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Abstract: To obtain the appropriate mechanized cutting region for banana dehanding, the methods
of X-ray Computed Tomography (CT), Paraffin-embedded tissue section, and scanning electron
microscopy (SEM) were adopted to observe the morphological and anatomical characteristics of
vascular bundles of the banana crown. The results indicated that the crown can be divided into three
regions, viz., the central stalk–crown transition region (CSCTR), the crown expansion region (CER),
and the crown–finger transition region (CFTR). According to the obtained characteristics, the cutting
mechanical properties are found to be affected by the relative angle between the vascular bundle and
cutter (RAVBC) and the vascular bundle density. In CSCTR, due to the opposite change of RAVBC
and density, the cutting mechanical properties become unstable and the cutting energy decreases
gradually from 4.30 J to 2.57 J. While in CER, the cutting mechanical properties tend to be stable,
and the cutting energy varies in a small range (2.83–2.92 J), owing to the small changes of RAVBC and
density. When the vascular bundles cross from the CER to CFTR, the cutting energy increases with
the increase of RAVBC and density, which varies from 3.37 to 4.84 J. Accordingly, the appropriate
cutting region for dehanding, which can reduce the energy consumption and improve the cutting
efficiency, is ascertained to be between CSCTR and CER.

Keywords: banana crown; vascular bundles; morphological and anatomical characteristics; relative
angle; density

1. Introduction

Bananas are a popularly marketed fresh fruit grown in more than 120 countries around the
world [1]. The global production of bananas in 2017 is about 113 million tons [2] and is of significant
economic and social value. Banana dehanding, the process of using a special knife to separate the banana
hands from the central stalk (peduncle), is one of the key steps in postharvest handling procedures.
The cutting position in the process of dehanding is usually located on the crown connecting the fingers
and the central stalk, so dehanding could also be called crown cutting. Currently, dehanding is mainly
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manual, which is very dangerous; moreover, it consumes plenty of time and labor force [3,4]. Therefore,
mechanized cutting has a positive effect on reducing production costs and improving production
efficiency at this step. Since vascular bundles are the principal supporting tissue of the banana, and
dehanding essentially involves interaction between the knife and the vascular bundles in the crown,
it is fundamental to ascertain the influence of the morphological and anatomical characteristics of
vascular bundles on the cutting process to achieve mechanized cutting.

Engineering theories and methods have been widely applied to plant morphology and anatomy,
which could help to solve some agronomic problems [5]. Gibson et al. used cellular mechanics to
analyze the morphological structure of cells and helped to understand the growth process of the
plant [6,7]. Some reports aimed to comprehend stalk lodging in the plant growth process by three-point
bending tests [8,9]. Generally, the morphological and anatomical characteristics of plant tissues are
clarified to design more suitable agricultural machinery. Recently, many researchers reported the
relationship between plant morphological parameters and cutting energy in, for example, safflower [10]
and maize [11]. Leblicq et al. built a discrete element model based on a hollow steel tube, which was
similar to the bending mechanical properties of wheat/barley stalks, to help engineers understand the
interaction between plant stalks and machines [12,13]. According to the analysis above, the engineering
theories and methods, plant morphology, and anatomy can be effectively connected and integrated
together. A combined methodology can be adopted in the present work. Meanwhile, research
in some opening literature nowadays mainly focuses on the design of banana dehanding cutting
machinery [14,15], and few works consider the crown morphology and anatomy. While morphological
and anatomical characteristics cannot only help to determine the appropriate mechanized cutting
region and reduce the cutting energy, they can also improve work efficiency, reduce labor intensity,
and realize mechanized cutting.

