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Abstract: The aim of this study is to assess the effect of two biostimulators (Titanit, Rooter) and six
foliar fertilizers (Optysil, Metalosate Potassium, Bolero Bo, ADOB 2.0 Zn IDHA, ADOB B, ADOB
2.0 Mo) on white lupine. In addition, we evaluated the enzymatic activity of dehydrogenase, acid,
and alkaline phosphatases, catalase, the level of biological nitrogen fixation, yield, plant biometric,
chlorophyll fluorescence and chlorophyll content. A field experiment was conducted between 2016
and 2018 at the Gorzyń Experimental and Educational Station, Poznań University of Life Sciences
in Poland. The best effects in plant yield were obtained after the application of Optysil or ADOB
Zn IDHA. The three years results of dehydrogenase (DHA), alkaline phosphatase (PAL), and the
biological index of soil fertility (BIF), show that the bio-stimulants and most of the foliar fertilizers
used did not always stimulate the activity of these enzymes and index in the white lupine crops, as
compared with the control treatment. Analysis of the results of the acid phosphatase activity (PAC)
shows that during the entire white lupine growing season the foliar fertilizers and bio-stimulants
decreased the activity of this enzyme. This effect was not observed when the Metalosate potassium
foliar fertilizer was applied. The field analyses of biological nitrogen fixation showed that the
fertilizers and bio-stimulants significantly stimulated nitrogenase activity under the white lupine
plantation. The best effects in plant yield were obtained after application Optysil or ADOB Zn IDHA.

Keywords: soil enzymatic activity; biological index fertility; nitrogenase activity; microelements
fertilization (Ti, Si, B, Mo, Zn)

1. Introduction

The degradation of the soil environment, excessive use of chemicals, depletion of natural resources,
as well as the decreasing biodiversity instigated the European Union to make a decision about the
need for integrated crop cultivation and protection [1]. Since 2014 the recommendations concerning
integrated protection and cultivation have been in force in Poland. At present we can see the
transitional phase between conventional and sustainable agriculture. In order to meet the assumptions
of sustainable agriculture it is necessary to diversify the crop structure and minimize the excessive
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share of cereals. It is also necessary to use integrated methods of agricultural production, so it might
be particularly important to restore legume plantations [2].

The significance of legumes in sustainable agriculture is increasing because they improve the
physicochemical properties of soil, increase the content of organic matter by leaving large quantities
of crop residues, and reduce the need to apply nitrogen fertilizers. White lupine (Lupinus albus L.)
is one of the most important crops in this group of plants in Poland. It has been the longest known
crop species of the Lupinus genus. Because of its very high content of protein and fat, especially in
seeds, it has been used for human nutrition for thousands of years, despite its high content of bitter
alkaloids [3]. It was only in 1930 that low-alkaloid forms were obtained. Because of the introduction of
new varieties, the cultivation of white lupine with low alkaloid content became popular in Poland.
Between 2005 and 2015 the area of cultivation of large-seeded legumes increased almost four times so
that in 2015 they covered an area of 407,000 ha [4].

Lupine species have the largest share in this group of crops. On the other hand, the area of
plantations with small-seeded legumes, such as clover and alfalfa, did not fluctuate much in that
decade and in 2015 they covered an area of 93,000 ha [5].

Legumes are characterized by the ability to coexist with the nitrogen-fixing diazotrophic bacteria
(Rhizobium). In order to increase the protein content in plants, which depends on the system developed
by the plant and rhizobia, it is necessary to find agents improving the efficiency of this symbiosis.

Scientists are more and more interested in bio-stimulants, which are defined as materials containing
one or more active substances and/or microorganisms. They improve the uptake of nutrients by plants,
their tolerance to abiotic and biotic stress, and the quality of crops [6]. Bio-stimulants also increase
the activity of rhizosphere microorganisms and soil enzymes, as well as they stimulate hormone
production and photosynthesis [7]. They also promote the overall plant growth, including increased
biomass and crop yields [8]. In the group of synthetic bio-stimulants, there are preparations containing
growth regulators, phenolic compounds, inorganic salts, and beneficial nutrients [9,10], which naturally
occur in plants in trace amounts (e.g., titanium and silicon). They act mainly by the stimulation of
numerous physiological processes, which has a positive effect on plant yield and crop quality. Nutrients
assimilable by plants, reduces the impact of stress, which affects the growth and development of
plants. They regulate the uptake of macro- and microelements, alleviate the negative effects of periodic
water shortage, high salinity, as well as activates the natural immune mechanisms of plants. They also
strengthen cell walls and reduce the susceptibility of plants to mechanical damage [11]. Microelements
regulate biochemical processes occurring in plants, being part of most enzymes or acting as their
activators, therefore their deficit may lead to the inhibition of specific enzymatic reactions, which
in turn leads to disorders of many biochemical and physiological processes, adversely affecting the
growth and plant development [12,13]. There are many fertilizers that are enriched with amino acids,
organic compounds, or surfactants. For example, potassium in fertilizer is in the form of very small
molecules complexed with a unique set of natural amino acids. In turn, boron in the fertilizer is in
the form of sodium pentaborate decahydrate, and the addition of sorbitol ensures rapid uptake of the
fertilizer through the leaves of fertilized plants and high efficiency of the fertilizer. Zinc in modern
fertilizers is chelated with the biodegradable IDHA chelating agent, because of which it also gains a
form that is very well absorbed by plants. This fertilizer increases the plants’ resistance to drought and
diseases and increases the germination of seeds. It is produced in the form of microgranules, based on
modern microgranulation technology. The manufacturer of molybdenum fertilizer has developed a
liquid formula of the fertilizer additionally enriched with biodegradable tensides, which decreases the
surface tension of the working liquid and increases the efficiency of covering the leaf blade during
spraying increases [14].

Essential plant nutrients are mainly applied to soil and plant foliage in order to achieve maximum
economic yields. Soil application is more common and most effective for nutrients that are required
in high quantities. However, under certain circumstances, foliar fertilization is more economic
and effective. Because of the intensified cultivation foliar fertilization has become an indispensable
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agrotechnical procedure. Plants exhibit the highest demand for potassium and nitrogen (more than 200
kg in terms of the yield per 1 ha), and the lowest demand for zinc, boron, copper, and molybdenum.
Plants need only a few grams of molybdenum in terms of the yield per hectare. This means that foliar
fertilization is particularly recommended and effective when it is necessary to supply micronutrients
to crops [15].

