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Abstract: Sugarcane cultivation in Japan has not yet focused on suppressing plant-parasitic nematodes.
For proper nematode management, it is essential to know the spatial distribution of economically
important plant-parasitic nematodes and free-living nematodes that play important roles in terrestrial
ecosystems. We aimed to reveal nematode fauna and soil properties in 85 sugarcane fields of
three major sugarcane producing islands in Japan, and to examine their relationship by using
the mixed-effect model and by visualizing the spatial distributions using the inverse distance
weighting (IDW) approach. The nematode community structures were analyzed by non-metric
multidimensional scaling (NMDS). Among plant-parasitic nematodes in sugarcane, the root-lesion
nematodes (Pratylenchus sp.) and the stunt nematodes (Tylenchorhynchus sp.) were widely distributed
in these islands, yet the abundance and the species varied geospatially. Soil pH was significantly
correlated with the abundance of Pratylenchus and Tylenchorhynchus species. The abundance of
Pratylenchus and Tylenchorhynchus species were significantly correlated with soil pH. The abundance
of Pratylenchus was significantly correlated with the abundance of free-living nematodes, the number of
free-living nematode species, and exchangeable cation K+, as were the abundance of Tylenchorhynchus
to the clay content and that of non-Tylenchorhynchus. This study also revealed that the three islands
had different nematode faunas, which were explained especially by soil pH, texture, and exchangeable
basic cations.

Keywords: free-living nematodes; nematode diversity; plant-parasitic nematodes; Pratylenchus;
soil physico-chemical properties; spatial distribution; Tylenchorhynchus

1. Introduction

More than 310 species of 48 genera of plant-parasitic nematodes have been reported in sugarcane [1],
and these nematode genera include Helicotylenchus, Hoplolaimus, Meloidogyne, Paratylenchus, Pratylenchus,
Rotylenchulus, Tylenchorhynchus and Xiphinema. Among these, the root-lesion nematode (Pratylenchus sp.),
the root-knot nematode (Meloidogyne sp.), and the dagger nematode (Xiphinema sp.) are potentially
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the most damaging pests associated with sugarcane [2]. Studies in Australia, Brazil, and South Africa [3–5]
reported 10% to 30% sugarcane yield losses caused by plant-parasitic nematodes, and occasionally, a greater
than 40% yield reduction due to plant-parasitic nematodes in Africa [1]. Previous studies [6,7] indicated
about 20% yield losses in spring planting and successive ratoon crops due to plant-parasitic nematodes
(principally Pratylenchus) in Okinawa, Japan, where our previous survey (unpublished) showed species of
Pratylenchus and Tylenchorhynchus as major plant-parasitic nematodes.

Okinawa is located in the subtropical region, 1500–2000 km south-west of Tokyo. It is the major
sugarcane producing area in Japan. In Okinawa Prefecture, there are 13,145 ha of sugarcane fields,
and the annual sugarcane production was 742,584 t in 2019 [8]. The top three islands in the total
production were Miyako island (4072 ha, 218,434 t), Okinawa island (2695 ha, 132,888 t), and Ishigaki
island (1387 ha; 90,100 t). The sugarcane yield in Okinawa had been exceeding that of the world until
the beginning of the 21st century. Yet, the yield has declined and was 58.8 t ha−1 (10-year average of
2008–2017), 5% below that of 10 years ago [8]. During the same period, the average in the world was
70.6 t ha−1, 5% more than that of 10 years ago [9]. Although plant-parasitic nematodes may not be
the only reason, nematodes may be one of the factors that influenced the sugarcane yield decline in
Japan. Also, there has been no in-depth nematode research specific to sugarcane fields covering major
production regions in Okinawa. Further, there has been no nematicide available against plant-parasitic
nematodes in sugarcane in Japan until 2019, when fipronil [10] became the first agrochemical registered
for suppressing Pratylenchus zeae, one of the major plant-parasitic nematodes in sugarcane.

In agricultural field soils, the complex microbial community plays important roles in sustainable
farming [11], where nematodes are important players in soil ecosystem function, such as nutrient cycling,
organic matter decomposition through regulating decomposers (bacteria and fungi), and disease
suppression [12]. Nematode diversity in soil can be a good indicator of soil health [13,14]. The soil
nematode communities are influenced by environmental factors including soil physical and chemical
properties, moisture, temperature, and vegetation [15]. Also, the free-living nematode fauna may
influence the abundance of the plant-parasitic nematodes [16]. Yet, no study has been conducted to
investigate the relationship between nematode community and soil properties in sugarcane fields
in Japan.