Traditional plant morphology and anatomy research methods are usually destructive, tedious,
and time-consuming. These methods make it difficult to continuously observe the morphological
and anatomical characteristics of plant tissues [16]. In recent years, X-ray Computed Tomography
(CT) scanning has been widely used in plant morphology and anatomy as an advanced imaging
method [17,18]. Some studies concentrated on plant roots; for example, Wasaya et al. [19] used
CT scanning to extract root morphological parameters of drought-tolerant plants. Zheng et al. [20]
introduced data processing and statistical algorithms in CT scans of plant roots. They explained that
parallel computation and crowd computing could improve the ability to process CT scan data of roots,
which could be applied to root morphology. Paya et al. [21] and Bauerle and Centinari [22] used CT
scanning to track the growth process of plant roots and reveal the differences in the growth of different
plant roots. Some researchers focused on extracting the three-dimensional morphology of flowers,
combining CT scanning data with geometric morphometrics to evaluate the changes in petal formation
during flower growth [23,24]. Several studies applied CT scanning to explain the microstructure of
fruits or vegetables such as fresh chestnuts [25], apples [26,27], and potatoes [28]. In this present work,
CT scanning can help to continuously observe the morphology of vascular bundles in the entire banana
crown, owing to the fact that CT scanning has the advantages of being non-invasive, non-destructive,
and fast. In addition, it is convenient for analyzing cutting mechanical properties.

The primary purpose of the present work is to reveal the relations between variations in the
cutting mechanical properties and the crown vascular bundles, and further determine the appropriate
mechanized cutting region. The methodologies of CT scanning, paraffin-embedded tissue section, and
SEM were adopted to qualitatively explain the morphological and anatomical characteristics of the
crown vascular bundles. Moreover, cutting tests were conducted to analyze the mechanical properties
of the crown at different positions. In this, we aim to provide a fundamental understanding of the
morphological and anatomical characteristics of banana crown vascular bundles and provide technical
guidance for banana postharvest processing.
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2. Materials and Methods

2.1. Banana Crown Preparation

In this paper, the Cavendish banana cultivar “Brazilian” (Musa acuminate L.), which is widely
planted in Guangdong Province, China, was used for experiments. In addition, experiments started
from the inflorescence emergence stage, when the fruit grew for about 100 days, and the raw banana
bunches were picked up from Jiangmen City, Guangdong Province (22◦32′ N, 112◦58′ E). Since
postharvest handling procedures of bananas kept them fresh (approximately 92–94% w.b.), the bunch
was immediately transported to the laboratory for crown preparation to make the experiment closer to
the actual process.

The banana crown preparation process is shown in Figure 1. The bunch (Figure 1a) was manually
cut perpendicular to the central stalk to obtain the banana hand (Figure 1b). Then, the fruit fingers
connected to the crown were removed with a knife. The remaining part was the crown (Figure 1c).
Since the crown resembles fan-shape, the sample size was ascertained by the arc length of fan-shape.
The total 24 samples with arc length of 187.16 (±9.58) mm were selected for the experiments, of which
2 for CT scanning, 1 for paraffin-embedded tissue section, 1 for SEM, and 20 for cutting test.
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Figure 1. Banana crown preparation processes. (a) Banana bunch; (b) banana hand; (c) banana crown.
Red lines are used to mark where the knife cut in Figure 1a,b.

2.2. CT Scanning

An industrial CT scanning system (X5000, NorthStar Imaging, Rogers, MN, USA) was used to
characterize the morphology of the vascular bundles in the banana crown. During the scanning process,
the operating voltage and operating current of X-ray WorX were 160 kV and 100 µA, respectively,
and the focal spot size was set to 15 µm. The detector and object were 700 mm and 180.327 mm away
from the tube, respectively. The crown was placed in a plastic box on the rotary table, which rotated
360◦ in a 0.2◦ rotation step. The whole process lasted for about 98 min at a resolution of 25.3 µm,
and the 3D volume model of the crown was reconstructed and visualized by established parameters.
Figure 2a–c describe the three views of the crown. CT scanning images of the three views are shown in
Figure 2a1–c1. Continuous 2D cross-sectional images of the crown were obtained by the accompanying
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software EFX-CT (North Star Imaging, Rogers, MN, USA) to analyze the morphology of the vascular
bundles in the crown.
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Figure 2. Sample and X-ray Computed Tomography (CT) scanning images of banana crown. (a) Side
view of the crown; (b) front view of the crown; (c) top view of the crown; (a1) side view CT scan;
(b1) front view CT scan; (c1) top view CT scan. PB = Plastic box.

In the above experiment, the crown was serially sliced from the longitudinal direction (Figure 4a),
and the 2D cross-sectional images with significant morphological differences were identified for analysis.