Each agrotechnical treatment, i.e., the use of fertilizers or bio-stimulants, may cause changes in
the soil environment. There have been numerous studies showing various effects of these treatments
on the count of selected groups of microorganisms and the amount of soil enzymes they secrete [16].

Measurement of the activity of soil enzymes provides information about the quality of soil.
This procedure is important as it indicates the biochemical activity of soil. Enzymes are thought
to be good and sensitive indicators because they quickly react to changes in soil caused by natural
and anthropogenic factors. Apart from that, it is easy to measure their activity, which affects the
main microbiological reactions involving the cycles of nutrients in soil. Studies also showed that
agrotechnical procedures influence the enzymatic activity more than other biochemical parameters [17].

The aim of this study is to assess the effect of selected bio-stimulants (Tytanit, Rooter) and foliar
fertilizers (Optysil, Metalosate potassium, Bolero Bo, ADOB 2.0 Zn IDHA, ADOB B, ADOB 2.0 Mo) on
the yield and plant features, activity of dehydrogenase, acid and alkaline phosphatases, and catalase,
as well as the level of biological nitrogen fixation based on the activity of nitrogenase in a white
lupine plantation.

2. Material and Methods

2.1. Experimental Design

A field experiment was conducted between 2016 and 2018 at the Gorzyń Experimental and
Educational Station, Poznań University of Life Sciences. The GPS coordinates of the experiment are
as follows: N-52.56589, E-015.90556, 65 m AMSL. Each year one-factor experiment was conducted
as randomized block design in four replications with the following nine factor levels: 1. control
treatment—plants not treated with preparations; 2. Tytanit; 3. Optysil; 4. Metalosate Potassium; 5.
Rooter; 6. Bolero Mo; 7. ADOB Zn IDHA; 8. ADOB B; 9. ADOB 2.0 Mo. Each fertilizer was applied in
a timely manner, according to the manufacturer’s recommendations (Table 1).

An experiment was conducted on white lupine (Lupinus albus L.) of the Butan cultivar. The lupine
seeds were inoculated with the effective strain of Bradyrhizobium lupinus root nodule bacteria directly
before sowing by using nitragina. Nitragina is a single-component graft, containing a specific bacterial
strain for a specific legume plant, in which peat is a carrier. The Butan cultivar can be grown all over
Poland, this variety is insensitive to delayed sowing; its growing period is 2–14 days shorter than that
of traditional varieties and it is less susceptible to diseases caused by Fusarium fungi. The cultivar is
more valuable as a feed and it has high content of protein (32–37%) and fat (10–12%), while the content
of alkaloids is about 30–40% lower.

The seeds were sown (4 April 2016, 4 April 2017 and 7 April 2018) on plots with an area of 21 m2,
with a distance of rows of 15 cm, and sowing density of 75 seeds per 1 m2.

According to the FAO/WRB classification [18], the soil in the experimental plots is a typical lessive
soil formed from light loamy sands, deposited in a shallow layer on light loam (Haplic Luvisols) (Table 2).
The soil texture was determined by means of a sieve (sand fraction) for the silt and clay fraction [19].

The agrotechnical and cultivation treatments were carried out in accordance with the principles of
good agricultural and experimental practice for this species [20]. In the autumn before winter plowing,
basic macronutrients were supplied to the soil in the form of multi-component fertilizer Polifoska 4 in
the amount of 350 kg ha−1 (N—4%, P—12%, K—32%). Before sowing, urea in the amount of 30 kg ha−1

was used.



Agronomy 2020, 10, 150 4 of 22

Table 1. The terms and doses of bio-stimulants and fertilizers applied in the experiment.

Bio-Stimulants/Foliar Fertilizers Term and Dose of Bio-Stimulant Fertilizer Characteristics

Bio-stimulants

Tytanit

I: leaf and shoot development
(BBCH 13–29)—0.3 dm3 ha−1

II: inflorescence development
(BBCH 51–59)—0.3 dm3 ha−1

III: beginning of pod development
(BBCH 71)—0.3 dm3 ha−1

Liquid, mineral stimulant containing titanium (Ti).
It increases the yield volume and development of

plants, improves yield quality parameters and
increases plants’ natural resistance to stress factors.

Composition: 8.5 g Ti (dm3)−1

Rooter BBCH 13–14—1 dm3 ha−1

Bio-stimulant—it stimulates the growth of the root
system, accelerates regeneration and improves the

uptake of soil minerals.
Composition: P2O5 13.0%; K2O 5.0%

Foliar fertilizers

Optysil

I: leaf and shoot development
(BBCH 15–29)—0.5 dm3 ha−1

II: inflorescence development
(BBCH 51–55)—0.5 dm3 ha−1

III: beginning of pod development
(BBCH 71–73)—0.5 dm3 ha−1

Liquid, silicon antistressor stimulating the growth
and development of plants, activating their natural

immune systems and increasing tolerance to
unfavorable cultivation conditions.
Composition: 200 g SiO2 (dm3)−1

Metalosate
Potassium

2–3 treatments every 10–14 days
during intensive

growth—3 dm3 ha−1

Liquid foliar fertilizer containing an easily
absorbable form of potassium, which supplements

potassium deficit in plants with amino acids.
Composition: K2O 24%

Bolero Mo Before florescence—1.5 dm3 ha−1

Liquid foliar fertilizer containing boron and
molybdenum to supplement the deficit of these

elements in plants.
Composition: B 8.2%; Mo 0.8%

ADOB 2.0
Zn IDHA Before florescence—1 dm3 ha−1

Foliar fertilizer containing zinc (Zn) fully chelated
by biodegradable chelating agent IDHA.

Composition: Zn 100 g kg−1 (weight percentage
content 10, chelated by IDHA)

ADOB B
I: before florescence—2 dm3 ha−1

II: after florescence on
pods—1 dm3 ha−1

Liquid, highly concentrated foliar fertilizer
containing boron that regulates auxin activity and

participates in cell division.
Composition: N 78 g kg−1; B 150 g kg−1

ADOB 2.0
Mo

early stages of
development—0.15 dm3 ha−1

Liquid, single-component fertilizer which increases
the rate and efficiency of use of nitrogen by plants

and improves interaction with iron.
Composition: Mo 20%

Table 2. The texture of soil sampled at a depth of 0–25 cm and the soil chemical properties of the
3-year experiment.

