
agronomy

Review

Arbuscular Mycorrhizal Fungi and Associated
Microbiota as Plant Biostimulants: Research
Strategies for the Selection of the Best
Performing Inocula

Luca Giovannini 1,†, Michela Palla 1,†, Monica Agnolucci 1, Luciano Avio 1 ,
Cristiana Sbrana 2 , Alessandra Turrini 1 and Manuela Giovannetti 1,*

1 Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80,
56124 Pisa, Italy; luca.giovannini@phd.unipi.it (L.G.); michela.palla@for.unipi.it (M.P.);
monica.agnolucci@unipi.it (M.A.); luciano.avio@unipi.it (L.A.); alessandra.turrini@unipi.it (A.T.)

2 CNR, Institute of Agricultural Biology and Biotechnology, UOS Pisa, Via Moruzzi 1, 56124 Pisa, Italy;
sbrana@ibba.cnr.it

* Correspondence: manuela.giovannetti@unipi.it; Tel.: +39-050-221-6643
† These Authors share the first Authorship.

Received: 18 December 2019; Accepted: 9 January 2020; Published: 11 January 2020
����������
�������

Abstract: Arbuscular mycorrhizal fungi (AMF) are beneficial soil microorganisms establishing
mutualistic symbioses with the roots of the most important food crops and playing key roles in the
maintenance of long-term soil fertility and health. The great inter- and intra-specific AMF diversity
can be fully exploited by selecting AMF inocula on the basis of their colonization ability and efficiency,
which are affected by fungal and plant genotypes and diverse environmental variables. The multiple
services provided by AMF are the result of the synergistic activities of the bacterial communities
living in the mycorrhizosphere, encompassing nitrogen fixation, P solubilization, and the production
of phytohormones, siderophores, and antibiotics. The tripartite association among host plants,
mycorrhizal symbionts, and associated bacteria show beneficial emerging properties which could be
efficiently exploited in sustainable agriculture. Further in-depth studies, both in microcosms and
in the field, performed on different AMF species and isolates, should evaluate their colonization
ability, efficiency, and resilience. Transcriptomic studies can reveal the expression levels of nutrient
transporter genes in fungal absorbing hyphae in the presence of selected bacterial strains. Eventually,
newly designed multifunctional microbial consortia can be utilized as biofertilizers and biostimulants
in sustainable and innovative production systems.

Keywords: arbuscular mycorrhizal symbiosis; mycorrhizosphere; AMF associated bacteria; plant
growth-promoting bacteria; biofertilizers; phosphate-solubilizing bacteria; siderophore production

1. Introduction

In the next decades, the major challenge for agriculture will be the adoption of a new paradigm,
sustainable intensification, to meet human needs for the production of enough food at a global scale
while maintaining environmental quality and reducing the input of chemical fertilizers and pesticides [1].
These objectives may be pursued by giving more attention to beneficial soil microorganisms that play
key roles in the maintenance of long-term soil fertility and health, the reduction of chemical inputs in
agriculture, the promotion of plant nutrition, and the production of safe and high-quality food [2].
Among them, arbuscular mycorrhizal (AM) fungi (AMF) represent a key functional group, positively
affecting plant growth, nutrition, and health. AMF are obligately biotrophic organisms that establish
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mutualistic symbioses with the roots of all major land plant taxa, including the most important food
crops such as cereals, pulses, fruit trees, vegetables, medicinal plants, and other economically relevant
species such as sunflower, cotton, sugarcane, tobacco, coffee, tea, cocoa, rubber, and cassava [3]. Within
food crops, the only exceptions are represented by genera and species belonging to Brassicaceae and
Chenopodiaceae, which are non-mycorrhizal plants.

