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Abstract: Deep learning and machine learning (ML) technologies have been implemented in various
applications, and various agriculture technologies are being developed based on image-based object
recognition technology. We propose an orchard environment free space recognition technology
suitable for developing small-scale agricultural unmanned ground vehicle (UGV) autonomous mobile
equipment using a low-cost lightweight processor. We designed an algorithm to minimize the amount
of input data to be processed by the ML algorithm through low-resolution grayscale images and
image binarization. In addition, we propose an ML feature extraction method based on binary pixel
quantification that can be applied to an ML classifier to detect free space for autonomous movement
of UGVs from binary images. Here, the ML feature is extracted by detecting the local-lowest points in
segments of a binarized image and by defining 33 variables, including local-lowest points, to detect
the bottom of a tree trunk. We trained six ML models to select a suitable ML model for trunk bottom
detection among various ML models, and we analyzed and compared the performance of the trained
models. The ensemble model demonstrated the best performance, and a test was performed using
this ML model to detect apple tree trunks from 100 new images. Experimental results indicate that it
is possible to recognize free space in an apple orchard environment by learning using approximately
100 low-resolution grayscale images.

Keywords: machine learning (ML); unmanned ground vehicle (UGV); orchard; binary image; feature
extraction; ensemble model

1. Introduction

Fruits and vegetables are important foods for human health and a balanced diet. The U.S.
Department of Agriculture and the U.S. Department of Health and Human Services publish dietary
guidelines every five years, including recommendations to increase fruit and vegetable intake. In the
United States, it is recommended that children consume 1 to 1.5 cups of fruit daily and adults 1.5
to 2 cups, depending on age and gender. Apples contains many essential nutrients, e.g., vitamin C,
potassium, and fiber [1]. Apples are considered a superfood because they have high nutritional value.
Apples also contain antioxidants, e.g., flavonoids and polyphenols, and eating apples can reduce
cholesterol and sugar diabetes, as well as make your skin healthier [2]. As human life has been
enriched in recent decades, the consumption of apples has increased, primarily among health-conscious
individuals. The fruit market, including apples, is expected to continue to grow as the demand for
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superfoods increases [2]. According to the Food and Agriculture Organization’s 2018 World Fruit
Production Statistics, globally, apples represent the third largest fruit production [3]. The highest
producing countries are China, the United States, India, and Turkey [3,4].

Self-driving vehicle technology has entered the commercialization stage with the advancement
of machine learning (ML) technologies. In addition, practical technology development for various
industrial applications, including agricultural applications, is ongoing. Deep learning and machine
learning technologies are being actively researched for application in the agricultural field, and a
representative technical field is image-based object recognition technology [5-8]. Here, the target objects
include all things of industrial interest, e.g., trees, people, cars, roads, buildings, various obstacles,
objects, numbers, and letters. An important technology along with object recognition technology for
unmanned ground vehicles (UGVs) in agricultural environments is free space recognition technology
to recognize the area in which UGVs can move. Unlike public roads, there are no lanes and traffic
lights in farmland, so there was a need for an algorithm to detect such free space, and studies have
been reported in several research groups [9-15]. A method of using color image-based histogram of
oriented gradients (HOG) feature extraction process and support vector machine (SVM) classification
process to recognize tree trunk [9], HOG-SVM technology based on multiple cameras and ultrasonic
sensors [10] has been proposed, but the HOG feature is inevitably more computational than the ML
feature extraction from the binary image proposed in this paper. The tree trunk detection technology
based on the lidar sensor module shows relatively good performance, but there is a limitation in
applying the expensive lidar sensor [11,12]. Among the methods of generating autonomous paths in an
orchard based on monocular color images, the technique of converting continuous frame images to the
local-structure of the tree rows has a disadvantage of increasing the complexity of the algorithm in the
process of comparing multiple frame images [13]. In a horizontal projection method, there is a problem
that performance cannot be guaranteed if the ground pattern is complicated due to weeds and soil [14].
As an alternative to this problem, an algorithm using a machine vision technique based on the sky
image has been proposed, but it is difficult to apply in seasons with few leaves [15]. It is still difficult
to accurately recognize tree trunks and locate trees in an orchard. Meanwhile, with machine learning
technology, the developer defines feature data that well express the features of the detection target,
uses the features to train the ML model, verifies the trained ML model, and uses the trained ML model
as a detector for a new input. Deep learning technology is based on an algorithm that can directly find
a feature that expresses the characteristics of a target object for recognition and evaluation. Recently,
to expand application and service areas, the demand for machine learning and deep learning technologies
to run in mobile and embedded edge computing environments has increased in the image analysis field.

