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Abstract: Global warming and climate change can potentially change not only rice production but
also rice nutrient content. To adapt a rice-dependent country’s farming to the impacts of climate
change, it is necessary to assess and monitor the potential risk that climate change poses to agriculture.
The aim of this study was to clarify the relationship between rice grain protein content (GPC)
and meteorological variables through unmanned aerial vehicle remote sensing and meteorological
measurements. Furthermore, a method for GPC estimation that combines remote sensing data and
meteorological variables was proposed. The conclusions of this study were as follows: (1) The
accuracy and robustness of the GPC estimation model were improved by evaluating the nitrogen
condition with the green normalized difference vegetation index at the heading stage (GNDVIheading)
and evaluating photosynthesis with the average daily solar radiation during the grain-filling stage
(SRgrain-filling). GPC estimation considering SRgrain-filling in addition to GNDVIheading was able to
estimate the observed GPC under the different conditions. (2) Increased temperature from the
transplantation date to the heading stage can affect increased GPC when extreme temperature does
not cause the heat stress.
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1. Introduction

The United Nation’s 17 Sustainable Development Goals (SDGs) came into effect in January 2016,
and they will continue until 2030. Many SDGs are related to agriculture (e.g., SDG2 Zero hunger: End
hunger, achieve food security and improved nutrition and promote sustainable agriculture) that require
urgent action from both developing and developed countries [1]. However, implications of climate
change, such as global warming, have the potential to interrupt progress being made toward SDGs
related to agriculture [2]. With respect to rice production in monsoon Asia, where rapid population
growth is driving increased food demand, an increase in temperature and fluctuating precipitation
were expected to reduce rice yield, whereas a rise in carbon dioxide (CO2) concentration was expected
to increase rice yield because of promoted photosynthesis [3–6]. To adapt agriculture to the impacts
of climate change, it is necessary to assess and monitor the potential risk that climate change poses
to agriculture. Remote sensing and imagery techniques are useful in monitoring and detecting the
effects of climate change on crops [3,7–10]; however, implementation of remote sensing and imagery
techniques for monitoring and detecting the effects of climate change is still underdeveloped [11].
Furthermore, while much study has been done on changes in crop production, study on changes in
crop nutrient content has been limited [12–14].
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Climate change can potentially change not only rice production but also rice grain nutrient content.
Rice grain protein content (GPC) is an important source of protein in the highly rice-dependent countries,
such as monsoon Asia [13,14]. There is consensus on the impact of increasing CO2 concentration
on GPC [13,14]. However, other aspects of climate change, particularly temperature, there are two
different hypotheses about the effect of temperature on GPC. For instance, some previous studies have
suggested that increasing temperature could reduce GPC [15,16], whereas others have suggested that
increasing temperature could increase GPC [17,18]. Thus, there are two conflicting research conclusions
about the relationship between temperature and GPC, and this relationship is still unclear. To discuss
the effect of climate change on GPC, it is necessary to look at the accumulated studies on changes in
GPC due to temperature change.

Furthermore, GPC is also important factor related to the eating quality of cooked rice. Rice with
good eating quality is traded as brand rice, and improving the eating quality is seen as a way to
enhance farmers’ income. Thus, in Japan, there has been considerable basic research and numerous
cultivation experiments attempting to control GPC in an appropriate way [16–22]. GPC is related to
the firmness and stickiness of cooked rice (e.g., as the GPC decreases, cooked rice becomes sticky).
Generally, Japanese prefer sticky cooked rice; therefore, when GPC was low, the eating quality of
cooked rice would be highly evaluated [23]. In addition, grain amylose content is also related to the
eating quality of cooked rice, it has been revealed that grain amylose content is affected strongly by
cultivar and temperature during grain-filling stage [21,22]. On the other hand, GPC is affected strongly
by canopy nitrogen content and cultivar [19]. Thus, GPC is affected strongly by nitrogen fertilizer [19].
Among the factors that affect eating quality of cooked rice, GPC is a factor that could be controlled
through proper fertilization management [24].

Point sampling and chemical analysis, such as the Kjeldahl method [25], are used generally to
measure GPC. If remote sensing can be used to estimate GPC, it would be possible not only to determine
the spatial distribution of GPC but also to reduce the labor involved in GPC measurement. Previous
studies of GPC estimation via remote sensing have clarified the relationship between GPC and spectral
indices [24,26–28]. The findings have shown (1) as the vegetation indices in the grain-filling stage
increases, GPC increases; (2) the canopy nitrogen content affects spectral reflectance, and GPC can be
estimated indirectly; and (3) regression models for GPC estimation must be remade each year.