2.3. Biological Microscopic Observations

Longitudinal paraffin-embedded tissue sections were used to observe the anatomical characteristics
of the banana crown. Combined with CT scanning images (Figure 4c3,c4), tissue sections with distinct
morphological differences were prepared. The crown was longitudinally cut into 10 × 15 mm sections
and immediately fixed by FAA solution (5% formaldehyde, 5% acetic acid, and 70% ethanol) for 48 h.
The sections were washed with distilled water, and then the materials were dehydrated for 2 h each
at a concentration of 50%, 70%, 80%, 95%, and 100% alcohol. Next, different proportions of butanol
and absolute ethanol solutions were used to increase transparency (1:4, 2:2, 3:1, 4:0). Each step lasted
for 2 h, followed by dipping for 24 h at 70 ◦C in paraffin and embedding. Finally, 8 µm thick sections
were cut out by a microtome (Huahai 2508, Huahai, Jinhua, China). After the sections were dewaxed
in xylene, they were stained with safranin O-fast Green (2%) [29]. The stained section was observed
with automatic biological microscopy (BA600-4, Motic, Xiamen, China), and the section image was
imaged and captured by the supporting software McAudi Digital Section Scanning System (V1.0,
Motic, Xiamen, China).

2.4. SEM Analysis

SEM (SU8100, Hitachi, Tokyo, Japan) was used to characterize the microstructure of the crown
tissues and compare it with paraffin-embedded tissue sections. An approximately 3 mm slice was
taken from the concentration region of the vascular bundles in the crown (Figure 5e) and was viewed at
an acceleration voltage of 3 kV and an emission current of 10.5 µA. The slice was treated by spray-gold
prior to observation.
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2.5. Cutting Tests

2.5.1. Apparatus Description and Cutting Mechanism

The testing apparatus mainly included an electronic universal material testing machine (WD-E,
GRANDTRY, Guangzhou, China), liner-cutter (length of 65 mm, width of 40 mm, thickness of
1.5 mm), fixture, load cell (STC-100 Kg, VISHAY, Tianjin, China), personal computer, and operating
software. During the tests, the cutter and load cell were fixed under the movable crossbeam of
the electronic universal material testing machine. The cutter and load cell moved downward at
a constant speed (200 mm/min) stably, and the cutter was always positioned vertically above the
sample (Figure 3a). When the cutter interacted with the sample, the force and displacement data
for each cutting position were measured by the corresponding sensors. These data were collected
by operating software. The recorded data were plotted as force–displacement curves, which were
used to illustrate the behavior of force and displacement at different positions. The peak cutting force
and corresponding displacement values in curves were used to observe the relationship between the
distribution characteristics of vascular bundles. The energy consumed during the cutting process, i.e.,
the cutting energy, is the main factor to evaluate the appropriate mechanized cutting region, which can
be estimated as the area under the force–displacement curve [30,31].
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Figure 3. The cutting platform. (a) Includes 1O the linear slide stable, 2O the fixture, 3O liner-cutter,
4O load cell. (b) Is the fixture, (c) is an enlarged image of the cutting slot in (b), where the liner-cutter

moves downward from W1 (2 mm) at a constant speed V (200 mm/min) with each cut, and W2 (5 mm)
represents the distance between the adjacent cutting positions. (d) Is an example of calculating the
cutting energy, and the shaded portion represents the cutting energy.
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2.5.2. Experiment Design

In order to find the appropriate mechanized cutting region for dehanding, based on the analysis
results of 2.1, 2.2, and 2.3, the regions of two adjacent fingers were selected for the cutting tests,
and 20 pre-cut samples with similar physical size (70 mm × 25 mm) were prepared for the tests.

The fixture (Figure 3b) holding the pre-cut sample was mounted on a linear slide table. In Figure 3c,
the cutting slot W1 (2 mm) represented the cutting position. The pre-cut sample was sequentially
cut from each cutting slot by moving the linear slide table along the y-axis. The moving distance,
also called cutting distance, was W2 (5 mm). The cutting position started from the junction of the
central stalk and the crown; each sample was cut 9 times. The force and displacement at the different
cutting positions of each pre-cut sample were measured. Origin 2019b Learning Edition (OriginLab,
Northampton, MA, USA) was used to draw the force–displacement curve, the peak cutting force and
corresponding displacement values at different cutting positions were obtained. The area under the
force–displacement curve was calculated by the integral function in Origin (Figure 3d).