In exchange for plant photosynthates, AMF facilitate the uptake and transfer of mineral nutrients,
such as phosphorus (P), nitrogen (N), sulfur, potassium, calcium, copper and zinc, from the soil to
their host plants by means of the extraradical mycelium (ERM) extending from colonized roots into the
soil [3]. Such a fungal structure represents one of the critical elements of the AM symbiosis, as the flow
of nutrients translocated to the root cells of host plants is highly dependent on its structure, extent, and
interconnectedness. ERM functions as an efficient absorbing system, given the high surface-to-volume
ratio of the mycelium, which is able to uptake soil nutrients beyond the depletion zone around
roots, and the presence of nutrient transporter genes in the hyphae [4]. Besides plant nutrition
improvement, AMF facilitate the completion of biogeochemical cycles, increase plant tolerance to biotic
and abiotic stresses, carbon sequestration and soil aggregation [5], and the content of health-promoting
phytochemicals [6,7] (Figure 1).
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Figure 1. Schematic drawing representing the impacts of arbuscular mycorrhizal fungi (AMF) and
beneficial bacteria on plant performance and soil fertility. On the left: a visual representation of the
AMF life cycle and factors affecting the different AMF developmental stages; on the right: mycorrhizal
helper (MH) and plant growth promoting (PGP) bacteria synergistically interacting with AMF.
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Several studies showed that the multiple services provided by AMF are the result of the synergistic
activity of diverse bacterial communities living in the mycorrhizosphere, strictly associated with their
spores and extraradical mycelium and playing diverse plant growth-promoting (PGP) roles, from
nitrogen fixation and P solubilization and mineralization to the production of indole acetic acid (IAA),
siderophores, and antibiotics [8,9]. Such microbiota was identified not only by culture-independent
methods but also by culture-dependent approaches, which allowed their functional characterization,
aimed at detecting the best performing bacterial strains, to be used in combination with selected AMF
as biofertilizers and biostimulants in innovative and sustainable food production systems [10].

The aim of this review is to provide an overview of the recent developments which contributed
to disclose the biostimulant properties of AMF and their associated bacteria and to propose the best
research strategies for the selection of functional isolates and consortia to be utilized as high-quality
inocula in sustainable agriculture.

2. Arbuscular Mycorrhizal Fungi

AMF belong to the phylum Glomeromycota, encompassing ten out of eleven families:
Acaulosporaceae, Ambisporaceae, Archaesporacea, Claroidoglomeraceae, Diversisporaceae,
Gigasporaceae, Glomeraceae, Pacisporaceae, Paraglomeraceae, and Sacculosporaceae (http://www.amf-
phylogeny.com/, accessed on 7 January 2020). Given their status of obligate biotrophs, the AMF life
cycle cannot be completed in the absence of host plants. It starts with an asymbiotic phase, during which
spores germinate in response to physical factors such as moisture, temperature and pH, producing
hyphae with a limited lifespan [11]. In the presence of root exudates from host plants, a differential
hyphal morphogenesis occurs, with germling hyphae reorienting the direction of elongation and
initiating a differential branching pattern [12–14]: this pre-symbiotic phase is followed by physical
contact between AMF hyphae and host roots, with the differentiation of appressoria, which give rise
to hyphae growing intercellularly within the root cortex, eventually penetrating in root cells and
producing highly branched hyphal tree-like structures similar to haustoria, the arbuscules. Arbuscules
are the key structures of mycorrhizal symbioses, as at their level nutrient exchanges between the two
partners take place: AMF obtain carbon (up to 20% of plant photosynthates) and lipids from the host
plant and release mineral nutrients absorbed and translocated by ERM [15–17]. Two types of root
colonization have been detected: Arum-type and Paris-type [3]. In the Arum-type, the AM symbiont
spreads intercellularly between cortical root cells, forming terminal arbuscules on intracellular hyphal
branches [18]. In the Paris-type, the fungus grows directly from cell to cell within the cortex and
forms intracellular hyphal coils and intercalary arbuscules along the coils. However, most of the data
available on AMF derive from studies carried out on the Arum-type mycorrhizal symbioses, which are
widely distributed in natural and agricultural ecosystems. Beyond arbuscules, several AMF species
produce intraradical vesicles, which are spore-like storage structures containing lipids. After receiving
host carbon, the fungal symbiont is able to grow extraradically, colonize the surrounding soil, absorb
mineral nutrients to be transferred to the host plant, interact with rhizosphere and soil microorganisms,
colonize the roots of other plant living nearby (even belonging to species, genera and families different
from their host), and also translocate mineral nutrients from one host to another [19,20]. The life cycle is
closed by the formation of asexual spores by ERM, functional to the maintenance of a high mycorrhizal
potential of the soil and, consequently, of soil biological fertility (Figure 1).