The aforementioned studies were based mainly on satellite remote sensing, and only spectral
indices were used for GPC estimation. However, approximately 90% of the world’s total rice acreage
and annual output of rice are concentrated in monsoon Asia, and the growing season for paddy rice
includes the rainy season [29]. Consequently, cloud cover has been the principal limitation of optical
satellite-based remote sensing. For this reason, remote sensing data have been obtained and analyzed
mainly for the dry season. However, remote sensing using the new unmanned aerial vehicle platform
(UAV-RS) could be carried out according to the rice growth stage. Hama et al., (2018) examined the
optimal observation timing for GPC estimation using UAV-RS [30] and found that to improve the
robustness of the regression model, normalized difference vegetation index (NDVI) at the heading
stage was the best observation timing for Multi-year GPC estimation. Moreover, as mentioned above,
meteorological factors also affect GPC. This indicates that GPC estimation should consider not only
vegetation indices but also meteorological factors [31,32].

The aim of this study was to clarify the relationship between GPC and meteorological variables
through UAV-RS data together with meteorological measurements. Furthermore, a method for GPC
estimation that combines remote sensing data and meteorological variables has been proposed.

2. Materials and Methods

2.1. Study Sites and UAV Data Acquisition

A UAV-RS data set for three rice cultivars (Oryza sativa L. cv. Koshihikari, O. sativa L. cv. Fusaotome,
and O. sativa L. cv. Fusakogane) acquired in Chiba prefectural agriculture and forestry research center
was analyzed (Figure 1). Fusaotme and Fusakogane are allied cultivars. We subdivided test fields into
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48 plots with different cultivation conditions (transplantation date, cultivar, and amount of fertilizer).
At this test site, the growing seasons differed with change in transplantation date. Table 1 shows the
list of cultivation conditions of this study.
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Figure 1. Map of the test sites: Chiba Prefectural Agriculture and Forestry Research Center. The grain
protein content was observed for each sample (blue plot) from 2015 to 2017.

Table 1. The list of cultivation conditions of the test sites (2015 to 2017).

Year Test Site Cultivar Transplantation
Date

Basal
Fertilizer

gN/m2

Topdressing
gN/m2

Growth Stage

Panicle
Formation Heading

2015 Chiba Koshihikari Apr. 10 1.5 3.0 Jun. 10 Jul. 10
2015 Chiba Koshihikari Apr. 24 0.0–3.0 3.0 Jun. 21 Jul. 19
2015 Chiba Koshihikari May 15 0.0–10.0 3.0 Jun. 29 Aug. 1
2015 Chiba Koshihikari Jun. 5 1.5 3.0 Jul. 22 Aug. 11
2015 Chiba Fusaotome Apr. 10 3.0 3.0 Jun. 5 Jul. 5
2015 Chiba Fusaotome Apr. 24 3.0–9.0 3.0 Jun. 9 Jul. 12
2015 Chiba Fusaotome May 15 1.5–7.0 3.0 Jun. 28 Jul. 21
2015 Chiba Fusaotome Jun. 5 3.0–4.0 3.0 Jul. 15 Aug. 7
2015 Chiba Fusakogane Apr. 10 4.0 3.0 Jun. 5 Jul. 5
2015 Chiba Fusakogane Apr. 24 4.0–10.0 3.0 Jun. 10 Jul. 12
2015 Chiba Fusakogane May 15 0.0–10.0 3.0 Jun. 29 Jul. 22
2015 Chiba Fusakogane Jun. 5 4.0 3.0 Jul. 19 Aug. 8
2016 Chiba Koshihikari Apr. 11 2.0 3.0 Jun. 20 Jul. 15
2016 Chiba Koshihikari Apr. 25 0.0–2.0 3.0 Jun. 25 Jul. 24
2016 Chiba Koshihikari May 13 0.0–2.0 3.0 Jun. 27 Aug. 5
2016 Chiba Koshihikari Jun. 6 2.0 3.0 Jul. 24 Aug. 15
2016 Chiba Fusaotome Apr. 11 3.0 3.0 Jun. 13 Jul. 10
2016 Chiba Fusaotome Apr. 25 3.0–7.0 3.0 Jun. 18 Jul. 14
2016 Chiba Fusaotome May 13 3.0–7.0 3.0 Jun. 26 Jul. 21
2016 Chiba Fusaotome Jun. 6 3.0 3.0 Jul. 16 Aug. 7
2016 Chiba Fusakogane Apr. 11 4.0 3.0 Jun. 13 Jul. 11
2016 Chiba Fusakogane Apr. 25 4.0–8.0 3.0 Jun. 19 Jul. 15
2016 Chiba Fusakogane May 13 4.0–8.0 3.0 Jun. 27 Jul. 23
2016 Chiba Fusakogane Jun. 6 4.0 3.0 Jul. 17 Aug. 8
2017 Chiba Koshihikari Apr. 11 2.0 2.0 Jun. 13 Jul. 12
2017 Chiba Koshihikari Apr. 24 0.0–2.0 2.0 Jun. 28 Jul. 20
2017 Chiba Koshihikari May 17 2.0 1.0–2.0 Jul. 6 Jul. 31
2017 Chiba Koshihikari Jun. 6 2.0 2.0 Jul. 20 Aug. 13
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Table 1. Cont.