2.6. Data Analysis

The statistical differences of cutting positions and cutting energy were analyzed by one-way
analysis of variance (ANOVA) and Duncan’s multiple-range tests with SPSS 23.0 (SPSS Inc., Chicago,
IL, USA). In addition, the standard deviations of the means are shown in Table 1 for all measurement
results. A significance level of p < 0.05 was used for all analyses.

Table 1. The values of cutting energy and corresponding cutting position.

Crown Region Cutting Position Cutter Displacement (mm) Cutting Energy (J)

CSCTR
1 41.96 ± 1.76 4.30 ± 0.23 c
2 37.81 ± 1.92 3.66 ± 0.16 d
3 26.18 ± 1.06 2.57± 0.17 g

CER

4 27.98 ± 1.72 2.85 ± 0.20 f
5 30.40 ± 1.15 2.92 ± 0.14 f
6 31.69 ± 1.56 2.83 ± 0.13 f
7 34.43 ± 2.20 3.37 ± 0.29 e

CFTR
8 38.49 ± 2.09 4.84 ± 0.46 a
9 35.77 ± 1.24 4.48 ± 0.41 b

Different letters within the same column indicate a significant difference in Duncan’s multiple-range tests (p < 0.05).
The data are expressed as standard deviation of the mean (N = 20).

3. Results and Discussion

3.1. Morphological Characteristics

Longitudinal CT cross-sectional images of two adjacent finger regions of the banana crown were
analyzed (Figure 4a). The central stalk vascular bundles were distributed longitudinally along the
central stalk at a high density and had tubular morphological characteristics (Figure 4b1–b8). In addition,
the vascular bundles flowed from the central stalk into the crown and had a longitudinal distribution
along the crown, and this characteristic existed over a small region of the crown (Figure 4c2,c4,c6,c8).
However, the vascular bundles in the middle of the crown were mainly distributed transversely and
had a mass gathering region (Figure 4c1–c8). The vascular bundles were finally dispersed into each
finger after gathering in the crown. Additionally, in the middle of the upper (Figure 4c1,c5) and lower
fingers (Figure 4c3,c7), a collection of vascular bundles distributed longitudinally along the finger
could be observed. While in the region between the upper and lower fingers, the aggregation of
vascular bundles was not apparent.
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crown indicate the selected observation regions; (b1–b8) are CT images of the entire selected regions;
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According to the morphological characteristics of the crown vascular bundles, the changes of
vascular bundles from the central stalk to the fingers can be divided into three regions (Figure 4d):
the central stalk–crown transition region (CSCTR), where the vascular bundles with low density are
distributed longitudinally along the crown, and the vascular bundles of this region can provide the
physical support and the nutrient delivery to the banana hands growing spirally around the central
stalk [32]; the crown expansion region (CER), where the vascular bundles appear transversely and
densely distributed in the crown; and the crown–finger dispersion region (CFTR), in which the vascular
bundles are alternately dispersed into each finger and collected in the fingers. CT scanning, as an
imaging methodology, also reported the vascular bundles in other plant stalks. Similar morphological
characteristics of the crown vascular bundles were found in the maize stalks [33,34] and bamboo [35].
However, the vascular bundle morphological characteristics of the crown illustrated regular changes,
which are seldom mentioned in other plants and may be one of the highlights of the present work.
A detailed morphology of the vascular bundles in different regions is presented in Video S1, as shown
in the Supplementary Materials.