Specifically, image analysis technology is required in low-end devices, e.g., IoT devices, devices
with power limitations, e.g., drones and smartphones, marine and forested areas, and agricultural
environments where Internet connections are not supported. In line with these requirements, the recent
development of technologies that can operate mobile/embedded environments is centered on deep
learning technologies, which are collectively referred to as lightweight deep learning technology.
Lightweight deep learning technology has been researched relative to model weight reduction,
quantization, pruning, depth-wise separable convolution, etc., through efficient layer design in deep
learning models. However, deep learning is an artificial neural network comprising several hidden
layers between the input and output layers [16,17]. However, with multiple hidden layers, a computer
must perform many numbers of simple iterative calculations; thus, a GPU environment is required for
industrial application of deep learning technology [18-21].

Therefore, in this paper, we propose a machine learning modeling method that distinguishes free
space in which UGVs can move. The proposed method is expected to be used as an element technology
for the development of object recognition technology applicable to small smart farms, e.g., orchard
environments. In our previous work, the coordinates of the lowest part of the image binarized with
the ML function were extracted, and the free space centerline between the two rows of apple trees
was finally estimated using Naive Bayesian classification [7]. However, in this study, we used the
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same binarized image as in the previous study, but we intend to detect the location of the tree with
high accuracy by proposing the ML characteristic variable based on the binary pixel quantification.
Generally, relatively low-cost lightweight processors are required for computer systems used in small
smart farm IT devices to ensure price competitiveness. Thus, to implement an algorithm to classify
trees and free space in an orchard environment, we applied ML technology to operate in a lightweight
computer system. In addition, this study was conducted by quantizing or binarizing the input data to
facilitate simple implementation of ML feature extraction.

Essentially, there are two main research areas relative to implementing UGV autonomous driving
in orchards. The first is fruit tree detection. In other words, this technology identifies and positions
fruit trees based on information collected by sensors. The second area is path planning, which allows
UGVs to autonomously drive in the free space between two tree lines. Therefore, in order to realize
autonomous UGV driving in an orchard, a fruit tree detection technology that must be realized before
the path planning technology is proposed. The overall workflow is shown in Figure 1. The image
data for ML used in this study comprised 229 consecutive images collected while moving along an
alley in an apple orchard in Gyeongsangbuk-do, Korea. These 229 images were acquired with a
CMOS image sensor (CIS) camera equipped with a NIR (750-850 nm) pass NIR filter, and the image
resolution was 320 x 240 [7]. Among the 229 images, 129 images were used for ML model training.
The remaining 100 images were used to verify the performance of the feature extraction and trained ML
model. In addition, 129 images were used as training data, and image binarization (data engineering),
feature extraction, model training, analysis, and evaluation were performed in order. Then, practical
prediction was performed in the final step by inputting 100 raw images.
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Figure 1. Workflow: feature extraction, training machine learning model, analysis, and practical prediction.
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2. Feature Extraction and Model Training

2.1. Local-Lowest Point in Segments

For a lightweight computer system, the input data size is minimized using mono images
(320 x 240 pixels). Figure 2a shows an image corresponding to the UGV view angle in an apple
orchard, and Figure 2b shows the result of converting the image inside the red dotted line in Figure 2a
to quantization or binarization through simple preprocessing. In addition, the red dot in Figure 2b
represents the local-lowest points of the segments created in the binary images. Note that local-lowest points
can have multiple local-lowest points in a single segment, e.g., points 1 and 2 in the yellow circle (Figure 2c).

As a result, one or more local-lowest points exist in a single segment formed in the binary image.
As shown in Figure 2d, the local-lowest extraction method uses the left-handed rule algorithm or
right-handed rule algorithm with the top left corner as the starting point, and then the point of interest
is moved along the outermost line of the segment and starting point. Originally, this algorithm is
known to be effective in escaping a maze made of walls. At the starting point, attach your left or right
hand to the wall of the maze and keep moving, you will arrive at the maze exit at the end or return
to the original starting position if there is no exit [22]. In Figure 2d, LLP means local-lowest point,
LTP means local-top point, and h is the difference in the y-axis between the LTP and LLP. As the location
of interest moves along the outermost line, the location information of one or more local-lowest points
is stored and used as the local-lowest point data of the segment. As shown in Figure 2b, there can be
more than one segment in a single image and one or more local-lowest points in a single segment.

(d)

Figure 2. Raw image and local-lowest points: (a) apple orchard environment, (b) results of converting
the image inside the red dotted line to quantization or binarization, in the actual experimental process
for this paper, binarization was performed on the entire image, (c) points 1 and 2 in the yellow circle,
and (d) the starting point, local-lowest point (LLP), and local-top point (LTP).