Year Test Site Cultivar Transplantation
Date

Basal
Fertilizer

gN/m2

Topdressing
gN/m2

Growth Stage

Panicle
Formation Heading

2017 Chiba Fusaotome Apr. 11 3.0 3.0 Jun. 9 Jul. 7
2017 Chiba Fusaotome Apr. 24 0.0–5.0 3.0 Jun. 14 Jul. 11
2017 Chiba Fusaotome May 17 0.0–3.0 1.0–3.0 Jun. 29 Jul. 25
2017 Chiba Fusaotome Jun. 6 3.0 3.0 Jul. 15 Aug. 6
2017 Chiba Fusakogane Apr. 11 4.0 3.0 Jun. 10 Jul. 7
2017 Chiba Fusakogane Apr. 24 0.0–6.0 3.0 Jun. 15 Jul. 12
2017 Chiba Fusakogane May 17 0.0–4.0 1.0–3.0 Jun. 29 Jul. 25
2017 Chiba Fusakogane Jun. 6 4.0 3.0 Jul. 17 Aug. 17

The study observation equipment included an electric-powered Multicopter (Zion QC630, enRoute)
and a multispectral camera (Yubaflex, BIZWORKS). The Yubaflex is a modified version of the Canon
PowerShot S100 camera, which takes images at the green, red, and near-infrared (NIR) bands.
The bandwidth of each band was as follows: Green 500–600nm, Red 600–850nm, and NIR 700–1050nm
(wavelengths showing the maximum spectral response of each band: Green 550 nm, Red 600 nm,
and NIR 850 nm). The image was made up of 12 million pixels (4000 × 3000). The camera can also
convert the observed digital number to radiance using the dedicated software Yubaflex 3.1 [33]. In this
study, we used the Yubaflex for vegetation index monitoring and GPC estimation.

The UAV-based observations were acquired once a week between 10:00 and 10:30 a.m. local
time, under both clear and cloudy sky conditions. The flight altitude was 50 m above ground level
(ground resolution: 1.8 cm), and the overlap of each image was 70%. The settings of the Yubaflex were
shutter speed priority mode, shutter speed set to 1/1000 sec, ISO sensitivity set to Auto, and interval of
shooting set to the minimum value (approximately 4 sec).

2.2. Image Processing and Analysis

The images taken with the Yubaflex, after being converted to radiance using the dedicated software
Yubaflex3.1, were used to create orthomosaic images using Structure from Motion–Multi View Stereo
(SfM–MVS) software (Agisoft PhotoScan Professional v1.4.1).

Yubaflex-based NDVI values are relatively lower than the other multispectral camera-based
NDVI [34]. The bandwidth of Yubaflex red band is 600–850nm, and some of NIR wavelength are
included. Therefore, Yubaflex red band continue to respond to high aboveground biomass, and NDVI
values become relatively low. In this study, we used the green NDVI (GNDVI) [35] in order not to
become vegetation index values low. GNDVI was calculated based on equation (1):

GNDVI = (NIRYubaflex - GreenYubaflex) / (NIRYubaflex + GreenYubaflex), (1)

where GNDVI is the Yubaflex-based GNDVI, and NIRYubaflex and GreenYubaflex are the Yubaflex-based
NIR band and Green band radiances, respectively. The average GNDVI was then calculated for each
plot (Figure 1) using ESRI ArcGIS 10.4.

