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Abstract: A morphologically-stable polymer/fullerene heterojunction has been prepared by
minimizing the intermixing between polymer and fullerene via sequential deposition (SqD) of
a polymer and a fullerene solution. A low crystalline conjugated polymer of PCPDTBT (poly[2,6-(4,4-
bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)]) has been
utilized for the polymer layer and PC71BM (phenyl-C71-butyric-acid-methyl ester) for the fullerene
layer, respectively. Firstly, a nanostructured PCPDTBT bottom layer was developed by utilizing
various additives to increase the surface area of the polymer film. The PC71BM solution was prepared
by dissolving it in the 1,2-dichloroethane (DCE), exhibiting a lower vapor pressure and slower
diffusion into the polymer layer. The deposition of the PC71BM solution on the nanostructured
PCPDTBT layer forms an inter-digitated bulk heterojunction (ID-BHJ) with minimized intermixing.
The organic photovoltaic (OPV) device utilizing the ID-BHJ photoactive layer exhibits a highly
reproducible solar cell performance. In spite of restricted intermixing between the PC71BM and the
PCPDTBT, the efficiency of ID-BHJ OPVs (3.36%) is comparable to that of OPVs (3.87%) prepared
by the conventional method (deposition of a blended solution of polymer:fullerene). The thermal
stability of the ID-BHJ is superior to the bulk heterojunction (BHJ) prepared by the conventional
method. The ID-BHJ OPV maintains 70% of its initial efficiency after thermal stress application for
twelve days at 80 ◦C, whereas the conventional BHJ OPV maintains only 40% of its initial efficiency.

Keywords: organic solar cell; sequential deposition; bulk heterojunction; stability

1. Introduction

Recently, organic photovoltaics (OPVs) have exceeded 10% power conversion efficiency (PCE)
by incorporating the finely-controlled bulk heterojunction (BHJ) photoactive layer morphology [1–3].
Due to the short exciton diffusion length of organic semiconductors, a fine and bi-continuous BHJ
morphology is important for a high exciton dissociation efficiency and charge transport efficiency [4].
The most widely-utilized method to construct the BHJ morphology is the blended solution deposition
(BSD) (Figure 1a), whereby the polymer and fullerene are dissolved in the same solvent and deposited
to produce a BHJ layer. The optimum BHJ morphology can be developed by careful controlling
the extent of the demixing between polymer and fullerene domains. Unfortunately, the optimized
morphology is usually a kinetically-frozen state in which thermodynamic equilibrium has not been
reached. This implies that the demixing would proceed further when the thermal stress is applied to
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the optimized BHJ morphology, resulting in poor thermal stability of the BHJ morphology, especially
for the low crystalline polymers [5,6].

One way to overcome this limitation is forming the inter-digitated BHJ (ID-BHJ) morphology
via the sequential deposition (SqD) of polymer and fullerene (Figure 1b) [7–11]. For constructing
thermally-stable ID-BHJ by minimizing the intermixed phase of polymer and fullerene, a polymer
layer should be deposited first on a substrate to have an ordered structure without disturbance of the
bulky fullerene, and a fullerene layer should be deposited on the polymer layer by minimizing the
intermixing. The small heterojunction area due to the minimized intermixing should be addressed.

Another point to be considered is securing the reproducibility of OPV prepared by the SqD
process (SqD-OPV). Due to the limited heterojunction area of the photo-active layer fabricated by
the SqD method, the performance of the SqD-OPV critically depends on the proper swelling of the
fullerene into the polymer layer. The swelling process is sensitive to the fabrication conditions, such
as the temperature and the kinds of solvents. Currently, highly volatile dichloromethane (DCM) is
mainly utilized for the PCBM solvent in the SqD method, which makes SqD-OPV sensitive to the
fabrication conditions.
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Figure 1. Schematic images of the bulk heterojunction formation methods: (a) blended solution
deposition (BSD) (b) sequential solution deposition (SqD); and (c) chemical structures of poly[2,6-(4,4-
bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT)
and phenyl-C71-butyric-acid-methyl ester (PC71BM). ID-BHJ, inter-digitated bulk heterojunction.