In this study, we hypothesized that root-lesion and stunt nematodes might be ubiquitously
spreading over the sugarcane fields in Okinawa, but their abundance might be influenced by some of
the soil physico-chemical properties and other nematode assemblages. Also, our preliminary study
showed that the major species of the root-lesion nematodes might be P. zeae and P. coffeae and that those
of the stunt nematodes might be T. leviterminalis and T. annulatus in Okinawa’s sugarcane fields, yet
the geospatial distribution of these nematode species and nematode community structures have not
been studied. Therefore, the objectives of this study were (1) to examine geospatial distribution of
nematodes, in particular species composition of plant-parasitic nematodes, and soil physico-chemical
properties in sugarcane fields in different islands in Okinawa; (2) to determine the soil physico-chemical
properties and the nematode assemblages that may influence the abundance of the root-lesion and stunt
nematodes in sugarcane fields; and (3) to examine the nematode diversity and maturity indices in
sugarcane fields in different islands. This is the first report of the relationship among plant-parasitic
nematodes, free-living nematodes, and soil physico-chemical properties in the extended coverage of
the sugarcane fields in Japan.

2. Materials and Methods

2.1. Study Fields

Soil was collected in the major sugarcane producing regions of Okinawa Island (Okinawa-North
and South: between 26◦5′41.4” N and 26◦42′14.8” N and between 127◦40′15.5” E and 128◦1′9.7” E);
in Miyako Island (Miyako: between 24◦′43′12.1” N and 24◦53′8.5” N and between 125◦15′47.0” E
and 125◦25′37.3” E); and in Ishigaki Island (Ishigaki: between 24◦′21′0.3” N and 24◦28′9.2” N
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and between 124◦6′14.1” E and 124◦14′44.1” E) in Japan (Figure 1; generated by leaflet package [17]
in R). They were the top three sugarcane producing islands in the 2018–2019 season in Okinawa [8].
We separated Okinawa-North and Okinawa-South, because their major soil types are different.
The major soil types of each region are red-yellow soil (local name in Japan: Kunigami-Mahji) in
Okinawa-North and Ishigaki; dark-red soil (local name: Shimajiri-Mahji) in Miyako; and dark-red soil
plus marlitic terrestrial regosols (or grey terrace soil, local name: Jahgaru) in Okinawa-South [18,19].
Soil sampling was conducted in the early fall at the end of September and in the middle of October
in 2016 in Okinawa-North and South, in mid-August in 2017 in Miyako and in the early July in 2018
in Ishigaki. The 20-year averages of precipitation and day-time temperature [20] were 2152 ± 425
(standard deviation) mm annum−1 and 22.9 ± 0.3 ◦C (the north of Okinawa); 2210 ± 439 mm annum−1

and 23.4 ± 0.3 ◦C (the south of Okinawa); 2086 ± 317 mm annum−1 and 23.9 ± 0.3 ◦C (Miyako);
and 2129 ± 381 mm annum−1 and 24.6 ± 0.3 ◦C (Ishigaki).
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Figure 1. Soil sampling sites in each island. The green dotted line in the Okinawa map (enlarged)
is to separate North and South. The scale bar at the bottom of each island is approximately 20 km.
The maps are based on the blank map [21] published by Geospatial Information Authority of Japan [22]
and developed using leaflet package in R.

2.2. Soil Sampling

Soil was collected for nematode and physico-chemical analyses in a total of 85 sugarcane fields
(18, 31, 20, and 16 fields in Okinawa-North, Okinawa-South, Miyako, and Ishigaki, respectively).
For nematode analysis, the soil was collected with an auger (3 cm diameter) at 0–30 cm depth within
10–15 cm of the base of 5 randomly selected sugarcane plants in each field. The soil was passed through
a 5 mm aperture sieve to remove rocks and debris, mixed well and kept at room temperature for no
more than two days before nematode extraction. The soil moisture was determined using 100.0 g fresh
soil dried in an oven (60 ◦C × 48 h). For physico-chemical analysis, the soil was collected at a depth of
0–30 cm at 5 randomly selected spots within 20–30 cm of the sugarcane ridge in the same field as for
the nematode analysis. The collected soil samples were air-dried, sieved to pass through a 2 mm mesh
screen, and stored at ambient temperature until analysis.
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2.3. Nematode Extraction, Identification and Enumeration