3.2. Anatomical Characteristics

Figure 5 depicts the longitudinal anatomical characteristics of the crown, in which the xylem and
vascular bundle sheath were stained red by safranin O while the phloem was stained blue by fast green.
The findings from the paraffin-embedded tissue sections were consistent with those of CT scanning.
In CSCTR, the vascular bundles distributed longitudinally along the crown were composed of tubular
structures (Figures 4c4 and 5a1), which included the xylem, phloem, and vascular bundle sheath,
respectively (Figure 5a2,a3). Similar vascular bundle characteristics were reported in the maize stem [36].
Moreover, it can be observed from these pictures that the tubular structures in the vascular bundles are
increasingly dispersed towards the crown. It may be necessary to prepare for the following transverse
distribution of vascular bundles. In CER, massive vascular bundles were gathered (Figures 4c1–c8 and
5b1) and were surrounded by abundant parenchyma (Figures 5b2 and 6a,c). Meanwhile, the vascular
bundles in the middle of CER clearly depicted transverse anatomical characteristics (Figures 5b3 and
6b,d), also indicating the vascular bundles in the region were distributed transversely.
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Figure 5. Longitudinal tissue sections of the crown. (a1) Is the original paraffin-embedded tissue
section image obtained at 20X magnification; (a2) and (a3) are the enlarged images of (a1), respectively;
(b1) is the original paraffin-embedded tissue section image obtained at 20X magnification; (b2) and (b3)
are the enlarged images of (b1), respectively. PA = Parenchyma, PH = Phloem, VB = Vascular bundle,
VBS = Vascular bundle sheath, XY = Xylem.
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The morphological and anatomical characteristics of vascular bundles in banana crown were
interacted revealed by the above three imaging methods. CT scanning enabled a fast, serial,
and non-destructive visualization of crown internal tissue morphology, which are not the advantages
of paraffin-embedded tissue section and SEM. However, the grayscale images obtained by CT scanning
cannot observe the anatomical characteristics of crown tissue. To reduce the number of slices and
time consumption, the regions with evident changes of vascular bundle morphology observed by
CT scanning were selected for paraffin-embedded section and SEM analysis. Overall, these three
complementary imaging methods achieved the foundational understanding of the crown tissue.

3.3. Cutting Mechanic Properties

3.3.1. Force–Displacement Curves

The cutting positions and corresponding regions for a single sample are presented in Figure 7,
and force–displacement curves at cutting positions are described in Figure 8. It can be seen that the
curves of each region are different, and similar conclusions have been reported in other studies [37,38].

The force–displacement curves at cutting positions 1–3 in CSCTR were different (Figure 8a).
The cutting distance from position 1 to 3 gradually decreased (41.54, 37.55, and 26.25 mm, respectively),
which was caused by the change of thickness at different positions. Furthermore, compared with
positions 2 and 3, the contact distance between the cutter and parenchyma was longer at position 1 due
to the existence of massive parenchyma, which led to a slow increase in the cutting force. A schematic
diagram of cutting vascular bundles at different cutting positions is depicted in Figure 9. The vascular
bundles in CSCTR were distributed longitudinally along the crown. The relative angle between the
cutter and the vascular bundle (RAVBC) gradually increased (approximately 27.38◦, 46.75◦, and 60.89◦)
in CSCTR, which might be the reason that the vascular bundles at positions 1–3 were almost completely
cut off (Figure 9a). The peak cutting forces at positions 1, 2, and 3 were, respectively, ascertained to be
140.30, 127.45, and 119.50 N, while the corresponding displacements were 33.23, 33.56, and 29.57 mm.
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It is notable that the peak cutting forces at positions 1–3 gradually decreased, which may be due to
reduction in the vascular bundle density caused by the dispersion of the vascular bundle. By combining
Figures 7 and 8, it can be summarized that the peak cutting forces in CSCTR were concentrated at the
vascular bundles.
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Agronomy 2020, 10, 1199 11 of 15

Agronomy 2020, 10, x FOR PEER REVIEW 11 of 15 

 

schematic diagram of cutting vascular bundles at different cutting positions is depicted in Figure 9. 
The vascular bundles in CSCTR were distributed longitudinally along the crown. The relative angle 
between the cutter and the vascular bundle (RAVBC) gradually increased (approximately 27.38°, 
46.75°, and 60.89°) in CSCTR, which might be the reason that the vascular bundles at positions 1–3 
were almost completely cut off (Figure 9a). The peak cutting forces at positions 1, 2, and 3 were, 
respectively, ascertained to be 140.30, 127.45, and 119.50 N, while the corresponding displacements 
were 33.23, 33.56, and 29.57 mm. It is notable that the peak cutting forces at positions 1–3 gradually 
decreased, which may be due to reduction in the vascular bundle density caused by the dispersion 
of the vascular bundle. By combining Figures 7 and 8, it can be summarized that the peak cutting 
forces in CSCTR were concentrated at the vascular bundles. 