In this work, we have addressed the above requirements by fabricating a nanostructured
poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)]
(PCPDTBT) (Figure 1c) bottom layer with a proper additive and utilizing 1,2-dichloroethane (DCE),
exhibiting a lower vapor pressure and slower diffusion into the polymer layer, as the solvent for
phenyl-C71-butyric-acid-methyl ester (PC71BM). We selected PCPDTBT because it has low crystallinity
due to its bulk side chain, and OPV based on PCPDTBT exhibits poor stability. The deposition of
PC71BM dissolved in the DCE onto the nanostructured PCPDTBT polymer bottom layer formed
ID-BHJ with minimized intermixing. When the ID-BHJ was applied as a photoactive layer of the OPV,
it exhibited superior morphological stability compared to the conventional BHJ.



Polymers 2017, 9, 456 3 of 13

2. Experimental Section

2.1. Device Fabrication

ID-BHJ devices were fabricated using the SqD method [8,9]. Pre-patterned 20 Ω/sq resistive
indium tin oxide (ITO) glass substrates were ultrasonically washed in ethyl alcohol, acetone
and isopropyl alcohol (10 min each). After drying in a convection oven (80 ◦C), all cells were
exposed to UV-ozone for 20 min. PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with
poly(styrene sulfonate)) (AI4083) solution was vortexed with methanol at a 1:1 ratio. The solution
was deposited onto the substrates by spin coating and dried in a vacuum oven at 110 ◦C.
The final film thickness was approximately 30–35 nm. Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta
[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) was used for the polymer bottom
layer. The molecular weight of PCPDTBT was 50 kDa with a polydispersity of 2.5. PCPDTBT (8 mg/mL;
1-material) solution was stirred in chlorobenzene (CB) overnight on a 60 ◦C hotplate and filtered with
a 0.2-µm polyvinylidene fluoride (PVDF) syringe filter (Whatman, Pittsburgh, PA, USA). The polymer
solution was spin cast at 2200 rpm on top of PEDOT:PSS. The polymer solutions with ordering
agents (OA) contained 5/10/20 vol % of 1-chloronaphthalene (CN) (Sigma Aldrich, Seoul, Korea)
or 1,8-diiodooctane (DIO) (TCI, Tokyo, Japan). The films were dried for 15 min in a vacuum oven
at 110 ◦C and dried overnight in a vacuum chamber to fully remove remnant OA. The thickness for
all PCPDTBT films was 30–35 nm. PC71BM (EM Index, Korea) was dissolved in dichloromethane
(DCM, 5 mg/mL, Daejung, Korea) or anhydrous 1,2-dichloroethane (DCE, 10 mg/mL, Sigma Aldrich,
USA). One vol % of diphenyl ether (DPE) (Sigma Aldrich, USA) was added to improve the coating
quality of the PC71BM layer. Both solutions were spin coated onto a PCPDTBT layer at a speed of
1500 rpm. After deposition, the films were dried in a vacuum oven at 110 ◦C for 15 min. For the
conventional BHJ devices, PCPDTBT and PC71BM (1:3) were blended in CB:DIO (97:3 (v/v)) with a
32-mg/mL concentration and filtered using a 0.2-µm PVDF filter. The blended solution was spin coated
at 2500 rpm and dried. For the electron transporting layer, 0.1 wt % di(2-pyridyl)ketone-stabilized TiO2

nanoparticles (TiO2 NP) were dispersed in n-butanol (Daejung, Seoul, Korea), spin cast at 1500 rpm
and then dried on a 70 ◦C hotplate [12]. Finally, a 100-nm Al electrode was thermally evaporated.
No further post treatment was performed on either type of device. The area of active layer was 0.12 cm2

for all of the devices.