Nematodes were extracted in triplicate from 20 g subsample of each well mixed soil sample to
evaluate nematode fauna using the Baermann funnel method (room temperature, 72 h [23]). The soils
after the Baermann extraction were further set in the sugar-flotation nematode extraction method
to extract remaining nematodes following Jenkins [24] with some modifications [25]. Nematodes
were counted and identified based on their morphological characters under a stereomicroscope (BX53,
Olympus, Tokyo, Japan). Up to 6 root-lesion nematodes and stunt nematodes were randomly selected
from soils of each field and identified using the real-time PCR method (P. zeae and T. leviterminalis
by the method in the previous study [26] and P. coffeae and T. annulatus using unpublished real-time
PCR primers). Thresholds of Pratylenchus spp. and Tylenchorhynchus spp. for severe damage
against sugarcane were set at 80 (and 40) and 100 (and 50) nematodes 20 g soil−1, respectively,
based on previous studies [25,27]. Other plant-parasitic nematodes identified in this study were
Helicotylenchus sp., Rotylenchulus spp. (R. reniformis and R. borealis), Hoplolaimus sp., Meloidogyne
sp., Paratylenchus sp., Xiphinema sp., and ring nematodes. Among these plant-parasitic nematodes,
Meloidogyne sp. and Xiphinema sp. may be potentially harmful [1] for sugarcane, however, their presence
in the investigated fields was low and therefore were not examined in this study. Free-living nematodes
were counted in total and classified separately for the first 100 individuals or all, if total numbers
were less than 100, based on their morphological characters [28,29] and general feeding habits [30].
The classification of free-living nematodes in the current study covered Acrobeloides, other Cephalobidae,
Rhabditis, other Rhabditidae, and the other bacterial feeders. The other feeding types including fungal
feeders (Aphelenchus, Aphelenchoides, Filenchus and Ditylenchus), mostly omnivorous nematodes in
the Dorylaimida order and predator nematodes were also recorded. Soil DNA was extracted from 0.25
g of oven-dried (60 ◦C, 48 h) and homogenized soil in duplicate [31]. The DNA solutions dissolved in
100 µL Tris-EDTA buffer (10 mmol liter−1 Tris-HCl, 1 mmol liter−1 EDTA, pH 8.0) were diluted 10-folds
with RNasefree water and used for real-time PCR assays for confirming the root-lesion and stunt
nematode species existing in field samples using the same primer sets described above.

2.4. Physico-Chemical Properties of Soil

Soil pH and electric conductivity (EC) were determined in deionized water (H2O) and 1 M KCl at a
soil-to-solution ratio of 1:5. Soil particle size distribution was determined by the wet-sieving and pipet
method [32]. Total carbon (TC) and total nitrogen (TN) were quantified by the dry combustion method
with an NC analyzer (SUMIGRAPH NC TR22, Sumika Chemical Analysis Service, Ltd., Osaka, Japan).
Available phosphate (Available-P) was evaluated by the Truog method [33]. A batch extraction with
ammonium acetate (1 M, Ph 7.0) was performed to measure the cation-exchange capacity (CEC)
and exchangeable basic cations (K+, Na+, Ca2+, and Mg2+), which were determined using atomic
absorption spectroscopy (A-A-640–01; Shimadzu, Kyoto, Japan).

2.5. Free-Living Nematode Biodiversity and Maturity Indices

Several important indices were used to assess the biodiversity of free-living nematodes in
sugarcane fields, i.e., the Shannon-Wiener index (H’), to evaluate the diversity of soil free-living
nematode fauna, the Simpson’s D to assess dominance of abundant taxa, species richness (Margalef
index), and evenness J’ to evaluate using genus and family levels as taxa classification [13]. Maturity
index [34], maturity index (colonizer-persister (cp) value 2–5) [35], and maturity index (Cephalobidae
adjusted) [29] were also used to gauge the condition of the soil ecosystem.

2.6. Statistical Analysis

For nematode abundance, percentages of each free-living nematode species, diversity and maturity
indices, and soil physico-chemical properties, multiple comparisons (Tukey-Kramer’s method) were
conducted among four different sites (Okinawa-North and South, Miyako, and Ishigaki). Stepwise
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regression analysis was used to narrow down the potential predictors among physico-chemical
parameters, nematode biodiversity indices and non-target nematode abundance to explain
the abundance of the target nematodes, Pratylenchus and Tylenchorhynchus nematodes. The variance
inflation factor (VIF) was used to detect the presence of linear relationships among variables. Then, linear
mixed model analysis was performed using the parameters remained (pH (H2O), K+, the abundance
of the free-living nematodes, and the number of free-living nematode species for Pratylenchus, and pH
(H2O), the abundance of non-Tylenchorhynchus nematodes, and the clay content for Tylenchorhynchus) as
fixed effects with site (Okinawa-South and North, Miyako, and Ishigaki) as a random effect to control for
variation in categorical explanatory variables among different locations of soil collection. The statistical
analysis was conducted in R v.3.6.1 (R Core Team, Vienna, Austria) [36] using multiple comparisons
(multicomp library [37]) and linear mixed-effects models (lmer library of lme4 package [38]) for
all variables (square-rooted). Further, in order to understand the spatial pattern of Pratylenchus
and Tylenchorhynchus distribution together with these parameters, geospatial mapping was conducted
in each island by the inverse distance weighting (IDW) method using gstat package [39,40] in R.
Non-metric multidimensional scaling (NMDS) using Bray-Curtis dissimilarities [41] was applied for
the nematode community analysis using the nematode classification in the Section 2.3 above. The result
of NMDS analysis highlighted the difference among regions and pH levels (high: ≥8.3: the 1st quartile;
middle: <8.3: the 2nd and 3rd quartiles; low: <5.4: the 4th quartile of all the 85 data) using vegan
package [42] and shown in graph using ggplot2 package [43] in R. Then the physico-chemical variables
were fitted to the NMDS as environmental parameters.