In general, the vegetation indices decreased with decreasing solar zenith angle. This response
was affected significantly by the growth stage and diffuse/direct light conditions [36]. Ishihara et al.
(2015) [36] reported that the decreasing response of the vegetation indices to the decreasing solar zenith
angle was high during the middle growth stage and low at the heading stage. In addition, the response
of vegetation indices to the solar zenith angle was evident under clear sky conditions at large solar
zenith angles (less than 20◦) but almost negligible under cloudy sky conditions [36]. In this study,
UAV-based observations were acquired between 10:00 and 10:30 a.m. local time. The solar zenith
angle at the observation was more than 20◦. The sunlight conditions appear to have a low effect on the
consistency of GNDVI in this study.
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2.3. Analysis of Collected Samples and Meteorological Data

At the Chiba site, GPC (converted to moisture content 15%) was observed from 2015 to 2017.
Samples in which lodging occurred were excluded, and the analysis covered 24 samples from 2015,
23 samples from 2016, and 21 samples from 2017. Total nitrogen of grain adjusted with a grain thickness
of 1.8 mm was observed using the NC analyzer (Sumigraph NC-900, Sumika Analysis Service [37]).
Subsequently, the conversion factor (5.95) of nitrogen–protein was multiplied to covert total nitrogen
to GPC.

In this study, the daily mean solar radiation and the daily mean temperature from agricultural
weather data obtained from 1 km grid squares [38] were analyzed for GPC estimation. These
agro-meteorological grid square data are based on data from the ground observation station, known as
the Automated Meteorological Data Acquisition System network.

2.4. GPC Estimation

Two types models (simple linear regression model and multiple regression model) for the
estimation of GPC were developed; simple linear regression (SLR) model was built by using GNDVI
at the heading stage (GNDVIheading) as explanatory variable, while multiple regression (MR) model
was built by using GNDVIheading and average daily solar radiation during the grain-filling stage
(SRgrain-filling) as explanatory variables. Figure 2 denotes the GPC estimation process.
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Figure 2. The process of grain protein content (GPC) estimation.

The samples collected from 2015 to 2016 were used to build the empirical GPC estimation models
for three cultivars (Koshihikari, Fusaotome, and Fusakogane). At first, a SLR analysis for three cultivars
was conducted to explore the relationship between GPC and GNDVIheading. Following the SLR analysis,
the GPC estimation models were obtained as:

GPC = m GNDVIheading + k, (2)

where GPC is the grain protein content (%), GNDVIheading is the Yubaflex-based GNDVI at the heading
stage, m is the coefficient, and k is the intercept. Then, a MR analysis for three cultivars was conducted
to explore the relationship between GPC, GNDVIheading, and SRgrain-filling. Following the multiple
regression analysis, the GPC estimation models were obtained as:

GPC = m1 GNDVIheading + m2 SRgrain-filling + k, (3)

where GPC is the grain protein content (%), GNDVIheading is the Yubaflex-based GNDVI at the heading
stage, SRgrain-filling is the average daily solar radiation during the grain-filling stage (MJ/m2), mi are the
coefficients, and k is the intercept. GNDVIheading was used for evaluation of canopy nitrogen content,
and SRgrain-filling was used for evaluation of photosynthesis. The results of both single and multiple
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regression analysis were evaluated by the coefficient of determination (R2), the p value. A p value
lower than 0.05 was considered statistically significant. Finally, GPC estimation model robustness was
validated by using the observed GPC collected in 2017. The validation results were evaluated in terms
of the root mean square error (RMSE).

A sensitivity analysis of the MR model was performed in terms of the rate of change in the output
value resulting from a change of each input parameter while keeping all other parameters constant [32].
The maximum, minimum, and average values collected in the experiment from 2015 to 2017 were used
for sensitivity analysis.

Hama et al. (2018) used temperature instead of SRgrain-filling for GPC estimation [30]. In the case
of Koshihikari, the average temperature from 0 to 20 days after the heading stage was used for the
GPC estimation [30]. In the cases of Fusakogane and Fusaotome, the average temperatures from 0 to
30 days after heading stage were used for the GPC estimation. In this study, the determination of
the SRgrain-filling duration was based on Hama et al. (2018) [30]. In the case of Koshihikari, the average
daily solar radiation from 0 to 20 days after the heading stage was used as SRgrain-filling. In the cases of
Fusakogane and Fusaotome, the average daily solar radiation from 0 to 30 days after the heading stage
was used as SRgrain-filling.

3. Results

3.1. Regression Analysis for GPC Estimation

Table 2 denotes the results of the SLR analysis. The regression coefficient (m), intercept (k),
R2, and p value are listed in Table 2. The results of SLR analysis demonstrate that the higher the
GNDVIheading, the higher the GPC. The p values of GNDVIheading were lower than 0.05, and these were
considered statistically significant.