2.2. Predictor Variables (Feature) for Machine Learning

The feature proposed to detect the lower part of an orchard tree using ML is extracted based
on the local-lowest points extracted from the binary images. Pixel data in the vicinity, including
the local-lowest points, are defined as 33 variables, which are used as feature data for ML model
training. The 33 variables include four coordinate variables, five segment-block variables, 12 upper
block variables, and 12 lower block variables. The four coordinate variables are defined as local-lowest
point coordinates (x1, y1) and upper point markers (x2, y2) in the segment corresponding to the LLP.
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Segment-block variables are the value obtained by dividing the number of LLPs in the segment
containing the LLP by the number of segment pixels (segment size), and three values derived from the
height (i.e., the difference of the y value) and the height between LLP and LTP. As shown in Figure 3,
the upper blocks consist of 12 blocks, and features were extracted from each block. The height between
LLP and LTP is divided into four, and the width of each block is one-quarter of the height, and three
blocks are arranged around the X1 point. The value obtained by dividing the number of white pixels
in each of the 12 blocks by the total number of pixels in the block is defined as a variable of the
corresponding block. The lower (bottom) block feature is also defined in the same manner as the upper
block feature variables, and the location is positioned below the upper block, as shown in Figure 3.

For example, if there are i segments in a single image and j local-lowest points in each segment, the
number of extracted feature datasets is i X j. As shown in Figure 2b, it can be expected that the entire
image may be a single segment in a binary image. Here, to effectively use the proposed ML features
and ML models, it is necessary to preprocess the entire image such that the tree trunk’s segments can
be segmented effectively from the other segments in the process of converting the input image into to a
binary image.

Figure 3. Feature definition (12 upper and 12 lower blocks).

2.3. Preparing Training Data

From the 229 apple orchard images, the predictor variables described above were extracted from
129 images, and the final extracted feature datasets were 12,300. Figure 4 shows an example of the
local-lowest points corresponding to the feature data extracted from one image. Here, Figure 4a shows
the raw grayscale image used as input. As can be seen, 172 local-lowest points are indicated by red
dots, and 12 LLPs corresponding to the apple trunk bottom are indicated by blue squares. The ML
proposed model should be trained to detect apple trunk bottom points indicated by the blue squares
in Figure 4. Thus, for the extracted points in Figure 4, the data at the bottom of the apple trunk are
labeled as True, and the other points are labeled as False. As can be seen, the difference between the
number of true labeled data and the number of false labeled data is large. This imbalance problem
arising must be solved when preparing data for ML.
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Figure 4. Feature data extraction process: (a) raw grayscale image, (b) extracted points in binarized
image, and (c) 24 upper/lower blocks for feature data extraction.

Here, under-sampling was performed using a method similar to one-side selection, which combines
Tomek links and condensed nearest neighbor methods to obtain 2563 balanced feature datasets [23,24].

2.4. Model Extraction

To select an ML model suitable for trunk bottom detection, six ML models were trained, and their
performance was analyzed. The development language used in this study was MATLAB®®, and the
six ML models were the decision tree, discriminant, Naive Bayes, SVM, KNN, and Ensemble
provided as functions in MATLAB®®. SVM algorithm constructs a hyperplane or hyperplane
set in a high-dimensional or infinite-dimensional space for a vector of feature data [25], and then,
the k-nearest neighbors (KNN) algorithm classifies points of interest into multiple neighbor votes and
assigns points of interest to the most common class of k nearest neighbors. Where k is the user-defined
constant [26]. These ML algorithms are suitable for classifying the location of trees, which is the
purpose of this study.

From the 2563 balanced datasets, 1800 data were selected to maintain a true-false balance, these data
were used to train the six ML models. In this experiment, K-fold cross-validation was performed to
train the six models [27,28]. The receiver operating characteristic (ROC) curve, area under the curve
(AUC), accuracy, a confusion matrix, recall, and precision were calculated and compared to analyze the
performance the trained ML models. Among the various performance evaluation metrics, recall and
precision are considered the most important in this study.
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3. Validation

The 12,300 feature datasets are imbalanced data that cannot be used to train an ML model. To solve
this problem, 2563 true—false balanced feature datasets were prepared by performing under-sampling
on the 12,300 feature data. Here, 1800 datasets were used to train the six ML models to obtain the
performance results shown in Table 1. As can be seen, the ensemble model demonstrates the best
results with high recall and precision are high; thus, the accuracy of this model was the highest.

Table 1. Performance trained machine learning (ML) models, area under the curve (AUC), true positives (TP),
false positives (FP), true negative (TN), and false negative (FN).