3. Results

3.1. Nematodes in Sugarcane Fields

Plant-parasitic nematodes were significantly (p < 0.05) more in Okinawa-North than in Miyako
and Ishigaki, and more than 80% of the plant-parasitic nematodes in each region were species of
Pratylenchus, Tylenchorhynchus and Helicotylenchus (Table 1). Species identification of individual
nematodes using the real-time PCR method showed that all the root-lesion nematodes were either
P. zeae or P. coffeae, and all the stunt nematodes were T. leviterminalis or T. annulatus. The abundances of
Pratylenchus and Helicotylenchus nematodes were significantly (p < 0.05) higher in Okinawa-North than
in the other 3 regions, while Tylenchorhynchus was more in Okinawa-South than Miyako and Ishigaki.
Nematodes of the genus Meloidogyne were not populous in all four regions and found in one field
each in Okinawa-North and South and Ishigaki, and 7 fields (35%) in Miyako. Rotylenchulus sp. was
detected at 28% and 68% of the studied fields in Okinawa-North and South, respectively, and 100%
and 94% in Miyako and Ishigaki, respectively. The abundance of Rotylenchulus sp. also tended to be
more in Okinawa-South and Miyako than in Okinawa-North and Ishigaki. Xiphinema sp. was found
only in 2 fields in Okinawa-South.

Table 1. Nematodes per 20 g soil.

Okinawa-North Okinawa-South Miyako Ishigaki

Free-living nematodes 146 a 82 bc 128 ab 54 c
Plant-parasitic nematodes 372 a 273 ab 200 b 146 b

Pratylenchus 63 a 17 b 20 b 17 b
Tylenchorhynchus 148 ab 203 a 77 b 83 b
Helicotylenchus 153 a 21 b 64 b 23 b

Hoplolaimus 2 a 3 a 4 a 3 a
Meloidogyne 0 a 0 a 3 b 0 a

Paratylenchus 2 a 0 a 0 a 0 a
Rotylenchulus 1 a 27 ab 32 b 12 ab

Xiphinema 0 a 0 a 0 a 0 a
Ring nematodes 3 ab 0 a 0 a 7 b

Numbers are the mean of each sampling region (Okinawa-North: N = 18; Okinawa-South: N = 31; Miyako: N = 20;
Ishigaki: N = 16). Different letters indicate significant difference (Tukey-Kramer method; p < 0.05) among the regions.
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The abundance of free-living nematodes was significantly (p < 0.05) more in Okinawa-North than
in Okinawa-South and Ishigaki (Table 1). Nematodes of the genus Acrobeloides accounted for around
50% of all free-living nematodes in Okinawa-North and South, and around 15% in Miyako and Ishigaki,
while other Cephalobidae did for 15% to 19% with no significant difference among the regions (Table 2).
The proportion of Rhabditis sp. was significantly (p < 0.05) more in Okinawa-North and South
than in Miyako and Ishigaki, yet other Rhabditidae had no significant difference among the regions.
The proportion of other bacterial feeders was significantly (p < 0.05) more in Miyako and Ishigaki than
in Okinawa-North and South. The proportion of Filenchus sp. was significantly (p < 0.05) higher in
Ishigaki than in the other regions. The proportions of Dorylaimida and predator nematodes were
significantly (p < 0.05) more in Miyako and Ishigaki than in Okinawa-North and South (Table 2).

Table 2. Composition of free-living nematodes

Okinawa-North Okinawa-South Miyako Ishigaki

Acrobeloides 48% a 51% a 15% b 13% b
Other Cephalobidae 16% a 15% a 15% a 19% a

Rhabditis 8% a 7% a 0% b 3% b
Other Rhabditidae 9% a 10% a 12% a 11% a
Other bacterivores 10% a 10% a 31% b 20% c

Aphelenchus 3% a 2% a 3% a 1% a
Aphelenchoides 0% ac 0% a 3% b 2% bc

Filenchus 3% a 3% a 4% a 13% b
Ditylenchus 0% a 0% a 0% a 0% a
Dorylaimida 3% a 2% a 16% b 16% b
Predators 0% a 0% a 1% b 2% b

Numbers are the mean of each sampling region (Okinawa-North: N = 18; Okinawa-South: N = 31; Miyako: N = 20;
Ishigaki: N = 16). Different letters indicate significant difference (Tukey-Kramer method; p < 0.05) among the regions.