3. AMF Functional Diversity: Colonization Ability and Efficiency

So far, 323 AMF species have been described (http://www.amf-phylogeny.com/amphylo_species.
html, accessed 3 December 2019), though only a few species have been investigated for their functional
diversity, in order to detect and select the best isolates to be used in agriculture. As a consequence,
most of the available commercial inocula are prepared with Rhizoglomus irregulare (syn. Rhizophagus
irregularis, formerly Glomus intraradices) and Funneliformis mosseae (formerly Glomus mosseae), that are
generalist symbionts, widespread all over the world in almost all soils and climatic zones [3]. In order
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to exploit the great inter- and intra-specific diversity, the general criteria to be applied when selecting
the most efficient AMF isolates are outlined here.

The two fundamental fungal characteristics to be taken into account are colonization ability, which
refers to fungal capacity of a rapid and extensive root colonization, and efficiency, represented by
fungal symbiotic performance, in terms of plant growth and nutrition.

3.1. Colonization Ability

A high root colonization ability is the essential prerequisite for any AMF isolate to be designed for
agricultural utilization, as it should be able to compete with highly competitive native AMF. AMF
colonization ability does not depend only on fungal genotype, but also on soil characteristics and
plant genotype, which may influence the different steps of mycorrhizal establishment, from spore
germination to appressorium formation and intraradical growth.

The first variable affecting the competitive ability of an AMF strain is represented by spore
dormancy, which may be relieved by storage at 5–10 ◦C for 5–6 weeks; nevertheless, it is extremely
important to know which AMF isolates produce dormant spores when selecting strains for inoculation.
As an example, different species of the genera Glomus, Funneliformis, and Acaulospora show spore
dormancy, while species such as Gigaspora gigantea and Gigaspora margarita are able to germinate as
early as one day after incubation [21]. It is unfortunate that only a few works have investigated this
critical element, which should be further studied not only at the species but, most importantly, at the
isolate level, as the producers of commercial inocula often reproduce their own strains.

A key fungal characteristic directly linked to AMF establishment and persistence in the field is
represented by spore germination, which is affected by different factors such as soil pH and nutrient
content, temperature, soil bacteria, and pesticides. Poor information is available on soil variables,
suggesting that the different AMF strains show optimum germination when cultivated in environments
with characteristics similar to those from which they were originally isolated. Thus, for example,
Acaulospora laevis, predominant in low pH soils, germinates well at pH 4–5, while Dentiscutata heterogama
(formerly Gigaspora heterogama), isolated from warm climates, germinates best at 34 ◦C [21], although
nine AMF, isolated and maintained in tropical areas, showed very different germination rates, ranging
from 8% to 78%, when cultured in the same environmental conditions [22]. It has long been known that
spore germination can be stimulated by soil microorganisms, from Actinobacteria to Pseudomonads,
although the most relevant role is played by bacteria living in intimate association with AMF, often
located on and within spore wall layers (mycorrhizospheric bacteria) [9]. Actually, many bacterial taxa
able to degrade biopolymers were recently detected in spore homogenates by culture-independent
methods, suggesting a possible chitinolytic activity on chitin of spore walls that could enhance spore
germination [23,24]. It is interesting to note that a recent molecular work reported the ability of six
AMF isolates to recruit different bacterial communities on their spores, belonging to Actinomycetales,
Bacillales, Burkholderiales, Pseudomonadales, and Rhizobiales, possibly exerting an activity on spore
germination [25]. As to pesticides, their effects on spore germination are different depending on the
target organisms. Several fungicides, like copper hydroxide and mancozeb, were able to inhibit spore
germination of F. mosseae in vivo, while flutolanil, azoxystrobin, fenpropimorph, and fenhexamid
inhibited germination of R. irregulare spores in vitro [26,27]. On the other hand, other fungicides, such
as fosetil Al, metalaxyl and different herbicides, seem to exert no activity on spore germination even if
the results obtained on the same substance in different investigations were often contradictory [28].