Percentage of Soil Fractions
Texture
ClassFraction

[mm]

Sand
2–0.05

Silt
0.05–0.002

Clay
<0.002

78 18 4 LS

Soil Chemical Properties

pH in 1 mol KCl 6.0
Phosphorus P (mg·kg−1) 70.1
Potassium K (mg·kg−1) 99.3

Magnesium Mg (mg·kg−1) 56.7
Manganese Mn (mg·kg−1) 303.4

Zinc Zn (mg·kg−1) 10.9
Copper Cu (mg·kg−1) 2.6

Iron Fe (mg·kg−1) 1525.2
Boron B (mg·kg−1) >20
Organic carbon (%) 0.5

Percent of caries 0.8

LS—loamy sand.
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The agrotechnical procedures were carried out in accordance with the rules adopted for the species
used in the test. White lupine was sown in early April. The following products were used for weed
control: Afalon Dispersive 450 EC (1.1 L ha−1) in April, Basagran 480 SL (2.6 L ha−1) and Betanal
MaxPro 209 OD (1.25 L ha−1) in May. Fusilade Forte 150 EC (1.0 L ha−1) was additionally applied
in June. The following products were sprayed to protect the plants from diseases: Gwarant 500 SC
(2.0 L ha−1) in May and Korazzo 250 SC (1.0 L ha−1) in mid- and late June.

2.2. Weather Conditions

During the growing seasons in 2016 and 2017 the weather conditions were similar in terms of
temperature and rainfall. During the growing season the highest average air temperature was noted in
July both in 2016 (19.5 ◦C) and 2017 (18.9 ◦C), whereas the lowest temperature was noted in April,
i.e., 8.7 ◦C in 2016 and 7.5 ◦C in 2017. However, the weather conditions in 2018 were different than
in the previous years (Figure 1). The highest average temperature was noted in August (21.2 ◦C),
whereas the lowest was noted in May (12.7 ◦C). As far as the average monthly temperature from April
to September is concerned, 2018 was the warmest—it was 2.9 ◦C warmer than 2016 and 1.7 ◦C warmer
than 2017. In 2016 there was drought only at the end of the growing season. Likewise, in 2017 there
was no rainfall deficit. On the contrary, it was a wet year, especially from June to August. On the
other hand, in 2018 rainfall was unevenly distributed and there were droughts that were particularly
unfavorable for plants in May, June, and August.



Agronomy 2020, 10, 150 6 of 22
Agronomy 2020, 10, x FOR PEER REVIEW 6 of 22 

 

 
Figure 1. Climate graphs according to Walter [21] characterizing weather conditions in Gorzyń. 

2.3. Influence of Fertilizers on Nitrogenase Activity (Diazotrophy) 

Nitrogenase activity was estimated using the acetylene reduction assay (ARA) at the beginning 
of the plants’ flowering [22]. For this purpose, five plants were randomly selected in plots, in a given 
experimental treatment and directly were placed tightly in sealed test vials (2000 mL) at the field, 
purified C2H4 was injected to obtain an acetylene concentration of 10% (v/v) in the gas phase (air). 
After an hour, 1 mL of the gas phase was taken from inside of the test vessels with a Hamilton gas-
tight syringe and stored in small glass vials, which were sealed with rubber septa and aluminum 
seals. Ethylene concentration was determined using gas chromatograph CHROM 5 (Laboratorni 
Přistroje, Praha, Czech Republic, 1980). Nitrogenase activity was determined based on the quantity 

Figure 1. Climate graphs according to Walter [21] characterizing weather conditions in Gorzyń.

2.3. Influence of Fertilizers on Nitrogenase Activity (Diazotrophy)

Nitrogenase activity was estimated using the acetylene reduction assay (ARA) at the beginning of
the plants’ flowering [22]. For this purpose, five plants were randomly selected in plots, in a given
experimental treatment and directly were placed tightly in sealed test vials (2000 mL) at the field,
purified C2H4 was injected to obtain an acetylene concentration of 10% (v/v) in the gas phase (air).
After an hour, 1 mL of the gas phase was taken from inside of the test vessels with a Hamilton gas-tight
syringe and stored in small glass vials, which were sealed with rubber septa and aluminum seals.
Ethylene concentration was determined using gas chromatograph CHROM 5 (Laboratorni Přistroje,
Praha, Czech Republic, 1980). Nitrogenase activity was determined based on the quantity of acetylene
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reduced to ethylene and expressed in nmolC2H4 produced per plant per hour (nMC2H4 plant−1 h−1).
The results are the mean value of five replications from each measurement.

2.4. Plant Biometric Assessment

The plant height (from soil surface to the highest plant point) and number of pods per plant were
measured. Shoot, root, and nodule dry mass were determined after drying for 2 days at 70 ◦C until
reaching constant weight. All the biometric traits were measured on 10 randomly selected plants from
each object and replication during plant vegetation and before harvest. The total one-sided area of
leaf per unit ground surface area expressed by the leaf area index (LAI) and was measured at three
randomly selected places of each plot at the BBCH stage 69 using a SunScan Canopy Analysis System
type SSI. Lupine was harvested at one stage (BBCH 90–92) with a 1.35-m wide plot combine. The yield
of clean seeds was determined in dt·ha−1, given at a standardized (15%) water content and thousand
seed weight was measured using a seed counter.

2.5. Chlorophyll Fluorescence and Chlorophyll Content Measurements

A fluorimeter (OS5p; Opti-Sciences, Inc., Hudson, NY, USA) was used to measure the efficiency of
the photosynthetic apparatus. Prior to fluorescence measurements, the upper surface of three healthy
leaves at the top of one plant from three randomly selected sites for each plot was covered with leaf
clips for 30 min. Leaf fluorescence was then measured with a light pulse of 15,000 µmol m−2 s−1

at a wavelength of 660 nm The assessed parameter was maximum photosynthetic efficiency of PSII
(Fv/Fm), which was calculated using the following formula: Fv/Fm = (Fm − F0)/Fm, on the basis of the
measured parameters: minimal fluorescence (F0), maximal fluorescence (Fm), variable fluorescence
(Fv) [23].Chlorophyll content meter (CCM-200plus; Opti-Sciences, USA) was used to estimate the
chlorophyll content index (CCI) on the same leaves that were used for chlorophyll α fluorescence
measurements. CCM-200plus measures the chlorophyll absorbance and calculates the chlorophyll
content index, which is proportional to the concentration of chlorophyll in the sample.