Table 2. The results of simple linear regression analysis for rice grain protein content estimation.
n = number of samples, m = coefficient, k = intercept, GNDVIheading = Yubaflex-based green normalized
difference vegetation index at the heading stage.

Cultivar n
Coefficient

k
p Value

R2
m GNDVIheading

Koshihikari 15 + 10.82 + 0.79 3.4 × 103 ** 0.495
Fusaotome 16 + 9.73 + 1.53 5.9 × 104 *** 0.582
Fusakogane 16 + 8.38 + 2.35 4.8 × 104 *** 0.593

*: p value < 0.05, **: p value < 0.01, ***: p value < 0.001.

Table 3 denotes the results of the MR analysis. The regression coefficients (mi), intercept (k),
R2, and p value are listed in Table 3. The results of MR analysis demonstrate that the higher the
GNDVIheading, the higher the GPC, and the higher the SRgrain-filling, the lower the GPC. Furthermore,
with respect to the coefficients and intercepts, Fusaotome and Fusakogane were similar, but Koshihikari
differed from the other two cultivars. The p values of GNDVIheading and SRgrain-filling were lower than
0.05, and these were considered statistically significant.

Table 3. The results of multiple regression analysis for rice grain protein content estimation. n = number
of samples, mi = coefficient, k = intercept, GNDVIheading = Yubaflex-based green normalized difference
vegetation index at the heading stage, SRgrain-filling = average daily solar radiation during the grain-filling
stage (MJ/m2).

Cultivar n
Coefficient

k
p Value

R2
m1 m2 GNDVIheading SRgrain-filling

Koshihikari 15 + 9.93 – 0.08 + 2.74 3.1 × 103 ** 3.1 × 102 * 0.568
Fusaotome 16 + 9.21 – 0.12 + 4.13 6.8 × 105 *** 2.6 × 104 *** 0.796
Fusakogane 16 + 8.98 – 0.12 + 4.09 2.5 × 105 *** 3.8 × 104 *** 0.712

*: p value < 0.05, **: p value < 0.01, ***: p value < 0.001.
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Table 4 shows the results of sensitivity analysis of MR models. The GPC variation (%) in
GNDVIheading of Koshihikari, Fusaotome, and Fusakogane were –7.7 to +11.2, –16.4 to +10.2, and –12.7 to
+11.8, respectively. The GPC variation (%) in SRgrain-filling of Koshihikari, Fusaotome, and Fusakogane were
–6.3 to +6.6, –6.7 to +7.9, and –6.8 to +8.7, respectively. In all cultivars, sensitivity analysis revealed
a higher GNDVIheading sensitivity to GPC. In other words, GNDVIheading had a greater effect on GPC.

Table 4. Sensitivity analysis for multiple regression model. Avg = average value collected in the
experiment from 2015 to 2017, Min = minimum value collected in the experiment from 2015 to
2017, Max = maximum value collected in the experiment from 2015 to 2017, grain protein content
(GPC) variation = rate of change in the estimated GPC value compared with the average value (%),
GNDVIheading = Yubaflex-based green normalized difference vegetation index at the heading stage,
SRgrain-filling = average daily solar radiation during the grain-filling stage (MJ/m2).

Cultivar Variable Avg Min Max GPC Variation
% (min Value)

GPC Variation
% (max Value)

Koshihikari GNDVIheading 0.572 0.518 0.651 – 7.7 + 11.2
Koshihikari SRgrain-filling 17.64 11.87 23.20 + 6.6 – 6.3
Fusaotome GNDVIheading 0.594 0.462 0.676 – 16.4 + 10.2
Fusaotome SRgrain-filling 18.08 13.19 22.23 + 7.9 – 6.7
Fusakogane GNDVIheading 0.603 0.499 0.699 – 12.7 + 11.8
Fusakogane SRgrain-filling 18.08 12.78 22.23 + 8.7 – 6.8

The comparison between the estimated GPC and the observed GPC is shown in Figure 3. With
respect to SLR-based estimation, the RMSE of Koshihikari was 0.61 (average observed GPC 7.08%),
the RMSE of Fusaotome was 0.67 (average observed GPC 7.36%), and the RMSE of Fusakogane was
0.58 (average observed GPC 7.47%). With respect to MR-based estimation, the RMSE of Koshihikari,
Fusaotome, and Fusakogane were 0.42, 0.34, and 0.33, respectively. The results of MR-based estimation
outperformed the SLR-based estimation.