After germination, another important variable affecting the competitive ability of AMF towards
native fungi is represented by the ability of germlings to produce an extensive and interconnected
hyphal network, which is essential for increasing the chance of coming into contact with a host root.
Germling growth may be affected by the same environmental variables quoted above, but depends
largely on fungal genotype as it can range from 0.25 up to 104 and 544 mm of hyphal length per germling
in the same experimental in vitro conditions [11]. It is important to underline that the possibility
to contact host roots and to establish the symbiosis is greatly extended by the ability of germling
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hyphae to become interconnected through hyphal fusions (anastomoses): this capacity represents
a fundamental survival strategy for AMF germlings, which can plug into compatible extraradical
networks, gaining immediate access to plant-derived carbon [29]. Anastomosis formation is highly
related to the fungal genotype, as species belonging to the families of Glomeraceae and Acaulosporaceae
show a high frequency of hyphal fusions, while members of the family Gigasporaceae do not form
fusions interconnecting different hyphae [30,31]. The length, viability, and interconnectedness of
germling hyphae are affected by various pesticides: for example, fungicides containing benomyl and
fenhexamid, even at doses below the recommended field rate, inhibited hyphal growth of F. mosseae,
affected mycelial viability, and induced abnormal hyphal branching, while the herbicide glufosinate
ammonium decreased mycelial growth and viability, and also the anastomosis rate [32,33].

When AMF germlings come into contact with a host root, a differential hyphal morphogenesis is
induced, characterized by an increase in hyphal branching, functional to the production of appressoria
on the root surface [12,34]. Appressoria are swollen, multinucleate structures formed as early as 36 h
after the contact between germlings and roots [35], and represent the signs of fungal recognition of
the host plant. A prompt production of a large number of appressoria, which is requisite for a rapid
root colonization, characterizes the most infective AMF, as it makes them highly competitive with
native symbionts. Several works investigated this AMF functional trait: an old, but not obsolete work,
reported that the number of appressoria may range from 2.6 to 21.1 and from 4.6 to 10.7 per mm
of root length in field-grown strawberry and apple, respectively [36], while more recent works
found 10.2–80.5 appressoria per plant in parsley and aubergine inoculated in microcosms with
F. mosseae [37,38]. The same fungus showed variable results depending on host plants: for example,
it produced 3.6 appressoria per mm of root in Medicago truncatula, 9.7 in Prunus cerasifera, and 1.26
in Trifolium pratense [39–41]. On the other hand, G. margarita produced only 0.01 appressoria per mm
of root when inoculated on Allium cepa [42]. The dynamics of appressoria formation was monitored
in a time-course experiment, showing that the first structures were produced after 36, 48, and 60 h,
depending on the fungal genotype [35].

Appressoria produce intraradical hyphae able to establish the mycorrhizal symbiosis by rapidly
spreading in the apoplastic space between root cortical cells, although the levels of root colonization
greatly vary among AMF and plant genotypes. While such variability among different AMF species
have been assessed in countless experiments aimed at evaluating fungal performance in terms of
plant growth, the susceptibility of different plant genotypes to mycorrhizal colonization has been
investigated only in recent works, reporting large differences among 11 sunflower cultivars (range
8.6–78.7%) and 108 durum wheat varieties (range 10–44%) [43,44].