2.6. Soil Sampling for Biochemical Analyzes

Soil samples collected from the arable layer (0–20 cm) were used as the research material for
biochemical analyses. Each year they were collected at four terms: First term—at the plants’ emergence
(BBCH 5–10), Second term—at the plants’ full growth (BBCH 35–40), third term—at the at the plants’
florescence (BBCH 51–59), fourth term—after harvest.

Soil samples were taken from five places of each experimental plot, in four replications for each of
the nine treatments of the experiment. In this way, at each analysis term we received 36 samples of soil,
each of 1 kg.

2.7. Soil Enzymatic Activity

The analyses of soil enzymatic activity in individual treatments were based on the colorimetric
method applied to measure the dehydrogenase activity (DHA), where 1% triphenyl tetrazolium
chloride (TTC) was used as the substrate. The activity was measured after 24-h incubation at a
temperature of 30 ◦C and a wavelength of 485 nm and it was expressed as µmol triphenyl formazane
TPF 24 h−1 g−1dm of soil [24].

Apart from that, the biochemical analyses of soil involved the determination of activities of acid
(EC 3.1.3.2) phosphomonoesterases (PAC) and alkaline phosphomonoesterases (PAL) with the method
developed by Tabatabai and Bremner [25]. The activities were determined with disodium p-nitrophenyl
phosphate tetrahydrate used as a substrate after 1 h incubation at 37 ◦C and at a wavelength of 400 nm.
The results were converted into µmol (p-nitrophenol) PNP h−1 g−1dm of soil.

Catalase activity was measured by means of permanganometry, according to the method developed
by Johnsons and Temple [26], where 0.3% H2O2 was the substrate. After 20-min incubation at room
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temperature (about 20 ◦C) 0.02 M KMnO4 was titrated to a light pink colour and expressed as µmol
H2O2 g−1 dm min−1.

2.8. Biological Index of Fertility

The biological index of fertility (BIF) was calculated using the dehydrogenase activity (DHA) and
catalase activity (CAT) according to the Stefanic method [27] using the following formula: (DHA +

kCAT)/2, where k was the factor of proportionality which equaled 0.01.

2.9. Statistical Analyses

The dynamics of changes in the soil enzymatic activity was statistically analyzed. As there were
no significant differences between the parameters in the research years, they were treated as replicates
and the results were analyzed by two-way ANOVA using Statistica 12.0 software. The fertilization
method and the term of analysis were the factors differentiating the traits under study to estimate the
soil biochemical activity parameters. Homogeneous subsets of mean were identified via Duncan’s
test at a significance level of p = 0.05. Yield, biometric, physiological traits of plants, and nitrogenase
activity were tested once a year for the experiment. Hence, one-way analysis of variance (ANOVA)
was used with Duncan’s confidence interval, which was applied at a significance level of p = 0.05. As
there were no significant differences between the parameters in the experimental years, they were
treated as replicas.

Principal component analysis (PCA) was used to visualize the multidimensional dependencies
between the soil biochemical activity and the types of fertilization [28]. In order to show the existing
regularities (correlations) between biometric and physiological parameters of plants in individual
years of research, a Pearson correlation matrix was determined, which was illustrated using a heatmap.
The colors indicate the correlation coefficient values (from darkest—value −1, to the lightest—value
+1). Cluster analysis enables grouping of the studied physiological parameters of the plants in the
experiment in such a way that the degree of correlation between parameters within one group was the
highest and between groups the smallest [29]. The agglomeration Ward method (Ward Hierarchical
Clustering) and the Euclidean distance were used to create a tree diagram.

3. Results

3.1. Yield, Biometric, and Physiological Traits of White Lupine Plants

The studied biostimulators/foliar fertilizers modified the yield and yield components of white
lupine. The yield of white lupine seeds was low and ranged from 11.67 dt·ha−1 (ADOB B) to
13.88 dt·ha−1 (Optysil) and depended significantly on the bio-stimulants or foliar fertilizers that
were applied (Table 3). After applying Optysil or ADOB Zn IDHA (13.63 dt·ha−1), the yields were
significantly higher when compared to the control plants by 1.82 and 1.57 dt·ha−1, respectively.

Thousand seed weight (TSW) was significantly higher than the control plants when ADOB Zn IDHA
(322.7 g) was applied. All tested preparations significantly stimulated the height of white lupine. The
strongest stimulation was obtained by Metalosate potassium, which increased the height of white lupine
(40.5 cm) by 6.2 cm when compared to the control. Apart from these fertilizers, in the group that most
strongly stimulated this trait were: Optysil (39.8 cm), ADOB 2.0 Mo (38.9 cm), and Bolero Mo (38.6 cm).

ADOB Zn IDHA (318.4 pc·m−2) and Tytanit (300.8 pc·m−2) significantly increased the number of
pods compared to the control, and the increase was 96.6 and 79 pc·m−2, respectively.

Studies have also shown changes in nodulation and physiological parameters of the plant. Dry
mass of root nodules was significantly stimulated after application of ADOB Zn IDHA (0.212 g) by
0.067 g when compared to the control treatment.

Chlorophyll fluorescence (Fv/Fm), showing the level of plant stress, was measured in the BBCH
69 (end of flowering) and BBCH 79 phases (75% of the pods reached typical length). At the end
of flowering, the best plant condition, expressed by the Fv/Fm parameter, was obtained after the
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application of ADOB Zn IDHA (0.815) or Metalosate potassium (0.813) and both values significantly
exceeded those obtained both with the control and all other treatments. In the assessment made at a
later developmental phase, the tested biostimulators/foliar fertilizers did not significantly differentiate
this parameter.

ADOB Zn IDHA application significantly stimulated the content of chlorophyll in leaves, expressed
in CCI, which was 50.9 and exceeded the control by 17.4, as well as all other objects. In addition,
significantly higher CCI values than in the control object were obtained after using Tytanit (46.7),
ADOB B (42.9), or ADOB 2.0 Mo (40.7).

In turn, the significantly highest LAI value in the experiments was obtained after application of
Rooter. The LAI value was 2.03 and exceeded the control by 0.62, for which the lowest LAI value
was determined.