3.2. Spatial Distribution of Pratylenchus and Tylenchorhynchus

The root-lesion nematodes (Pratylenchus) were detected in all the sugarcane fields except 3 fields in
Okinawa-North and South. The dominant root-lesion nematode species was P. zeae in Okinawa-North
and Ishigaki, while it was P. coffeae in Okinawa-South and a mixture of P. zeae and P. coffeae in Miyako.
There were more than 80 root-lesion nematodes 20 g soil−1 observed in 28%, 5%, and 6% of the fields in
Okinawa-North, Miyako and Ishigaki, respectively, and more than 40 root-lesion nematodes 20 g soil−1

in 72%, 13%, 20%, and 6% of the fields in Okinawa-North, Okinawa-South, Miyako, and Ishigaki,
respectively (Figure 2). The stunt nematodes (Tylenchorhynchus) were detected in all the sugarcane fields
except 2 fields in Okinawa and Ishigaki. The dominant stunt nematode species was T. leviterminalis
throughout most of the four regions, while T. annulatus were detected in Okinawa-North, in the most of
Miyako and occasionally in Ishigaki. There were more than 100 stunt nematodes 20 g soil−1 observed
in 54% of the fields in the four regions, and more than 50 stunt nematodes 20 g soil−1 in 74% of
the fields (Figure 3).

3.3. Soil Physico-Chemical Properties

Values of pH (in both H2O and KCl) and CEC were significantly (p < 0.05) lower in Okinawa-North
and Miyako than in Okinawa-South and Ishigaki (Table 3). The clay content was significantly (p < 0.05)
lower in Okinawa-North and Miyako than in Okinawa-South and Ishigaki, while the sand content was
significantly (p < 0.05) higher in Okinawa-North and Miyako than in Okinawa-South and Ishigaki.
Soil moisture, exchangeable K+, and Na+ were significantly (p < 0.05) higher in Miyako than the other
three regions, and total C and total N were higher in Miyako than Okinawa-South and Ishigaki.
Exchangeable Ca2+ was significantly (p < 0.05) higher in Okinawa-South than the other three regions
(Table 3).
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Figure 3. Distribution and abundance of Tylenchorhynchus spp. in Okinawa, Miyako, and Ishigaki.
The green dotted line in Okinawa map is to separate North and South. The maps are based on the blank
map [21] published by Geospatial Information Authority of Japan [22].
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Table 3. Soil physico-chemical properties

Okinawa-North Okinawa-South Miyako Ishigaki

pH (H2O) 5.4 a 8.1 b 6.9 c 5.8 a
pH (KCl) 4.3 a 7.0 b 5.9 c 4.9 a

Soil moisture (%) 14.1 a 14.8 a 18.7 b 13.8 a
EC(mS m−1) 13.0 a 14.3 a 13.3 a 13.5 a

Clay (%) 32.9 a 41.4 b 61.6 c 29.6 a
Silt (%) 38.4 a 49.6 b 29.0 c 30.2 c

Sand (%) 28.7 a 9.1 b 9.3 b 40.1 c
Total C (g C kg−1) 0.93 ab 0.85 a 1.17 b 0.77 a
Total N (g N kg−1) 0.10 ab 0.10 a 0.14 b 0.09 a

Available P (mg P kg−1) 214.0 a 103.0 a 87.2 a 113.8 a
Exch. K+ (cmol kg−1) 0.3 a 0.5 a 1.0 b 0.6 a

Exch. Na+ (cmol kg−1) 0.1 a 0.2 a 0.3 b 0.1 a
Exch. Ca2+ (cmol kg−1) 11.2 a 35.7 b 15.9 a 7.2 a
Exch. Mg2+ (cmol kg−1) 1.6 ac 2.7 b 2.5 ab 1.1 c

CEC (cmol kg−1) 14.1 a 17.9 b 17.9 b 11.2 a

Numbers are the mean of each sampling region (Okinawa-North: N = 18; Okinawa-South: N = 31; Miyako: N = 20;
Ishigaki: N = 16). Different letters indicate significant difference (Tukey-Kramer method; p < 0.05) among the regions.