3.2. Efficiency

The efficiency of the different AM fungal isolates is generally interpreted as their ability to increase
plant growth and nutrient uptake, and evaluated by considering the relevant fungal variables such as
ERM development, extent, interconnectedness, viability, and rate of nutrient uptake and translocation,
that are directly linked to the occurrence of fungal transporter genes in the absorptive extraradical
hyphae [4].

ERM length density, assessed after destructive extraction from the soil, showed a large variability
among AMF species, ranging from 1.1–6.9 to 3–5 and 10 m/g soil in Acaulospora laevis, F. caledonius
(formerly Glomus caledonium), and Scutellospora calospora, respectively [11]. Recent works have reported
higher hyphal lengths (up to 22 m/g soil) produced by R. irregulare isolate BEG 87 [45]. It is worth
mentioning the ERM growth rate, which was 738–1067 and 3.1–3.8 mm/day in bidimensional and
tri-dimensional experimental systems, respectively [20,46].

ERM structure and interconnectedness have been investigated by nondestructive tests, which
provided both qualitative [47,48] and quantitative data. For example, ERM produced by members
of the family Glomeraceae, widely distributed in agricultural soils, is highly interconnected by
means of anastomoses between contacting hyphae (67–77% in F. mosseae), reaching the value of
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100–410 anastomoses per gram of soil [20,31,49]. On the contrary, hyphae of members of the families
Gigasporaceae, Ambisporaceae, and Paraglomeraceae are not able to fuse after contact, in vivo [50].
Nevertheless, within the Glomeraceae family, self-incompatible interactions between contacting hyphae
may occur, with frequencies ranging from 5% to 32% [29,50,51]. Further extensive studies addressed
such a clue, revealing major differences among three glomalean AMF: in particular, when grown
in symbiosis with five different plant species, F. mosseae and R. irregulare ERM showed anastomosis
frequency of 26–48% and 36–54%, respectively, while F. coronatus never exceeded 7.7% [52]; length and
density affect AMF symbiotic performance, positively correlating with plant growth responses and
nutrient levels [53]. Specifically, AMF isolates showing a high anastomosing ability are able to tolerate
soil disturbance, such as tillage, by producing large mycorrhizal networks capable of re-establish
interconnections after disruption [54–57]. ERM length and structure may be affected by pesticides,
as reported by a recent work performed using a whole-plant experimental system, i.e., in F. mosseae,
ERM length and density decreased in the presence of the herbicides dicamba and glufosinolate and
the fungicides benomyl and fenhexamid, while ERM length and density increased in the presence
of two mycorrhizospheric bacteria, Ensifer meliloti (formerly Sinorhizobium meliloti) and Enterobacter
ludwigii [58]. Such recent novel data stress the need for further studies to evaluate the impact of
agrochemicals and biocontrol agents on ERM structure and activity in a large number of AMF taxa in
order to detect the most resilient isolates able to maintain a high mycorrhizal inoculum potential in soil.

Beyond the mentioned phenotypic parameters, viability, which is the most important factor
affecting ERM functionality in soil, has been poorly investigated. A few studies reported that metabolic
activity occurred in 63–96%, 96–100%, and 100% of extraradical hyphae in R. irregulare, F. mosseae,
and Rhizoglomus clarum (formerly Glomus clarum), respectively [46,59,60]. A recent study posed the
interesting question of whether ERM could survive and maintain colonization ability after plant
harvest, thus representing a source of inoculum for the successive crops. The authors, utilizing an
in vivo whole-plant experimental system and two worldwide distributed glomalean AMF, F. mosseae
and R. irregulare, revealed that ERM viability and functionality are uncoupled from the host plant
lifespan, as, after shoot removal, its growth from detached roots was comparable with that from intact
plants and continuous for at least 150 days [61]. Accordingly, ERM represents a long-term survival
structure able to maintain mycorrhizal potential and biological fertility in agricultural soils.