Table 3. The influence of the bio-stimulants and fertilizers on yield, biometric, and physiological traits
of white lupine.

Objects Seed Yield,
dt·ha−1 TSW, g Height,

cm

Number
of Pods,
pc.·m−2

Plant
Dry

Mass, g

Root
Nodules Dry

Mass, g

Fv/Fm
BBCH

69
CCI LAI

1 12.06 bc 302.4 bc 34.3 e 221.8 bc 5.05 0.145 bc 0.784 cd 33.5 d 1.41 g
2 11.82 bc 295.2 c 37.8 bcd 300.8 a 5.72 0.147 bc 0.796 b 46.7 b 1.73 de
3 13.88 a 301.7 bc 39.8 ab 250.5 b 6.46 0.160 bc 0.792 bc 23.1 f 1.81 c
4 11.96 bc 305.8 bc 40.5 a 189.1 c 5.28 0.170 b 0.813 a 24.2 f 1.70 de
5 13.18 ab 313.9 ab 37.1 cd 235.0 bc 5.36 0.142 bc 0.776 d 25.6 f 2.03 a
6 12.76 abc 306.1 bc 38.6 abc 250.0 b 5.14 0.129 c 0.774 d 30.2 e 1.88 b
7 13.63 a 322.7 a 36.4 d 318.4 a 6.17 0.212 a 0.815 a 50.9 a 1.61 f
8 11.67 c 310.4 b 37.9 bcd 273.4 ab 5.12 0.169 bc 0.779 d 42.9 c 1.68 e
9 11.94 bc 309.0 b 38.9 abc 240.7 b 5.24 0.170 bc 0.797 b 40.7 c 1.76 cd

p-value 0.001 0.000 0.000 0.000 0.236 0.001 0.000 0.000 0.000

1. control—no bio-stimulants or foliar fertilizers applied to the plants; 2. plant + Tytanit; 3. plant + Optysil; 4. plant
+ Metalosate potassium; 5. plant + Rooter; 6. plant + Bolero Mo; 7. plant + ADOB Zn IDHA; 8. plant + ADOB
B; 9. plant + ADOB 2.0 Mo; lack of homogeneous groups means no significant differences at the level of p < 0.05,
a, b, c, d, e, f, g-homogeneous groups (Duncan’s test. p < 0.05); TSW-thousand seed weight, Fv/Fm—maximum
photosynthetic efficiency of PSII, CCI—chlorophyll content index, LAI—leaf area index.

The results of the experiment showed that foliar fertilizers and bio-stimulants affected the
enzymatic activity of the soil and the biological index of fertility (BIF), as well as the nitrogenase
activity in the white lupine plantation. The two-way analysis of variance showed that the foliar
fertilization/bio-stimulants did not have a significant influence on the enzymatic activity and the soil
biological index of fertility (BIF). Only the term of the test (development phase, based on BBCH scale)
had a highly significant influence on the enzymatic activity and the biological index of fertility (BIF) of
the soil (Table 4). One-way analysis of variance showed that foliar fertilization/bio-stimulants had a
significant influence on nitrogenase activity.

Table 4. The test F statistics and the significance levels of the two-way analysis of variance for the soil
bioactivity. The traits under analysis were affected by two factors, i.e., foliar fertilization and the term
of the test.

Parameter Fertilization Development Phase Interaction

White Lupine Butan

Dehydrogenase 13.393 ns 159.989 *** 41.123 ns

Alkaline phosphatase 7.036 ns 51.672 *** 5.37 ns

Acid phosphatase 14.907 ns 116.200 *** 10.116 ns

Catalase 192.47 ns 1558.42 *** 121.42 ns

BIF 2.90 ns 131.96 *** 2.71 ns

Nitrogenase 14.08 *** - -

F test statistics and significance levels of two-way analysis of variance for activity of enzymes associated with
herbicides and terms research fixed factors *** p = 0.001, ns—no signification.
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3.2. Biological Fixation of Nitrogen under Lupine Plantation

The field analyses of the biological fixation of nitrogen showed that the fertilizers and bio-stimulants
significantly stimulated the nitrogenase activity in the white lupine plantation (Figure 2). During the
three years in all the experimental treatments nitrogenase exhibited higher activity than in the control
plot and differences were statistically significant. The highest nitrogenase activity was noted after the
application of the ADOB B and ADOB Zn IDHA. The activity of the enzyme was respectively six and
four times higher than in the control plot. Apart from the control treatment, the lowest biological
fixation of nitrogen was noted after the application of Metalosate potassium.
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Figure 2. The influence of the bio-stimulants and fertilizers on the level of biological fixation of nitrogen.
Abbreviation: means values ± standard errors; a, b, c, d, e, f—homogenous groups according to
Duncan’s test at level p = 0.05.

The heat map presents correlations between all biometric and physiological characteristics of
white lupine plants studied (Figure 3). Based on this visualization, relatively higher correlations were
found between some features, including: PN (number of pods, pc.·m−2), TSW (thousand seed weight),
H (height plant), PDM (plant dry mass), Y (seed yield), and PDM, Y, LAI (leaf area index) and Fv/Fm1

(maximum photosynthetic efficiency of PSII BBCH–69). In turn, BNF (biological nitrogen fixation)
and RNDM (root nodules dry mass) are negatively correlated with LAI, Y, PDM, H, TSW, PN, and
Fv/Fm2 (maximum photosynthetic efficiency of PSII BBCH–78). Additionally, based on cluster analysis,
groups of related biometric and physiological traits of plants were determined. Three groups have
been designated. The first group that is the most distinct from the others contains: RNDM, BNF, CCI,
and Fv/Fm1. The other two groups are: LAI, Y, PDM and H, TSW, PN, Fv/Fm2.
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Figure 3. Correlations between all biometric and physiological characteristics of white lupine plants.
Abbreviation: RNDM—root nodules dry mass, g—BNF—biological nitrogen fixation, CCI—chlorophyll
content index, Fv/Fm1—maximum photosynthetic efficiency of PSII BBCH–69, LAI—leaf area index,
Y—seed yield, PDM—plant dry mass, g, H—height plant, TSW—thousand seed weight, PN—number
of pods, pc.·m−2; Fv/Fm2—maximum photosynthetic efficiency of PSII BBCH–78.