2.2. Film Characterization

The topography and thickness of the films were scanned using atomic force microscopy (AFM)
(AFM5100N, HITACHI, Tokyo, Japan) in tapping mode. UV-visible absorption spectra were measured
using a UV-2450 spectrometer (SHIMADZU, Tokyo, Japan). The solvent swelling experiment was
performed using an ellipsometry technique (SE MG-1000, Nano-View Co., Seoul, Korea). The polymer
film was spin coated directly onto UV-ozone-treated clean Si wafers. A thicker polymer film (80 nm)
was used to prevent film dewetting and to improve the measurement accuracy. After film preparation,
6 mL of the fullerene solvent were poured into the solvent chamber. DCM and DCE solvents were
each tested. Then, the prepared polymer film was placed on the stage inside the solvent chamber
to allow for solvent-uptake for 60 min at around 25 ◦C. Two ellipsometric angles (Ψ and δ) were
obtained by in situ measurements, and the Lorentz oscillator model was adopted to fit the raw data.
For grazing-incidence wide-angle X-ray scattering (GIWAXS, Pohang, Korea) characterization of the
polymer films, well-dissolved PCPDTBT (10 mg/mL) was spin cast onto a PEDOT:PSS-coated silicon
wafer and completely dried for more than 24 h in a vacuum oven at 110 ◦C. Afterwards, they were
characterized by a monochromated X-ray beam (wavelength, λ = 1.12 nm) at PLS-II (Beamline 9A
U-SAXS) at Pohang Accelerator Laboratory (PAL) in Korea. The two-dimensional X-ray scattering
patterns were recorded with a 2D CCD detector (Rayonix SX165, Pohang, Korea), and the X-ray
irradiation time was 5–10 s. The sample-to-detector distance was approximately 225 mm. The incidence
angle of the X-ray beam was set to 0.12◦.
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Photoluminescence (PL) experiments were conducted using Fluorolog 3–11 (Horiba Jobinyvon)
with a high pass filter of 800 nm. Films were excited at 700 nm and an incident beam angle of 55◦. To
solely investigate the exciton dissociation effect, the films were prepared on top of UV-ozone-treated
bare glass without any charge transporting layers followed by encapsulation with a glass cap.

2.3. Device Characterization

The current density–voltage (J–V) was measured under 1-Sun illumination (McScience K201
LAB50) using a Keithley 2400 source meter. An incident photon-to-current efficiency (IPCE)
measurement was performed at short-circuit conditions (McScience K3100 EQX). For the hole mobility
measurement, an ITO/PEDOT:PSS/PCPDTBT (80 nm)/Au (60 nm) hole-only device was prepared,
and the field independent space-charge-limited current (SCLC) model was employed to calculate
the vertical hole mobility of the polymer film [13]. A dielectric constant of εr = 2.7 was used [14].
J–V curves were measured in the dark at room temperature.

3. Results and Discussion

Usually, for the formation of the ID-BHJ with a large heterojunction area, the PC71BM must be
intermixed with the polymer under-layer by swelling the PC71BM solution into the polymer layer
without dissolving it [8,15,16]. Organic solvents with a reasonable solubility for PC71BM have been
selected, and their relevant properties are listed in Table 1. The solubility of PCPDTBT in various
solvents was determined by spin coating a solvent onto the PCPDTBT film. T100kPa represents the
temperature at which the solvent vapor pressure is 100 kPa. Even though chlorobenzene, chloroform,
1,2-dichlorobenzene and toluene have a good PC71BM solubility, they are not adequate to be used
as the PC71BM solvent, for those solvents have good solubility for PCPDTBT (Figure S1 in the
Supplementary Information). In contrast, DCE, DCM and diiodomethane (DIM) exhibited high
orthogonality to the bottom layer because no UV absorption change was observed after washing with
these solvents. However, PC71BM dissolved in DIM could not be coated because of the high surface
tension (50.8 mN/m at 20 ◦C) and high T100kPa [17]. Therefore, the solvent swelling tests for PCPDTBT
were performed for DCE and DCM.

