly at 2 mM as a foliar spray, may have
several benefits on maize crops under limited irrigation supply. These effects were associated with
several changes at physiological and biochemical levels, including adjustment of RWC and osmolytes,
alleviation of oxidative damage and reduction of cell membrane dysfunction, as well as enhancement
of nutrient uptake of and regulation of several nonenzymatic and enzymatic antioxidant systems.
These results could provide a link between the protective role of K2SiO3 against drought stress and the
eventual yield of grains, especially under semiarid conditions.
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41. Oktay, M.; Küfreviolu, I.; Kocaçalişkan, I.; Şaklrolu, H. Polyphenoloxidase from Amasya apple. J. Food Sci.
1995, 60, 494–496. [CrossRef]

42. Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach
chloroplasts. Plant Cell Physiol. 1981, 22, 867–880.

43. Snedecor, G.; Cochran, W. Statistical Methods, 7th ed.; Lowa: Ames, IA, USA, 1982.
44. Sacks, M.M.; Silk, W.K.; Burman, P. Effect of water stress on cortical cell division rates within the apical

meristem of primary roots of maize. Plant Physiol. 1997, 114, 519–527. [CrossRef]
45. Zhou, R.; Kan, X.; Chen, J.; Hua, H.; Li, Y.; Ren, J.; Feng, K.; Liu, H.; Deng, D.; Yin, Z. Drought-induced

changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence,
P700 and cyclic electron flow signals. Environ. Exp. Bot. 2019, 158, 51–62. [CrossRef]

46. Ma, X.; He, Q.; Zhou, G. Sequence of Changes in Maize Responding to Soil Water Deficit and Related Critical
Thresholds. Front. Plant Sci. 2018, 9, 511. [CrossRef]

47. Chen, W.; Yao, X.; Cai, K.; Chen, J. Silicon alleviates drought stress of rice plants by improving plant water
status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res. 2011, 142, 67–76. [CrossRef]

48. Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Inter. J. Mol. Sci. 2013,
14, 7370–7390. [CrossRef]

49. Amin, M.; Ahmad, R.; Ali, A.; Hussain, I.; Mahmood, R.; Aslam, M.; Lee, D.J. Influence of silicon fertilization
on maize performance under limited water supply. Silicon 2018, 10, 177–183. [CrossRef]

50. Abdelaal, K.A.; EL-Maghraby, L.M.; Elansary, H.; Hafez, Y.M.; Ibrahim, E.I.; El-Banna, M.; El-Esawi, M.;
Elkelish, A. Treatment of Sweet Pepper with Stress Tolerance-Inducing Compounds Alleviates Salinity Stress
Oxidative Damage by Mediating the Physio-Biochemical Activities and Antioxidant Systems. Agronomy
2019, 10, 26. [CrossRef]
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