3.3. Analysis of Soil Biochemical Activity

Only the ADOB 2.0 Mo and Metalosate potassium foliar fertilizers stimulated the dehydrogenase
activity throughout the growing season, as compared with the control treatment. After the application
of the bio-stimulants the level of the enzyme activity was similar to the activity in the control treatment.
However, when the Optysil and ADOB B were applied, the activity decreased but not statistically
significantly. The experiment also showed that the peak of the dehydrogenase activity significant
occurred at the third term of analyses, when the plants began flowering (BBCH 51–59). The results of
the analysis of the dehydrogenase activity in the soil under the white lupine plantation are shown in
Figure 4.
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Figure 4. The influence of the bio-stimulants and fertilizers on the dehydrogenase activity. Abbreviation:
a, b—homogenous groups according to Duncan’s test at level p = 0.05; I term—at the plants’ emergence
(BBCH 5–10), II term—at the plants’ full growth (BBCH 35–40), III term—at the at the plants’ florescence
(BBCH 51–59), IV term—after harvest.

The analysis of the results of the acid phosphatase activity (PAC) shows that during the entire
white lupine growing season the foliar fertilizers and bio-stimulants decreased the activity of this
enzyme, as compared with the control treatment (Figure 5). This effect was not observed when the
Metalosate potassium foliar fertilizer was applied. During the second term of analyses, shortly before
flowering, the acid phosphatase activity in all the experimental treatments was higher than in the
control treatment. It was very high after the application of the Bolero Mo (0.170 µmol PNP h−1 kg−1dm
of soil) and ADOB 2.0 Mo (0.171 µmol PNP h−1 g−1dm of soil).
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Figure 5. The influence of the bio-stimulants and fertilizers on the acid phosphatase level. Abbreviation:
a, b—homogenous groups according to Duncan’s test at level p = 0.05; I term—at the plants’ emergence
(BBCH 5–10), II term—at the plants’ full growth (BBCH 35–40), III term—at the at the plants’ florescence
(BBCH 51–59), IV term—after harvest.

The bio-stimulants and most of the foliar fertilizers did not increase the alkaline phosphatase
(PAL) activity in the white lupine plantation, as compared with the control treatment (Figure 6). The
ADOB 2.0 Mo and Bolero Mo stimulated the activity of this enzyme, which respectively increased by
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14% and 5%, as compared with the control treatment. The enzyme exhibited statistically significantly
increased activity shortly before they began flowering (II term).
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Figure 6. The influence of the bio-stimulants and fertilizers on the alkaline phosphatase level.
Abbreviation: a, b—homogenous groups according to Duncan’s test at level p = 0.05; I term—at the
plants’ emergence (BBCH 5–10), II term—at the plants’ full growth (BBCH 35–40), III term—at the at
the plants’ florescence (BBCH 51–59), IV term—after harvest.

All the preparations stimulated the catalase activity, as compared with the control treatment
(Figure 7), but not significantly. The enzyme significantly exhibited high activity, i.e., when the plants
started flowering (III term) in all the experimental treatments. The catalase activity ranged from
98.510 µmol H2O2g−1 dm min−1 after the application of the Tytanit to 135.819 µmol H2O2g−1 dm min−1

after the application of the Bolero Mo.
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Figure 7. The influence of the bio-stimulants and fertilizers on the catalase activity. Abbreviation: a,
b—homogenous groups according to Duncan’s test at level p = 0.05; I term—at the plants’ emergence
(BBCH 5–10), II term—at the plants’ full growth (BBCH 35–40), III term—at the at the plants’ florescence
(BBCH 51–59), IV term—after harvest.

The biological index of fertility (BIF), which was calculated on the basis of the dehydrogenase and
catalase activity, was not always higher after the application of the bio-stimulants and foliar fertilizers
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(Figure 8). The highest value of this indicator was noted after the application of the Optysil and the
lowest after ADOB Zn IDHA. The BIF was significantly high at the beginning of flowering, as it ranged
from 5.17 after the application of ADOB Zn IDHA to 12.34 after the application of ADOB 2.0 Mo. The
indicator was also high after the application of the Bolero Mo and Optysil.
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Figure 8. The influence of the bio-stimulants and fertilizers on the BIF. Abbreviation: a, b—homogenous
groups according to Duncan’s test at level p = 0.05; I term—at the plants’ emergence (BBCH 5–10), II
term—at the plants’ full growth (BBCH 35–40), III term—at the at the plants’ florescence (BBCH 51–59),
IV term—after harvest.

Principal component analysis (PCA) was used to show how the foliar fertilizers and bio-stimulants
affected the white lupine plantation. The first two principal components accounted for over 89.2% of the
total variation (Figure 9). The parameters of the soil biochemical activity in 2018 differed significantly
from 2016 to 2017. This effect may have been caused by the weather conditions (Figure 1). In 2018
the season was the warmest of all the research years. The average temperature difference between
2018 and the previous years was 2.9 ◦C in August and 1.7 ◦C in May. As the thermal conditions were
very similar in 2016 and 2017, the PCA showed similar dependencies for these two years. In 2016 the
fertilizer preparations and bio-stimulants significantly affected the catalytic activity of acid phosphatase
(PAC) at all the terms of analyses. This dependency was not observed for the other parameters of soil
biochemical activity.
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5–10), II term—at the plants’ full growth (BBCH 35–40), III term—at the at the plants’ florescence
(BBCH 51–59), IV term—after harvest. BIF—index of fertility, CAT—catalase activity, PAC—acid
phosphomonoesterases, PAL—alkaline phosphomonoesterases, DHA—dehydrogenase activity.

In 2017 the application of the fertilizers did not cause significant differences in the activity of the
soil enzymes or the biological index of soil fertility. In dry 2018 the preparations did not significantly
affect the catalytic activity of the test parameters only during plants’ emergence (I term). However, at
the plants’ full growth (II term), the foliar fertilizers and bio-stimulants strongly influenced the catalytic
activity of catalase (CAT), dehydrogenase (DHA), alkaline phosphatase (PAL), and the biological
index of soil fertility (BIF). Apart from that, the principal component analysis showed that in 2018 the
indicators of soil biochemical activity were affected most strongly by foliar fertilizers and bio-stimulants
the flowering of the plants (III term) and after the harvest (IV term).