3.4. The Relationship between Soil Properties and Abundance of Pratylenchus and Tylenchorhynchus

The mixed-effect model among the four regions to test selected variables to explain the abundance
of Pratylenchus showed that pH (H2O), K+, the abundance of free-living nematodes, and the number
of free-living nematode species were significant (p < 0.05). All the parameters except the abundance
of free-living nematodes negatively affected the Pratylenchus abundance. The mixed-effect model for
Tylenchorhynchus showed that pH, the abundance of non-Tylenchorhynchus nematodes, and clay content
were significant (p < 0.05). These parameters except clay content positively affected the Tylenchorhynchus
abundance. The inverse distance weighting (IDW) prediction figures confirmed the clearer relationship
for the abundance of Pratylenchus and Tylenchorhynchus against pH (H2O) in the different directions
(Figures 4 and 5). The other parameters, exchangeable cation K+, the abundance of free-living
nematodes, and the number of free-living nematode species also showed the relationship with
the abundance of Pratylenchus to a certain degree, as did clay content and the abundance of
non-Tylenchorhynchus nematodes with that of Tylenchorhynchus.
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Figure 4. Spatial distribution of A: the abundance of Pratylenchus nematodes 20 g soil−1, B: pH (H2O),
C: exchangeable cation K+ (cmol kg−1), D: the abundance of free-living nematodes 20 g soil−1, and E:
the number of free-living nematode species in Okinawa, Miyako, and Ishigaki, predicted by the inverse
distance weighting (IDW) approach. The green dotted line in Okinawa’s figure was to separate North
and South regions. To the abundance of Pratylenchus in the mixed-effect model, the blue solid line at
the bottom has a positive relationship, and the dotted red line has a negative relationship.
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Figure 5. Spatial distribution of A: the abundance of Tylenchorhynchus nematodes 20 g soil−1, B: pH
(H2O), C: clay content (%) and D: the abundance of non-Tylenchorhynchus 20g soil−1 in Okinawa, Miyako,
and Ishigaki predicted by the inverse distance weighting (IDW) approach. The green dotted line in
Okinawa’s figure was to separate North and South regions. To the abundance of Tylenchorhynchus in
the mixed-effect model, the blue solid line at the bottom has a positive relationship, and the dotted red
line has a negative relationship.

3.5. Diversity of Free-Living Nematodes

The values of Shannon-Weiner index (H′), evenness J′, the number of free-living nematode species,
and species richness tended to be higher in Miyako and Ishigaki than in Okinawa-North and South,
while Simpson’s D did in the opposite direction (Table 4). All the three maturity indices showed
significantly (p < 0.05) lower values in Okinawa-North and South than in Miyako and Ishigaki (Table 4).

Table 4. Nematode diversity index

Okinawa-North Okinawa-South Miyako Ishigaki

Shannon-Wiener H′ 2.07 ab 1.93 a 2.43 bc 2.60 c
Evenness J′ 0.90 ab 0.84 a 1.05 bc 1.13 c

Number of free-living nematode species 6.94 ab 6.58 a 7.50 ab 7.81 b
Species richness (Margalef index) 1.50 a 1.56 a 1.61 ab 2.05 b

Simpson′s D 0.34 ab 0.38 a 0.23 bc 0.19 c
Maturity Index (MI) 1.90 a 1.87 a 2.20 b 2.17 b

MI (cp2–5) 1.73 a 1.69 a 2.08 b 2.02 b
MI (Cephalobidae adjusted) 1.26 a 1.21 a 1.90 b 1.84 b

Numbers are the mean of each sampling region (Okinawa-North: N = 18; Okinawa-South: N = 31; Miyako: N = 20;
Ishigaki: N = 16). Different letters indicate significant difference (Tukey-Kramer method; p < 0.05) among the regions.

3.6. Nematode Fauna in Sugarcane Fields

NMDS generated the 3-dimensional graphs (Figure 6), which was suitable for this analysis with
the stress value of 0.157 (the 2-dimensional NMDS showed unclear results with the stress value over 0.2).
The result showed clear difference between Okinawa (North and South in the blue oval) and the other
islands (Miyako and Ishigaki) but not among the levels of pH (Figure 6A). The graph also presented
the environmental factors, pH, clay, silt, K+, Na+, and Ca2+, which showed significant (p < 0.01)
difference. The second graph (Figure 6B) showed differences among Okinawa (both North and South:
in the blue oval), Miyako (in the yellow oval), and Ishigaki (in the red oval). The graph included
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the significant (p < 0.01) environmental factors, pH, clay, silt, sand, K+, Na+, and Ca2+. Further, the third
graph (Figure 6C) showed that Miyako and Ishigaki tended to be separated in which Okinawa-North
and Okinawa-South were leaning toward Ishigaki and Miyako, respectively. The environmental factors,
pH, clay, silt, sand, total C, Ca2+, Mg2+, and CEC were significant (p < 0.01) in this graph. Among
the environmental parameters in all the dimensions together, soil pH and exchangeable basic cations
(K+, Na+, and Ca2+) showed significant difference (p < 0.001) as the soil chemical properties, so did
(p < 0.01) the clay, silt and sand contents as the soil physical properties. Moisture, total C, total N,
Mg2+, and CEC were also significantly (p < 0.05) different in the NMDS analysis.
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Figure 6. Non-metric multidimensional scaling (NMDS) plots for nematode community structures
in four regions with environmental factors. A: dimension 1 and 2; B: dimensions 1 and 3; and C:
dimensions 3 and 2. The graphs include significant (p < 0.05) environmental factors, pH (H2O); clay;
silt; sand; TC (total C); K (K+); Na (Na+); Ca (Ca2+); Mg (Mg2+) and CEC. The blue oval is in relation
to Okinawa-North and South. The yellow oval is in relation to Miyako. The red oval is in relation to
Ishigaki. †: Mg2+ and CEC; and ‡: silt and CEC.