ML Models AUC TP FP TN FN  Recall Precision Accuracy
Decision Tree 0.977 912 26 831 31 0.967 0.972 0.968
Discriminant 0.955 877 136 721 66 0.930 0.866 0.888
Naive Bayes 0.930 936 175 682 7 0.993 0.842 0.899

SVM 0.966 911 81 776 32 0.966 0.918 0.937
KNN 0.970 915 97 760 28 0.970 0.904 0.931
Ensemble 0.994 932 33 824 11 0.988 0.966 0.976

Other performance evaluation experiments were performed on the trained ML models. Here,
verification was performed using 763 feature datasets not used in ML model training; thus,
the experimental conditions closely represent raw image input collected in the field. The evaluation
metrics results are summarized in Table 2. The results indicate a similar trend to the cross-validation
results of ML model training. To perform this validation process, we also used the cross-validation
function provided as functions in MATLAB®. In addition, the decision tree model obtained the best
precision results; however, the ensemble model obtained even performance relative to recall, precision,
and accuracy.

Table 2. Performance of trained machine learning (ML) models using new data, true positives (TP),
false positives (FP), true negative (TN), and false negative (FN).

ML Models TP FP TN FN Recall Precision Accuracy

Decision Tree 337 15 360 51 0.869 0.957 0.913
Discriminant 352 52 323 36 0.907 0.871 0.885
Naive Bayes 383 77 298 5 0.987 0.833 0.893
SVM 366 47 328 22 0.943 0.886 0.910
KNN 346 59 316 42 0.892 0.854 0.868
Ensemble 377 22 353 11 0.972 0.945 0.957

Trunk Bottom Detection

We evaluated the performance of the trained ML models on 763 feature datasets not used for
ML model training. This test was performed on 100 new images of an apple orchard environment.
The implementation procedure is shown in Figure 5, which shows a block diagram of trunk the bottom
point decision process. In this experiment, the apple tree trunk bottom points detected by the trained
ML (Figure 6) were displayed on the raw grayscale image used as input.

The first step in detecting the apple tree trunk bottom points was to take 100 orchard environment
images as input and create a binary image after preprocessing each image. Here, the local-lowest points
were detected in segments created in the binary image, and the LTP was detected based on the LLP.
Then, the 33 predictor variables were extracted based on the LLP and LTP coordinates. The extracted
predictor variable feature datasets were used as the inputs to the trained ML models to detect trunk
bottom points. Here, to detect trunk bottom points in the actual input image, only the trained ensemble
model was used. The detected trunk bottom points are shown as red dots with the input image as the
background in Figure 5.
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Figure 5. Block diagram of trunk bottom point decision process.

Figure 6. Apple tree trunk bottom points as red dot detected by trained machine learning model.
4. Results and Discussion

We confirmed that apple trunk bottom points could be detected (Figure 6), and approximately
90% detection accuracy was obtained, as shown in Table 2. When the proposed ML feature extraction
was performed on an orchard environment image, there were approximately 10 real positive points
corresponding to the apple tree trunk bottom and greater than 100 real negative points representing
other non-trunk bottom points. To analyze the performance of the six trained ML models, performance
evaluation data were collected to calculate and compare the ROC curve, AOU, accuracy, confusion
matrix, recall, and precision. The confusion matrix, recall, precision, AOU, and accuracy results are
summarized in Table 1. Generally, accuracy is the most common metric used to evaluate a trained
model; however, in this study, precision, which represents the ratio of the real trunk bottom among the
results predicted as trunk bottom points, and recall, which indicates the ratio of the predicted trunk
bottom points among real trunk bottoms, are also important because for ML models that predict free
space in an orchard environment, the ability to detect tree trunks is more important than predicting
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non-tree trunks. In addition, the trained ML model should demonstrate balanced precision and recall
performance [29,30].

As shown in Table 1, no significant difference was observed between the recall and AOU values.
However, for precision, the decision tree and ensembles models obtained precision values of 0.972
and 0.966, respectively; thus, the corresponding accuracy of these models was also relatively high.
The precision and accuracy values of the other ML models were 0.9 or less. Among the ML model trained
using 1800 training feature datasets (Table 1), the decision tree and ensemble models demonstrated
excellent performance.

An additional verification was conducted after comparing the performance of the ML models
trained on 1800 training feature datasets. Here, the performance of the six ML models was evaluated on
763 new datasets not used for ML model training. The results are summarized in Table 2. These feature
datasets were not used for ML model training; thus, we expected that the 1800 new data would have
similar characteristics to images captured the field. As shown in Table 2, the decision tree model
showed the best prediction results (except for the ensemble model).