AMF efficiency is highly correlated with the rate of P translocation to the host plant: alas, only scanty
information is available, showing that in F. mosseae, P fluxes in hyphae were 3.4× 10−8 mol cm−2 s−1 [62].
However, as the transfer of nutrients flowing in the extraradical hyphae can occur exclusively through
appressoria, which are the unique structures connecting soil-based to root-based mycelium, a high
number of appressoria produced on the root surface is a key factor affecting not only AMF colonization
ability but also their efficiency.

Studies on the occurrence of nutrient transporter genes in AMF extraradical hyphae have mostly
been performed in vitro, using transgenic root organ cultures and few species, i.e., R. irregulare
and R. intraradices. The results showed that a number of nutrient transporter genes (ammonium,
phosphorus, zinc) are differentially regulated, depending on the availability of various mineral or
organic compounds [4,63]. However, as transformed roots show an altered hormonal balance and
sugar acquisition, possibly affecting the physiology of the mycorrhizal symbiosis, diverse whole-plant
experimental systems were devised, encompassing other AMF species, F. mosseae, F. coronatus, and
G. margarita [64]. Further extensive investigations focusing on nutrient transporters gene expression
in extraradical mycorrhizal mycelium produced by a large number of AMF isolates are needed in
order to achieve a deeper knowledge of differences in AMF efficiency and to select the best performing
symbionts to be used as inocula, if also meeting the other quality characteristics concerning colonization
ability and efficiency.
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4. AMF Efficiency in the Enhancement of Plant Health-Promoting Compounds

In the light of the new findings on plant secondary metabolism being modulated by AMF,
the concept of efficiency should be expanded to take into consideration the production of health-
promoting compounds, a theme of the highest concern not only to scientists but also to consumers and
producers as phytochemicals may reduce oxidative damages, prevent chronic and heart diseases, and
decrease the risk of mortality from cancer [65–67]. The levels of such compounds, mainly represented
by carotenoids, glucosinolates, polyphenols, including flavonoids, isoflavones and anthocyanins,
are affected by different variables such as plant genotype, agronomic techniques, soil characteristics,
and also by mycorrhizal symbioses [6].

For example, sweet basil (Ocimum basilicum) inoculated with Glomus spp. increased the production
of rosmarinic and caffeic acids, and of essential oils [68,69], while R. intraradices affected the gene
expression of key enzymes involved in basil rosmarinic acid biosynthetic pathway [70]. Echinacea
purpurea inoculated with R. irregulare and G. margarita showed higher concentrations of caffeic acid
derivatives, alkylamides, and terpenes [71], while R. irregulare inoculated on Stevia rebaudiana enhanced
its content of the health-promoting compound steviol glycoside [72]. Interestingly, diverse AMF isolates
differentially affected the production of specific phytochemicals; for example, the levels of thymol
derivatives in the roots of Inula ensifolia were more enhanced by R. clarus than by R. irregulare [73], while
in basil leaves the production of camphor and alfa-terpineol were enhanced by Gigaspora rosea but
not by G. margarita, which decreased the total content of essential oils, in particular that of eucalyptol,
linalool, and eugenol [68].

Despite the good results obtained by utilizing medicinal plants and herbs, only a few food
crops have been investigated for their levels of health-promoting compounds upon mycorrhizal
inoculation, i.e., lettuce, onion, tomato, maize, artichoke, strawberry, pepper, and sweet potato [7].
Most experimental works utilized either AMF inocula composed of a mixture of species, obtained from
commercial producers or single species inocula, often represented by R. irregulare or F. mosseae. Also,
molecular studies focused on the assessment of the levels of transcripts encoding the enzymes of the
pathways relevant to the production of health-promoting secondary metabolites mainly utilized the
same two species [7]. This has impaired the evaluation of the efficiency of different AMF, aimed at
selecting the best performing symbionts in the production of beneficial phytochemicals. Accordingly,
in the years to come, in-depth investigations should fully exploit the wide physiological and genetic
diversity of AMF, testing the highest possible range of diverse species, isolates, and lineages within
isolates. In addition, transcriptomic studies would allow the identification of AMF strains differentially
expressing genes relevant to the biosynthesis of nutraceutical compounds in food plants.