 

Figure 9. Schematic diagram of cutting vascular bundles at different positions. The vascular bundle 
is represented by a tubular structure in the figure, and the cutter is located above the vascular bundle. 
(a) Represents positions 1–3 in CSCTR, respectively; (b) are positions 4–6 in CER, respectively; (c) 
includes position 7 in CER and position 8 in CFTR; (d) illustrates position 9 in CFTR. In (b), it is 
difficult to mark “RAVBC” due to the extremely small relative angles. RAVBC = Relative angle 
between the vascular bundle and cutter. 

As depicted in Figure 7, cutting positions 4–7 were embedded in CER, where the force–
displacement curves at positions 4–6 had similar trends (Figure 8b). The vascular bundles were 
distributed transversely along with the crown at positions 4–6, and the RAVBC was small. 
Meanwhile, the observed vascular bundle density at these positions was very large, which led to 
cutting and compression sections of the vascular bundle during the movement of the cutter, just as 
found in shear tests of hemp [39] and sunflower stalks [40]. The combined effect of cutting and 
compression sections resulted in a large number of vascular bundles being damaged at positions 4–
6 (Figure 9b), and the cutting force was larger. The peak cutting forces were 140.19, 150.39, and 139.83 
N from positions 4 to 6, and the corresponding displacements were concentrated at 13.96, 14.29, and 
14.62 mm, which were also located near the vascular bundle concentration region (Figure 7). 

The force–displacement curve at position 7 indicates that the vascular bundles began to disperse 
and were ready to alternately flow into the fingers (Figure 8b), and the RAVBC simultaneously 

Figure 9. Schematic diagram of cutting vascular bundles at different positions. The vascular bundle
is represented by a tubular structure in the figure, and the cutter is located above the vascular
bundle. (a) Represents positions 1–3 in CSCTR, respectively; (b) are positions 4–6 in CER, respectively;
(c) includes position 7 in CER and position 8 in CFTR; (d) illustrates position 9 in CFTR. In (b), it is
difficult to mark “RAVBC” due to the extremely small relative angles. RAVBC = Relative angle between
the vascular bundle and cutter.

As depicted in Figure 7, cutting positions 4–7 were embedded in CER, where the force–displacement
curves at positions 4–6 had similar trends (Figure 8b). The vascular bundles were distributed
transversely along with the crown at positions 4–6, and the RAVBC was small. Meanwhile, the observed
vascular bundle density at these positions was very large, which led to cutting and compression
sections of the vascular bundle during the movement of the cutter, just as found in shear tests of
hemp [39] and sunflower stalks [40]. The combined effect of cutting and compression sections resulted
in a large number of vascular bundles being damaged at positions 4–6 (Figure 9b), and the cutting force
was larger. The peak cutting forces were 140.19, 150.39, and 139.83 N from positions 4 to 6, and the
corresponding displacements were concentrated at 13.96, 14.29, and 14.62 mm, which were also located
near the vascular bundle concentration region (Figure 7).

The force–displacement curve at position 7 indicates that the vascular bundles began to disperse
and were ready to alternately flow into the fingers (Figure 8b), and the RAVBC simultaneously became
larger. Moreover, the high density of vascular bundles led to a mass of vascular bundles being
completely cut off (Figure 9c), showing a peak cutting force of 155.63 N. Additionally, due to the
dispersion of vascular bundles, the displacement value of the peak cutting force increased to 23.59 mm
(Figure 7). The force–displacement curve at position 8 in CFTR was similar to position 7 (Figure 8c),
which indicated the dispersion process of vascular bundles. The peak cutting force and displacement
at position 8 were, respectively, 156.15 N and 25.92 mm. However, increases in the cutting force
fluctuation at position 8 were obvious compared with that of position 7, which might be due to the
dispersion of the vascular bundles being more intense at this position.