4. Discussion

4.1. Yield, Biometric, and Physiological Traits

Silicon, iron, manganese, boron, copper, molybdenum, and zinc are the basic micronutrients. The
silicon content in most plants is comparable to the content of calcium, magnesium, and phosphorus.
Many studies have shown the positive effects of silicon on plants, their development, yield, and
sensitivity to biotic and abiotic stress [30]. In many tests, silicon has been shown to significantly
influence the regulation of nutrient uptake such as: calcium, magnesium, and phosphorus. In other
studies [31], silicon fertilization increased the yield of sugar beet roots by 13.7–15.9%, as well as the
yield of many other species [11], especially in the form of spraying plants under stress conditions.
According to Fageria and Baligar [32] and Duffy [33] Zn is the microelement most limiting crop yield.
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Zinc is taken up in small amounts and it participates in all major functions of the plant, increases
nitrogen uptake, and activates CO2 binding in later stages. Hence, it is necessary in plant nutrition
and its importance in plant production is growing [13]. Similarly, Kaya et al. [34] obtained the highest
common bean plants (Phaseolus vulgaris L.), with the largest number of pods and seeds per plant after
application of a foliar mixture of zinc.

The preparations used in our study also stimulated the tested biometric parameters of the plants.
Plant height was stimulated the most after application of Metalosate potassium (by 8.5%) when
compared to the control treatments. In turn, the number of nodules was most strongly stimulated
by ADOB Zn IDHA (by 68.4%) and LAI by Rooter (by 69.5%). Other fertilizers containing boron,
molybdenum, silicon, and titanite also increased the parameters indicated above. These results are
consistent with the results of Raj and Raj [12] regarding the beneficial effects of Zn on plant efficiency,
physiological parameters, plant height, and nodulation formation. Our results are also consistent with
field studies of Omer et al. [35], in which the treatments of molybdenum application did not modify
any of the studied lentil characteristics, except for the height of the plant. Also Rahman et al. [36]
showed that the use of molybdenum in its deficiency in soil, stimulates the formation of nodules. Of
the physiological traits studied, chlorophyll fluorescence (Fv/Fm) was most strongly stimulated by
ADOB Zn IDHA (by 3.9%) and Metalosate potassium (by 3.7%). In turn, the CCI index was most
strongly stimulated by ADOB Zn IDHA, whose application resulted in an increase of this parameter
by 51.9% when compared to the control treatment. The results of research on Vigna sinensis [37] and on
Celosia [38] showed that Zn spraying on plants caused a significant increase in chlorophyll content. In
a study conducted by Artyszak et al. [39], foliar fertilization with silicon increased LAI and effective
quantum efficiency of PSII—ΦPSII, as well as positively affected the growth and development of many
plant species [40,41].

4.2. Biological Fixation of Nitrogen

The bio-stimulants and foliar fertilizers which improved the biological fixation of nitrogen in the
white lupine plantation contained important macro- or microelements. Scientific reports suggest that
some elements are particularly significant to the nitrogen fixation process.

Mineral nutrients may influence N2 fixation in legumes at various stages of the symbiotic process:
infection and nodule development, nodule function, and host plant growth. For healthy and vigorous
growth, intact plants need to take up relatively large amounts of some inorganic elements: ions of
nitrogen (N), potassium (K), calcium (Ca), phosphorus (P) and sulphur (S), and small quantities of
other elements: iron (Fe), nickel (Ni), chlorine (Cl), manganese (Mn), zinc (Zn), boron (B), copper (Cu),
and molybdenum (Mo). Molybdenum and iron are especially important because they are components
of the nitrogenase complex in rhizobia which is required for nitrogen fixation. They are components
of nitrogenase—the bacterial enzyme that enables the diazotrophy process. The nitrogenase protein
consists of two subunits: the larger one containing the FeMo cofactor and the smaller one containing
iron alone [42]. Plants growing on acidic, moist, and poorly buffered soils do not have sufficient supply
of molybdenum. When molybdenum is applied in a field to the leaves of legumes, the nitrogen fixation
of these plants is more efficient, and the mass of their root nodules and the yield of seeds increase [43,44].
The use of ADOB 2.0 Mo with high molybdenum content in our experiment confirmed this fact. There
are small amounts of boron in plants, but this micronutrient plays an important role in various
physiological processes. It affects the separation of plant tissues and it is necessary for the optimal
growth of plants. Boron-deficient plants have less bacteria of the Rhizobium genus and fewer infection
threads [44]. The significant increase in the level of biological fixation of nitrogen may have been
caused by the application of the foliar fertilizer containing boron (ADOB B). Our research also proved
that zinc supplied with the ADOB Zn IDHA foliar fertilizer significantly increased the nitrogenase
activity. Although plants absorb moderate amounts of zinc, this element has significant influence on
bacteria of the Rhizobium genus. The research by Wani et al. [45] showed that higher concentrations of
this element in soil stimulate bacteria of the Rhizobium genus to produce phytohormones (including
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indoleacetic acid), which promote the growth of plants by increasing the number of root nodules, their
dry mass, and the content of leghemoglobin in the nodules.

Many researchers have studied the role of phosphorus in symbiotic systems. Phosphorus plays
a crucial role in the nitrogen fixation process [46,47]. The Rooter bio-stimulant, which contained
phosphorus and potassium, stimulated this process considerably. Phosphorus participates in a wide
range of molecular and biochemical processes. Apart from that, some phosphate bonds are carriers
of the energy used in cells. The presence of phosphorus in soil affects the plant’s ability to produce
root nodules, especially the weight and the number of nodules [48], which translates into the level of
nitrogen fixation.

When the supply of phosphorus is insufficient, plants often suffer from nitrogen deficiency.
Sulphur and potassium are less important for symbiotic systems than the aforementioned elements.
Nevertheless, potassium ions are very desirable in saline soils because they function as an osmolyte. In
view of the fact that nearly half of irrigated soils around the world are considered saline, the addition
of potassium helps to maintain the bacteria-plant system [48,49].

4.3. Biochemical Activity

The activities of soil enzymes are considered sensitive indicators of important microbial reactions
involved in nutrient cycles and they respond to changes in the soil caused by natural or anthropogenic
factors. In this regard, soil enzyme activities are often used to evaluate the impact of human activity on
soil life [50].