Agronomy 2020, 10, x FOR PEER REVIEW 7 of 14 

 

Table 4. Sensitivity analysis for multiple regression model. Avg = average value collected in the 
experiment from 2015 to 2017, Min = minimum value collected in the experiment from 2015 to 2017, 
Max = maximum value collected in the experiment from 2015 to 2017, grain protein content (GPC) 
variation = rate of change in the estimated GPC value compared with the average value (%), 
GNDVIheading = Yubaflex-based green normalized difference vegetation index at the heading stage, 
SRgrain-filling = average daily solar radiation during the grain-filling stage (MJ/m²). 

Cultivar variable Avg Min Max GPC variation % 
(min value) 

GPC variation % 
(max value) 

Koshihikari GNDVIheading 0.572 0.518 0.651 – 7.7 + 11.2 
Koshihikari SRgrain-filling 17.64 11.87 23.20 + 6.6 – 6.3 
Fusaotome GNDVIheading 0.594 0.462 0.676 – 16.4 + 10.2 
Fusaotome SRgrain-filling 18.08 13.19 22.23 + 7.9 – 6.7 
Fusakogane GNDVIheading 0.603 0.499 0.699 – 12.7 + 11.8 
Fusakogane SRgrain-filling 18.08 12.78 22.23 + 8.7 – 6.8 

The comparison between the estimated GPC and the observed GPC is shown in Figure 3. With 
respect to SLR-based estimation, the RMSE of Koshihikari was 0.61 (average observed GPC 7.08%), the 
RMSE of Fusaotome was 0.67 (average observed GPC 7.36%), and the RMSE of Fusakogane was 0.58 
(average observed GPC 7.47%). With respect to MR-based estimation, the RMSE of Koshihikari, 
Fusaotome, and Fusakogane were 0.42, 0.34, and 0.33, respectively. The results of MR-based estimation 
outperformed the SLR-based estimation. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Comparison between estimated and observed rice grain protein content (GPC) in 2017: (a) 
shows the estimated GPC of Koshihikari; (b) shows the estimated GPC of Fusaotome; and (c) shows the 
estimated GPC of Fusakogane. Circles show simple linear regression (SLR) based results, and 
diamonds show multiple regression (MR) based results. 
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Figure 4 shows the GNDVI time series in Koshihikari, Fusaotome, and Fusakogane transplanted on 
May 13 2016. In all cultivars, GNDVI increased toward the heading stage and declined gradually 
after the heading stage. The peak of GNDVI in Koshihikari was 82 days after transplantation, whereas 
it was 68 days after transplantation for Fusaotome and Fusakogane. The time series patterns of the allied 
cultivars (Fusaotome and Fusakogane) were similar, and the peak of GNDVI was 14 days earlier than 
with Koshihikari. GNDVI time series clearly showed change speed with development depending on 
the cultivar. In addition, the peak of GNDVI was recorded at the heading stage in all cultivars. 

Figure 3. Comparison between estimated and observed rice grain protein content (GPC) in 2017:
(a) shows the estimated GPC of Koshihikari; (b) shows the estimated GPC of Fusaotome; and (c) shows the
estimated GPC of Fusakogane. Circles show simple linear regression (SLR) based results, and diamonds
show multiple regression (MR) based results.