As can also be seen from Figure 7, the curve at position 9 in CFTR was different from all the
previous curves, where there were two obvious increase–decrease processes (Figure 8c). The vascular
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bundles were distributed longitudinally along with the crown and were alternately gathered in the
upper and lower fingers. Therefore, the density of the vascular bundle in the upper and lower fingers
was higher than that in the area between fingers. In the process of cutting the fingers, the RAVBC was
similar to positions 7 and 8, and the number of vascular bundles completely cut off in the upper and
lower fingers was more (Figure 9d). The peak cutting forces in the upper and lower fingers were 154.38
and 163.95 N, and the corresponding displacements were 10.97 and 25.92 mm, respectively, which
were obviously in the vascular bundle concentration region (Figure 7). However, when cutting the
region between the upper and lower fingers, the cutting force was significantly decreased due to the
fact that there were fewer vascular bundles.

According to the aforementioned analysis, it can be summarized that when the cutting direction
is constant, the mechanical properties of the banana crown notably change during the vascular bundle
transition region, which is probably due to changes in the vascular bundle direction and density.
The vascular bundle direction affects the RAVBC, which also characterizes the vascular bundle that can
be cut off in a region, and the density determines the number of vascular bundles that can be cut off in
the region. In addition, the peak cutting force always exists in the vascular bundle concentrated area.

3.3.2. Cutting Energy

The area between the solid and dotted lines in Figure 8 was used to calculate the cutting energy
at the corresponding cutting position. The values of the cutter displacement and cutting energy are
tabulated in Table 1. According to the results of Duncan’s multiple-range tests, it can be concluded that
the cutting energies in different regions were significantly different (p < 0.05). In addition, the cutting
energy of CER was significantly less than that of the other two regions. Due to the fact that the
vascular bundle distribution characteristics of positions 4–6 were relatively stable, the cutting forces
and cutter displacements changed little, which ensures that the cutting energy was stable at these
positions. Therefore, CER is considered as the optimized mechanized cutting region. Interestingly,
the cutting energy at position 3 was very small, owing to the small crown thickness as well as the
short displacement of the cutter. From the perspective of reducing energy, position 3 could also be
used as the mechanized cutting region. However, the equation representing relationship between
the cutting energy and corresponding displacement is illustrated in Figure 10. It is worth noting that
the non-perfect R2 (0.73) is not only due to the variation of crown thickness, but also the distribution
characteristics of vascular bundles at different positions of the crown (e.g., the density and the vascular
bundles gathering area) should be considered. Overall, the appropriate mechanized cutting region
should be located between CSCTR and CER.Agronomy 2020, 10, x FOR PEER REVIEW 13 of 15 
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4. Conclusions

The main conclusions depending on the results of this study are detailed below.

1. Based on the analysis of the morphological and anatomical characteristics, the banana crown
vascular bundles are divided into three regions including: (1) CSCTR, the vascular bundles where
the central stalk flows into the crown have a low density and are distributed longitudinally along
the crown with a tubular structure; (2) CER, the vascular bundles in the region are distributed
transversely at a high density, and the basic structure of the vascular bundle includes the xylem,
phloem, and vascular bundle sheath; and (3) CFTR, in which the crown vascular bundles are
dispersed in each finger and followed by collection in the fingers.

2. The cutting mechanical properties are significantly affected by the vascular bundle direction and
density. In CSCTR, the cutting mechanical properties are unstable during the transition from
central stalk to crown, and the cutting energy decreased from 4.3 to 2.57 J. For vascular bundles
distributed transversely along with the crown in CER, the cutting mechanical properties remain
stable, and the cutting energy varies from 2.83 to 2.92 J. The largest cutting energy (4.84 J) among
the whole crown is found to be in the CFTR.

3. The appropriate mechanized cutting region for dehanding is ascertained to be between CSCTR
and CER, which can help to reduce the energy needed in the cutting process.

Overall, it is feasible to analyze the morphological and anatomical characteristics of the banana
crown with multiple imaging methods (CT, Paraffin-embedded tissue section, SEM) and use the
results to explain the cutting mechanical behaviors. The main conclusions provide a theoretical
basis for designing subsequent cutting machines, and the adopted combined methodology of plant
morphology, anatomy, and engineering can provide guidance when fusing agronomy and agricultural
machinery. Moreover, further study is recommended to quantitatively analyze the density and direction
of the vascular bundles in the crown in order to clarify the effect of the interaction between these
two characteristics on the cutting mechanical properties and establish a spatial model of the crown
vascular bundles.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/8/1199/s1,
Video S1: The detailed morphology of vascular bundles of banana crown different regions are obtained by
CT scanning.
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