5. Mycorrhizospheric Bacteria and Their Functional Significance

It has long been known that AMF colonization ability and efficiency may be mediated by
a third partner of the symbiosis, the diverse and abundant bacterial communities living in the
mycorrhizosphere, i.e., associated with mycorrhizal roots, spores, sporocarps, and extraradical
hyphae [74]. Later, by ultrastructural studies, bacteria were detected in spore wall layers, within the
peridial hyphae surrounding spores [75,76], and inside the cytoplasm [77–80]. Culture-dependent
approaches allowed the isolation of many different bacterial taxa from the mycorrhizosphere of
Glomus versiforme, R. clarus, G. margarita, F. mosseae, and R. irregulare [81–84]. A recent work isolated
from Rhizoglomus irregulare (formerly R. intraradices) spores as many as 374 bacterial strains [85].
Culture-independent methods provided an in-depth description of the different bacterial taxa associated
with spores: for example, PCR denaturing gradient gel electrophoresis (PCR-DGGE) identified
the bacterial communities associated with F. geosporus, Septoglomus constrictum, and G. margarita
spores [23,24], and those strongly associated with the spores of six AMF isolates, three belonging to
F. mosseae, one to F. coronatus, and two to R. irregulare—the 48 relevant sequences were affiliated with
Actinomycetales, Bacillales, Burkholderiales, Pseudomonadales, Rhizobiales, and Mollicutes-related
endobacteria [25].
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The mycorrhizospheric microbiota showed different functional activities, ranging from the role of
“mycorrhiza helper” (MH) [86] to that of “plant growth promoters” (PGP) (Figure 1). MH bacteria may
increase spore germination and mycorrhizal symbiosis establishment: for example, Streptomyces spp.,
Pseudomonas sp., and Corynebacterium sp. improved the germination of F. mosseae, G. versiforme, and
G. margarita spores [81,87–89]. The enhancement of spore germination was ascribed to Actinobacteria,
a group of bacteria frequently associated with AMF spores, able to hydrolyze chitin, the main
component of spore walls [23,25,76,90]. Other MH bacteria, such as Klebsiella pneumoniae, Trichoderma
sp., and Paenibacillus validus, increased germlings hyphal growth [91–93], while one bacterial strain
belonging to Oxalobacteriaceae enhanced not only spore germination and germling growth but also
root colonization [94]. In addition, the development of AMF extraradical mycelium (ERM) may be
promoted by strains of Paenibacillus rhizosphaerae, Azospirillum sp., Rhizobium etli, Pseudomonas spp.,
Burkolderia cepacia, and E. meliloti [45,95–98] (Figure 1).