3.2. GNDVI Time Series

Figure 4 shows the GNDVI time series in Koshihikari, Fusaotome, and Fusakogane transplanted on
May 13 2016. In all cultivars, GNDVI increased toward the heading stage and declined gradually after
the heading stage. The peak of GNDVI in Koshihikari was 82 days after transplantation, whereas it
was 68 days after transplantation for Fusaotome and Fusakogane. The time series patterns of the allied
cultivars (Fusaotome and Fusakogane) were similar, and the peak of GNDVI was 14 days earlier than
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with Koshihikari. GNDVI time series clearly showed change speed with development depending on
the cultivar. In addition, the peak of GNDVI was recorded at the heading stage in all cultivars.Agronomy 2020, 10, x FOR PEER REVIEW 8 of 14 
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Figure 5 shows the GNDVI time series in Koshihikari plot of 2016 with different transplantation
dates. The days after transplantation at the peak of GNDVI of the transplanting dates April 11,
April 25, May 12, and Jun 3 were 100 days, 86 days, 83 days and 68days, respectively. The days after
transplantation at the peak of GNDVI decreased when the transplantation date was later. The maximum
value of GNDVI of the transplantation dates April 11, April 25, May 12, and Jun 3 were 0.586, 0.622,
0.631, and 0.675, respectively. Although the amount of fertilizer was the same (basal fertilizer 2.0gN/m2,
topdressing 3.0gN/m2), the maximum value of GNDVI increased when the transplantation date
was later.
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Figure 5. Time series of green normalized difference vegetation index (GNDVI) of Koshihikari with
different transplantation dates (2016). The cultivar and the amount of fertilizer are the same. The blue
line denotes the time series of GNDVI of the transplantation date April 11, the green line shows the
time series of GNDVI of the transplantation date April 25, the orange line shows the time series of
GNDVI of the transplantation date May 12, and the red line shows the time series of GNDVI of the
transplantation date Jun 3.
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Figure 6 shows the correlation between the average temperature from the transplantation date to
the heading stage and the GNDVIheading. There were four plots with the same amount of fertilizer
in a year for each cultivar. The R2 of Koshihikari in 2015, 2016, and 2017 were 0.948, 0.951, and 0.868,
respectively. The R2 of Fusaotome in 2015, 2016, and 2017 were 0.981, 0.949, and 0.956, respectively.
The R2 of Fusakogane in 2015, 2016, and 2017 were 0.989, 0.904, and 0.946, respectively. Although the
same amount of fertilizer was used for the same cultivars, GNDVIheading increased as the average
temperature from the transplantation date to the heading stage increased. The p values of Koshihikari
in 2015, 2016, and 2017 were 0.023, 0.024, and 0.068, respectively. The p values of Fusaotome in 2015,
2016, and 2017 were 0.009, 0.026, and 0.022, respectively. The p values of Fusakogane in 2015, 2016,
and 2017 were 0.006, 0.048, and 0.027, respectively. The p values were lower than 0.05 except for
Koshihikari in 2017, and these were considered statistically significant. Although the cultivar was the
same, the correlation between the average temperature from the transplantation date to the heading
stage and the GNDVIheading was varied with respect to collected year.
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Figure 7 shows the spatial and temporal variability in GNDVI. The value of GNDVI varied 
in plots with different cultivation conditions (transplantation date, cultivar, amount of fertilizer). 
Even if the transplantation date and cultivar were the same, the value of GNDVI increased as 
the amount of fertilizer increased. 

Figure 6. Correlation between average temperature from the transplantation date to the heading stage
(◦C) and green normalized difference vegetation index (GNDVI) at the heading stage: (a) shows the
results of Koshihikari; (b) shows the results of Fusaotome; and (c) shows the results of Fusakogane. Circles
show the samples in 2015, diamonds show the sample in 2016, and triangles show the sample in 2017.

Figure 7 shows the spatial and temporal variability in GNDVI. The value of GNDVI varied in
plots with different cultivation conditions (transplantation date, cultivar, amount of fertilizer). Even if
the transplantation date and cultivar were the same, the value of GNDVI increased as the amount of
fertilizer increased.
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4. Discussion

The regression coefficient both SLR and MR analysis showed that there was an increase in GPC
with increasing GNDVIheading. The p values of GNDVIheading were significant at 5% or less in all
cultivars. In the two types (SLR and MR) models for GPC estimation, GNDVIheading was used for
evaluation of canopy nitrogen content. The relation between GNDVIheading and canopy nitrogen
content is supported by the findings of Inoue et al. (2012) who examined simple and robust methods
for remote sensing of canopy nitrogen content [39].

In the MR models for GPC estimation, SRgrain-filling was used for evaluation of photosynthesis.
There was a decline in GPC with increasing SRgrain-filling. In addition, the p values of SRgrain-filling

were significant at 5% or less in all cultivars. These findings were consistent with those of a previous
study in which GPC was shown to decrease because of the increased carbohydrate production via
photosynthesis in rice grains [13,14]. In addition, the R2 and RMSE of the MR models including the
SRgrain-filling outperformed the previous study’s method (SLR models) for GPC estimation, in which
only the correlation between the GNDVIheading and the observed GPC was used (Figure 3). GPC
estimation that considers only SRgrain-filling in addition to GNDVIheading could improve estimation
accuracy and improve the robustness of the estimation model. Furthermore, the observed GPC under
the different conditions could be estimated with high accuracy without remaking the regression models
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for GPC estimation for each transplantation date. This was also an improvement on the previous
studies of GPC estimation using remote sensing.

Sensitivity analysis revealed that GNDVIheading had a greater effect on GPC (Table 4). As previously
stated, there is a correlation between GNDVI and canopy nitrogen content [39], these findings were
consistent with those of a previous study in which nitrogen fertilizer strongly affected GPC [18,23].