4. Discussion

Species of Pratylenchus and Tylenchorhynchus were ubiquitously detected in all the four regions in
Okinawa. The result was consistent with the previous study [25], which reported that Pratylenchus
and Tylenchorhynchus were found in all 15 studied fields in Kitadaito island, another major sugarcane
producing region in Okinawa. The survey in the current study found that Pratylenchus nematodes were
more than threshold or half of that in most of the fields in Okinawa-North, so were Tylenchorhynchus in
Okinawa-North and South. The abundance of Pratylenchus sp. was influenced by pH, K+, the abundance
of free-living nematodes, and the number of free-living nematodes species. Pratylenchus sp. abundance
was negatively correlated with the pH among these parameters, suggesting that Pratylenchus may be
more populous in lower pH areas (e.g., Okinawa-North) than in higher pH areas (e.g., Okinawa-South).
The result was consistent with the previous study [44] reporting inverse relationship between
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the abundance of Pratylenchus and pH. With regard to K+, the result was consistent with the previous
study [45], which reported a positive correlation of K+ and plant-parasitic nematodes. Also diverse
free-living nematodes can suppress plant-parasitic nematodes possibly through the increase of
predator nematodes shown in Miyako and Ishigaki. Yet, another parameter, the abundance of
free-living nematodes, was positively correlated with the abundance of Pratylenchus, though a negative
relationship between total free-living nematodes and P. crenatus was reported [16]. The exact reason on
the different results was not known.

The abundance of Tylenchorhynchus was affected by pH, clay contents and the abundance
of non-Tylenchorhynchus nematodes. Unlike Pratylenchus, the abundance of Tylenchorhynchus was
positively correlated with pH. This relationship was consistent with the previous study [46] reporting
that Tylenchorhynchus maximus increased with positive relationship with pH. The current study showed
inverse relationship between the abundance of Tylenchorhynchus and the soil clay content. On this
point, the previous study [47] reported differently on Tylenchorhynchus clarus in soils with 4 to 32%
clay, possibly due to the excessive clay contents in the fields of the current study and the difference of
species, yet the exact reason was unknown. The nematode abundance other than Tylenchorhynchus
had a positive relationship with the abundance of Tylenchorhynchus. This can indicate that the more
nematodes were found, the more Tylenchorhynchus. CEC did not show significant influence on
Tylenchorhynchus sp. (and Pratylenchus described above) in this study. Norton et al. [48] also reported
that none of the plant-parasitic nematodes were significantly correlated with CEC.

Species of Helicotylenchus were the third most populous plant-parasitic nematodes found in
this study. Though Berry et al. [49] discussed that H. dihystera should provide sustainable means of
reducing the effect of more pathogenic species, no clear relationship was found between H. dihystera
and the target plant-parasitic nematodes (Pratylenchus and Tylenchorhynchus) in this study. Meloidogyne
species were rarely found at the studied sites and this was possibly due to the clayey soil texture, which
may not be suitable for Meloidogyne inhabitation [1]. The previous study [50] reported R. reniformis was
found from more than 50% of fields (various crops) in Okinawa, though the current study showed
Rotylenchulus detection of over 90% of the fields in Miyako and in Ishigaki, respectively, and around
30% and 70% in Okinawa-North and South, respectively. The result suggested that difference in crops
and studied fields might cause the inconsistent results.