Soil enzymes are a group of catalysts that significantly affect the ecological properties of the
pedosphere. These are both extracellular enzymes and the ones that are present in microorganisms
(both in proliferating cells and in endospores). Enzymes control the course of all chemical reactions in
microbial cells, e.g., the synthesis of proteins, nucleic acids, and carbohydrates [51]. Soil enzymes are
involved in the decomposition of organic substances released into the soil during the plant’s growth as
well as the formation and decomposition of humus in the soil. They release and transfer minerals to
plants. In spite of the dynamic nature of the microbiological and biochemical properties, soil enzymes
are accurate and significant determinants of soil fertility, and they are important indicators of changes
taking place in the soil [52,53].

Dehydrogenases (DHA) are enzymes belonging to the group of oxidoreductases. They are
responsible for catalyzing the oxidation of organic compounds. Active dehydrogenases are present
only inside living cells and they indicate the presence of physiologically active microorganisms.
Dehydrogenases are commonly found in the pedosphere, where they are involved in the decomposition
of organic compounds. Measurement of the dehydrogenase activity in soil shows the intensity of
respiratory metabolism of soil microorganisms, mainly actinobacteria and bacteria.

Our research showed that only some foliar fertilizers (ADOB 2.0 Mo and Metalosate Potassium)
stimulated the dehydrogenase activity in the white lupine plantation, however, the results were
not significant.

Dehydrogenase exhibited high activity at the beginning of the plants’ flowering phase (BBCH
51–59). It may have been caused by an increased secretion from the root system during that period [54,55].
In consequence, the count of microorganisms increased [56].

Also macro- and microelements applied in the form of foliar fertilizers and biostimulators could
affect dehydrogenase activity. Bielińska et al. [57] observed that fertilizing preparations with nitrogen,
phosphorus, and potassium increased the content of these enzymes in the soil. There was a similar effect
observed in our study after the application of the Metalosate potassium foliar fertilizer. There were
analogous results of experiments on similar bio-conditioners conducted by [58] and [53]. According to
Bilen et al. [59], boron improves the dehydrogenase activity. Taran et al. [60] showed that molybdenum
stimulated the production of these enzymes by the root nodules of legumes. They also observed that
the content of titanium might be positively correlated with the soil biochemistry.
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The results of the experiment showed that both the bio-stimulants (Tytanit and Rooter) and
foliar fertilizers positively affected the acid phosphatase activity, which was lower than in the control
treatment. The Metalosate potassium foliar fertilizer did not cause this effect. This shows that the
preparations used in our experiment positively influenced the plants’ ability to absorb phosphorus. It
is necessary to remember that phosphorus-deficient plants are characterized by increased secretion
of acid phosphatase through the root system into the soil. Ciereszko et al. [61] found that the
deficit of this macroelement stimulated plants’ secretion of acid phosphatases. Lemanowicz et
al. [62] and Niewiadomska et al. [56] also suggest these relationships in their studies on the effect
of the PRP SOL fertilizer containing phosphorus, potassium, zinc, boron, and molybdenum on the
lupine plantation. They observed a decrease in the catalytic activity of this enzyme because of the
activation of the compounds that were inaccessible to plants. Bielińska and Mocek-Płóciniak [63] made
similar observations. Wang et al. [64] also found that these enzymes exhibited higher activity in the
experimental treatment without phosphorus fertilization.

The alkaline phosphatase activity increased significantly only after the application of the ADOB
2.0 Mo and Bolero Mo foliar fertilizers. This effect may have been caused by the increased activity of
soil microorganisms, which were stimulated by organic phosphorus compounds secreted into the soil
by white lupine plants. Waldrip et al. [65] proved that the content of organic forms of phosphorus was
correlated with the activity of alkaline phosphatases in the soil.

All the preparations used in the experiment significantly stimulated catalase activity. As early
as 1963, Koter [66] found that the catalase activity increased when plants were fertilized with boron.
Hu and Zhu [67] observed that the catalase and dehydrogenase activity increased when plants were
fertilized with silicon. Such elements as copper and zinc are essential constituents of physiological
processes in all living organisms, including microorganisms. Some soils suffer from zinc deficits, which
is why they are enriched with fertilizers containing this element to satisfy the nutritional requirements
of crops and improved soil activity [68].

The results of the enzymatic analyses of the dehydrogenase and catalase activities enabled the
calculation of the biological index of soil fertility (BIF). The treatments with the Optysil and ADOBE 2.0
Mo preparations had influence on the BIF values, as compared with the control sample. The use of the
Optysil preparation resulted in particularly high values in the soil samples collected at the beginning
of the flowering phase. The BIF value resulted from the significant influence of these fertilizers on the
activity of catalase and dehydrogenase. Siwik-Ziomek and Szczepanek [69] indicated that mineral
fertilization, which increases the yield of crops, indirectly affects root secretion, and thus increases the
biochemical activity of soil at specific phases of plants’ development.

5. Conclusions

When non-root fertilization is applied to plants, they take up all necessary elements chiefly
through their leaves as well as the stalk and the whole aerial system. A strong stimulating effect on the
yield of white lupine plants in comparison with the control object was obtained after the application
of silicon (Optysil) or chelated zinc (ADOB Zn IDHA). The use of zinc in foliar fertilizers (ADOB
Zn IDHA) in comparison with control treatment stimulated most of the tested features/parameters:
TSW, number of pods per 1 m2, root nodules dry matter, photochemical efficiency of PSII (Fv/Fm), and
chlorophyll content (CCI). However, it is noteworthy that this way of “feeding” cannot substitute soil
fertilization. It can only be used to quickly supply necessary nutrients to plants at difficult phases so as
not to slow down their growth. The bio-stimulants and foliar fertilizers used in our study improved
some of the biochemical parameters of soil activity and the nitrogen fixation process in the white lupine
plantation. This effect may have been caused by the higher rate of penetration and better uptake of
nutrients applied to the plants’ leaves. Although macro- and micronutrients differ in their penetration
rates, this process can be accelerated up to about a dozen times by non-root fertilization. The downside
of foliar fertilization is the fact that only a limited amount of fertilizer can be supplied to plants in this
way. Therefore, this method is particularly effective when plants need to be provided with the elements
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they need in smaller amounts, e.g., iron, boron, and molybdenum. Not only is foliar fertilization a more
efficient method of supplying micronutrients, but it is also safer for the environment and the plants.
The search for methods that improve the yield and biochemical parameters of the soil environment is
in agreement with the sustainable agriculture policy.
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