Theoretically, the decision tree model is known to have several disadvantages, e.g., small
fluctuations in the training data significantly affects the final results and a small number of noise
data. Figure 7 shows the difference between the decision tree and ensemble models, where Figure 7a
shows that prediction is obtained using a single decision tree. Figure 7b shows that the final prediction
result is determined by integrating the prediction results of multiple (n-trees) decision tree models.
The ensemble model employed in this study uses the decision tree model as a base model and improves
accuracy of prediction by integrating the results of several base models using the rule of majority
vote or average. This conceptual method is referred to as the ensemble model, and a random forest
ensemble model based on the decision tree model was used in this study.

Test all data input
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Figure 7. Conceptual difference between decision tree and ensemble models, (a) a single decision tree,
(b) a random forest ensemble model.

The results shown in Table 2 are those obtained in additional verification experiment on 763 new
datasets not used for model training. As canbe seen, recall, precision, and accuracy gradually decreased
with all six trained ML models. Here, the decision tree model obtained the best precision results;
however, the ensemble model demonstrate even performance relative to recall, precision, and accuracy.

A test corresponding to the practical prediction (Figure 1, bottom) was performed by inputting
100 gray images. The trunk bottom points detected by the ML classifier using the trained ensemble
model are indicated by the red dots in Figure 8a,b. Table 3 shows false positives (FP) and true positives
(TP) to confirm the performance of the learned ML model with 100 images not used for model training
as inputs. Note that precision is the only performance metric that can be confirmed by TP and FT,
and the precision results are shown Table 3. Here, the “strict” item in Table 3 represents the next
row tree (NRT) type, grass, or ground (G) type, and branch (B) type points shown in Figure 8 that
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were classified as FPs. As shown in Table 3, precision is 0.85, which is less than the previous result.
This difference can be explained by the fact that the feature data of the actual image have different
features from the data used to train the ML model. In addition, the ML model was trained on feature
datasets extracted from approximately 100 images; thus, this performance differences may have been
caused a lack of sufficient training data.

Table 3. True positives (TP), false positives (FP), and precision with new 100 images.

Standard TP FP Precision
Strict 1120 191 0.85
Liberal 1239 72 0.95

(b)

Figure 8. Trunk bottom points, next row tree (NRT) point, grass, or ground (G) point, and branch
(B) point: (a) NRT type error and G type error, and (b) B type error shown as red dots in yellow
dotted circles.

On the other hand, cases in which the NRT type error in Figure 8a is reclassified as true positive
(TP) are summarized in the “liberal” item in Table 3, and the result was also calculated as Precision.
Since the NRT error type is a case where the tree in the next row is classified as positive, the effect on
free space prediction is not significant. The detection performance was 95%, which is greater than the
strict standard.

In our previous study, the coordinates of the lowest part of the image binarized with the ML
function were extracted, and the centerline of the free space between two rows of the apple tree was
finally estimated using Naive Bayesian classification [7]. Although in this work we used the same
binarized image as the previous study, the ML feature variable based on the binary pixel quantification
proposed, can be used to detect the position of the tree with high accuracy. Using the position, we can
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estimate free space, calculate such as the distance between the tree and the camera and the distance
between the trees.

5. Conclusions

In this paper, we have proposed an orchard environment free space recognition technology
suitable for developing small-scale agricultural UGV autonomous mobile equipment using a low-cost,
lightweight processor. The proposed method extracts feature data required for ML training from
segment images by converting low-resolution grayscale (320 x 240 pixels) to binary images to detect
trees in orchards. The overall workflow of the proposed technology is summarized as follows. First,
feature data were extracted from the input images using the proposed ML feature extraction method.
Then, six ML models were trained using the extracted feature data. The optimal trained ML model
was selected through a performance analysis. Then, apple tree trunk bottom point detection using the
selected trained ML model was evaluated. Finally, performance of the trained ML model was verified
on new image data. The experimental results demonstrate that the ensemble model obtained good,
even performance to recall, precision, and accuracy.

In summary, the proposed method could detect apple tree trunks in low-resolution grayscale
images, and the accuracy was approximately 90%. To evaluate the characteristics of tree trunk bottom
point detection in 100 new images (not used for model training), the trained ensemble model was
used to confirm performance, and precision of 0.85 was obtain, which is less than the performance
obtained in the model training process. There may be various reasons for this result; however,
the primary cause appears to be due to the fact that the number of images used for training was only
100, which is insufficient ML model training. Thus, in future, we plan to obtain more diverse orchard
environment images and use them to further study the proposed ML feature extraction method for
deep learning technologies.
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