This study also revealed that the species of Pratylenchus and Tylenchorhynchus were different
among the regions. The combination in Okinawa-North was primarily P. zeae and both T. leviterminalis
and T. annulatus, while that in Okinawa-South was P. coffeae and T. leviterminalis. In Miyako,
the combination was the mixture of P. zeae and P. coffeae, and that of T. leviterminalis and T. annulatus.
Cadet and Spaull [1] reported that the abundance of P. zeae was greater in clay soils with some exception
in Australia and South Africa. Pratylenchus zeae was most numerous in Okinawa-North, however,
the soil in this region was not necessarily most clayey compared to the other regions. Though Miyako’s
soil was most clayey among the regions, the abundance of Pratylenchus was less than in Okinawa-North
(if we simply compared these two regions without considering other differences) and the genus was a
combination of P. zeae and P. coffeae. The data reported in the other study [3] for Australian sugarcane
fields showed some tendency of inverse relationship between the ratio of clay in soil and the abundance
of P. zeae. This may suggest that the clay contents may influence Pratylenchus species suitable for
particular sugarcane field with appropriate level of clay contents for the specific species. The level of
pH may also influence the species of Pratylenchus as the previous study [51] reported that raising the soil
pH from 5.0 to 6.9 in which alfalfa was grown increased the abundance of P. penetrans and greatly
reduced the abundance of P. crenatus. The same study commented that temperature also affected
the reproduction rates of these species. Since both P. zeae and P. coffeae were increased in the 25–30 ◦C
range [52], in which the studied fields in the current study were, the difference of pH can influence
more on the reproduction of both species than temperature. Stirling et al. [53] discussed that total
C and total N from crop residues and roots may increase the nematode trapping fungi, which may
have been one of the suppressive factors of plant-parasitic nematodes in sugarcane soils. Our study,
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however, did not clearly show the relationship of total C and total N to the abundance of the root-lesion
and stunt nematodes. Since the current study did not cover the nematode trapping fungi, the exact
reason was unclear on this point.

The free-living nematodes tended to be separated between the group of Okinawa (North and South)
and that of Miyako and Ishigaki. This tendency led to the similar combination in diversity and maturity
indices. The result suggested that the free-living nematode faunas were similar within each group.
Though the exact mechanism was not understood, geographical and climatic differences may play
the major role in this grouping. Okinawa-North and South are in the same island, while Miyako
and Ishigaki are the islands next to each other (just 50 km away). Therefore, the temperature
and precipitation are very similar within each group. Overall, the trends of the three maturity indices
were consistent among the regions. The result was not in line with the previous study [29] conducted
in northern climate zones in Japan. Rhabditis and other Rhabditidae affected the value of MI (cp2–5)
and Cephalobidae does that of MI (Cephalobidae adjusted). Since the compositions of these nematodes
to the total free-living nematodes were consistent across the regions, the adjustments made no apparent
difference on the indices of each region. The maturity index values of Okinawa-North and South were
lower than those of Miyako and Ishigaki primarily because of the different composition of the high c-p
value Dorylaimida to the total free-living nematodes.

Further, many of the soil physico-chemical properties (i.e., pH, clay and sand contents, Ca2+,
Mg2+, and CEC) tended to be separated between the group of Okinawa-North and Ishigaki and that
of Okinawa-South and Miyako, while the other parameters did not. Such difference may be due to
the different soil materials, causing the different soil types of those two groups. Though no detailed
mechanism was identified, such geographical separation of the physico-chemical properties may
result in the difference in dominant Pratylenchus species in each group. Such separation coupled
with that of the free-living nematodes mentioned above may be involved in the clear differences
of nematode communities (1) between the group of Okinawa-North and South and that of Miyako
and Ishigaki; (2) among Okinawa-North and South, Miyako, and Ishigaki; and (3) between the group
of Okinawa-South and Miyako and that of Okinawa-North and Ishigaki, shown in the NMDS analysis.
This analysis reinforced that pH and soil texture may impact not only the plant-parasitic but also
the free-living nematodes. The result was basically consistent with the previous study [15], which
reported that the nematode community may be a well reflected indicator of the soil properties such
as soil moisture, pH, and organic soil layer. Yet, further study is needed for more comprehensive
understanding of below-ground microbial ecosystem.

5. Conclusions

This study revealed both Pratylenchus and Tylenchorhynchus species were widely distributed
in sugarcane fields in Okinawa, Japan. Pratylenchus sp. was highly abundant and may be a yield
limiting factor especially in Okinawa-North, so was Tylenchorhynchus sp. in all the regions examined.
It was confirmed that the major species of the root-lesion nematodes were P. zeae and P. coffeae
and that those of the stunt nematodes were T. leviterminalis and T. annulatus. It was also found that
soil pH influenced the abundance of both Pratylenchus and Tylenchorhynchus nematodes in different
directions. Then, the abundance of free-living nematodes, the number of free-living nematode
species, and exchangeable cation K+ were shown to be important parameters to the abundance of
Pratylenchus species, as were the clay content and non-Tylenchorhynchus nematode abundance to
that of Tylenchorhynchus. Further, this study revealed that the three islands (the four regions) had
different characteristics of the nematode fauna, and the difference was explained especially by pH,
physical properties (soil texture) and exchangeable basic cations. This study provided basic data for
proper management of the plant-parasitic nematodes and free-living nematodes in sugarcane fields in
Okinawa to improve their productivity.
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