PGP bacteria show multifunctional activities, encompassing nitrogen fixation, P solubilization
and mineralization, the production of indole acetic acid (IAA), siderophores, and antibiotics while
supplying fundamental nutrients and growth factors [8,9]. Such activities represent key characteristics
to be taken into account when selecting the best AMF and bacterial combinations for the production of
inocula for agricultural use. For example, as P is rapidly immobilized in the soil, forming insoluble
compounds with aluminium/iron and with calcium in acid and alkaline soil and thus becoming
unavailable to plants, P-solubilizing bacteria may work in synergy with AMF to increase P availability
and plant P uptake. Indeed, P-mobilizing bacteria, such as Streptomyces spp., Leifsonia sp., Bacillus
pumilus, Lisinobacillus fusiformis, and E. meliloti, isolated from AMF spores of R. irregulare, showed
synergistic action with AMF, promoting the mineralization of soil phytate and facilitating P uptake
by mycorrhizal plants [45,99]. Similarly, the isolation from the mycorrhizosphere of bacterial strains
possessing the nifH gene amplicon suggested a possible role in plant acquisition of nitrogen [85]. On the
other hand, some PGP bacteria are able to produce IAA, a phytohormone of the auxin class, which
plays a key role in the regulation of plant growth, increasing plant cell division and root formation,
thus affecting water and nutrient uptake [100–102]. Accordingly, IAA producing bacteria isolated from
R. irregulare and F. mosseae, such as E. meliloti and Paenibacillus favisporus, enhanced the growth of AMF
extraradical hyphae, the fungal structure fundamental for absorbing and translocating P from the soil to
plant roots [45,95]. An important role in the promotion of plant growth is played by mycorrhizospheric
bacteria able to protect plants against soil-borne pathogens, either by directly producing antibiotics
or indirectly producing siderophores, high-affinity iron-chelating compounds which mediate iron
acquisition by pathogenic microorganisms [85,103–105]. Moreover, the facilitation of plant iron
acquisition by siderophores-producing bacteria represents an additional benefit, as iron is an essential
element in key biochemical processes like photosynthesis and respiration [106,107]. Interestingly,
many of the bacteria isolated from AMF spores showed multiple PGP activities, i.e., 17 actinobacterial
strains were able to produce siderophores and IAA to mineralize phytate and solubilize inorganic
phosphate, and ten putative N-fixers to produce siderophore and solubilize P [85]. A recent work
confirmed such data, reporting the occurrence of diverse bacterial functional taxa in a commercial
AMF inoculum: 14 isolates showed the best combination of PGP traits, such as the production of IAA
and siderophores, while 6 of them were also able to solubilize P, i.e., Bacillus megaterium, Streptomyces
sp., and Enterobacter spp. [108]. These strains, both as single- and multi-strain inocula, deserve further
in-depth studies in order to evaluate their efficiency as biofertilizers and biostimulants, able to boost
plant growth, nutrition and health in sustainable food production systems (Figure 1). New remarkable
findings showed that several members of the mycorrhizospheric microbiota may establish a more
intimate relationship with their host plants as root endophytes [109,110]: considering that they can
reach 105–107 CFU per g of root [111,112], their possible beneficial effects should be further investigated
in the years to come.
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6. Conclusions and Perspectives for Future Studies

The multiple beneficial activities of AMF and their associated bacteria discussed so far highlight
the complex networks of interactions taking place in the mycorrhizosphere, functional to plant
growth, nutrition, and health. The tripartite association among host plants, fungal symbionts and
their associated bacteria shows beneficial emerging properties that could be efficiently exploited in
sustainable food production. Although much is known on a very small number of AMF species, often
studied singly in sterile conditions, very little is known about the high physiological and genetic inter-
and intra-specific diversity of AMF and their associated microbiota. Further in-depth studies should be
performed on different AMF species and isolates, and on their associated bacteria, both singly and in
various combinations, in order to evaluate their colonization ability and efficiency when inoculated with
a number of plant hosts. The studies carried out in microcosms should be followed by investigations in
the field to assess the ability of the selected AMF and bacteria to compete with native microorganisms
and to maintain their beneficial activities. Once detected as the best performing inocula, they could be
differentiated by assessing their resilience against diverse environmental conditions, from soil types to
drought, salt, biotic stresses, and pesticides. Transcriptomic studies could reveal the expression levels
of nutrient transporter genes in fungal absorbing hyphae in the presence of selected efficient bacterial
strains, possibly leading to the detection of the best synergistic combinations of AMF and associated
bacterial communities, enhancing nutrient availability and plant performance. At the same time,
transcriptomics could increase knowledge on the differential expression of genes encoding enzymes
relevant to the biosynthesis of nutraceutical compounds in food plants. Eventually, newly designed
multifunctional microbial consortia could be commercially reproduced and utilized as biofertilizers
and biostimulants in sustainable and innovative production systems.
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