It is worth noting that the parameters of the GPC estimation model are specific to the cultivar.
The characteristics of each cultivar, such as growth speed and the nutrient translocation from source
to sink, are different. According to previous studies, the effect of cultivar difference is as great as
that of fertilization [19]. It is necessary to obtain parameters specific to the cultivar based on MR
analysis using GNDVIheading and SRgrain-filling; therefore, it is necessary to perform tests with multiple
transplantation dates, as done in this study, to optimize the parameters of the GPC estimation model.
However, the parameters of the GPC estimation model might be similar in cases of allied cultivars,
such as the Fusaotome and Fusakogane cultivars in this study.

MR models could estimate the observed GPC under the different conditions as described above;
however, MR models would underestimate the GPC in case topdressing after the heading stage.
The timing of topdressing affects protein, and topdressing after the heading stage greatly increases
GPC [40–42]. MR models use GNDVI at the heading stage; therefore, the effect of topdressing after the
heading stage cannot be considered.

As shown in Figure 4, the peak of GNDVI was recorded at the heading stage in all cultivars.
This finding was consistent with those of a previous study in which monitoring the paddy field
using remote sensing [43–45]. GNDVI time series (Figure 4) showed change speed with development
depending on the cultivar.

The days after transplantation at the peak of GNDVI decreased when the transplantation date
was later (Figure 5). Changes in GNDVI time series due to differences in transplantation date are in
agreement with the findings of the previous studies that the development speed of paddy rice becomes
faster when the temperature increased during the growing season [46,47].

As shown in Figure 6, GNDVIheading increased when the average temperature from the
transplantation date to the heading stage increased. In addition, the maximum value of GNDVI
increased when the transplantation date was later (Figure 5). Nitrogen absorbed by plants is
decomposed into inorganic nitrogen in the soil. Previous study has demonstrated that the amount of
inorganic nitrogen increases as the temperature rises [48]. Therefore, this study might show that as
the average temperature from the transplantation date to the heading stage increased, the amount of
inorganic nitrogen and nitrogen absorbed by the plants increased, even when the amount of fertilizer
used was unchanged. Consequently, GNDVIheading increased as the transplantation date became later.

There are two different hypotheses concerning the effect of temperature on GPC: some studies
suggest that increasing temperature can reduce GPC [15,16], whereas others suggest that increasing
temperature can increase GPC [17,18]. As described above, the findings of the current study show
that increasing temperature from the transplantation date to the heading stage can increase GPC.
However, the findings of current study only follow the increase of temperature from spring to summer.
Furthermore, the extreme temperature or temperature well above the average during crop development
could cause the heat stress and crops can show rapid development without GPC increasing [32].
Therefore, the findings of current study suggested that increasing temperature from the transplantation
date to the heading stage can increase GPC when extreme temperature does not cause the heat stress.

5. Conclusions

We used UAV-RS data and meteorological measurements to clarify the relationship between
GPC and meteorological variables. Furthermore, a method for GPC estimation that combines remote
sensing data and meteorological variables has been proposed.

We proposed the simple method for GPC estimation by using GNDVIheading together with
SRgrain-filling. GNDVIheading was used for evaluation of canopy nitrogen content, and SRgrain-filling
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was used for evaluation of photosynthesis. MR analysis and the GPC estimation models for three
cultivars showed that the higher the GNDVIheading, the higher the GPC, and the higher the SRgrain-filling,
the lower the GPC. Additionally, the p value of GNDVIheading and SRgrain-filling were significant at 5%
or less in all cultivars. The validation of GPC estimation showed that the RMSE of Koshihikari was
0.42 (average observed GPC 7.08%), the RMSE of Fusaotome was 0.34 (average observed GPC 7.36%),
and the RMSE of Fusakogane was 0.33 (average observed GPC 7.47%). Although the parameters of the
GPC estimation model are specific to the cultivar, it was possible to improve GPC estimation accuracy
and model robustness. Estimation of GPC that only considers SRgrain-filling in addition to GNDVIheading

could estimate the observed GPC under the different conditions without remaking the regression
models for each transplanting date.

The GNDVI time series and the correlation between the average temperature from the
transplantation date to the heading stage and the GNDVIheading showed that GNDVIheading increased
when the temperature from the transplantation date to the heading stage increased although the
amount of fertilizer was the same. In addition, MR models for GPC estimation showed that GPC
increased when GNDVIheading increased. Therefore, this study has shown that increasing temperature
from the transplantation date to the heading stage can affect increased GPC when extreme temperature
does not cause the heat stress.
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