Table 1. Possible PC71BM solvents for the fabrication of the polymer/fullerene heterojunction.

Solvent PC71BM Solubility
(mg/mL) [18]

PCPDTBT
Solubility T100kPa

a (◦C) [19]

Chlorobenzene 60.6 Good 131.3
Chloroform 61.1 Good 60.8
1,2-Dichlorobenzene 203.0 Good 180.0
1,2-Dichloroethane b (anhydrous) 15.4 Poor 83.1
Dichloromethane 4.479 Poor 39.3
Diiodomethane 356.8 Poor 181.6
Toluene 27.4 Good 110.1

a T100kPa is the temperature at which the solvent vapor pressure is 100 kPa. b See the Supplementary Information
(Figure S2) for the procedure to determine the PC71BM solubility.

PCPDTBT swelling by the corresponding solvent was monitored using a spectral ellipsometry
apparatus (Figure 2a). Spectral ellipsometry is an adequate tool to monitor the solvent uptake
phenomenon of the film. For the solvent swelling test, the thickness of the polymer film was monitored
as a function of the swelling time. The swelling of PCPDTBT by the solvents was saturated within
30 min. The swollen thickness of the polymer films was determined from the plateau at 25 ◦C;
PCPDTBT swelled more in DCM than in DCE (Figure 2b). It is expected that the PCPDTBT/PC71BM
heterojunction area prepared by the DCE would be smaller than that by DCE because the PC71BM
inter-diffuses into the amorphous swollen part of the polymer layer [8].

It should be noticed that diphenyl ether (DPE) was used as a processing additive to enhance the
solubility and prevent the PC71BM aggregation. Those kinds of additives can reduce the fullerene
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aggregation size in solution and help form a conformal layer when deposited [9,16]. The atomic
force microscopy (AFM) image of the PC71BM film topography on top of PCPDTBT (Figure S3 in
the Supplementary Information) reveals that the addition of 1 vol % DPE can effectively reduce the
PC71BM domain size and produce uniform films.

The performances of solar cells based on the ID-BHJ prepared by different PC71BM solvents
were investigated. Table 2 and Figure 3 show the current density–voltage (J–V) characteristics and
the incident photon-to-current efficiency (IPCE) spectra for the devices. For convenience, ID-BHJs
prepared with PC71BM in DCE and DCM solutions will be denoted as ID-BHJ(E) and ID-BHJ(M),
respectively. The photo current density (JSC) of ID-BHJ(M) was 10% larger than that of ID-BHJ(E).
Based on the external quantum efficiency (EQE) spectrum, the JSC difference was mainly ascribed to
the different EQE values at the wavelength between 650 and 800 nm, which corresponds to the main
absorption range of PCPDTBT. Since the DCM has a better polymer swelling ability, it can penetrate
deeper into the PCPDTBT layer to create a larger polymer-fullerene heterojunction than DCE; thus,
more excitons will be dissociated, and more charge will be collected.
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Table 2. Photovoltaic parameters of organic photovoltaics (OPVs) with ID-BHJs prepared using
different solvents for PC71BM.

Type Voc (V) Jsc (mA/cm2) FF (%) PCE (%)

ID-BHJ(M) 0.63 ± 0.01 6.88 ± 0.24 43.7 ± 2.20 1.90 ± 0.10
ID-BHJ(E) 0.64 ± 0.00 6.25 ± 0.02 50.2 ± 0.91 2.00 ± 0.03

To demonstrate the relation between the PC71BM penetration depth and photocurrent generation,
we fabricated an inverted configuration device and compared the JSC values with that of a conventional
device [20].

To investigate the extent of the inter-diffusion of the PC71BM into the PCPDTBT bottom layer, the
inverted-type device with the structure of ITO/ZnO/PCPDTBT/PC71BM/MoO3/Ag was fabricated,
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and its JSC values were compared with the conventional-type device (Figure 4). The inverted-type
device would not operate properly and would exhibit a low JSC value if there were no intermixing
between PCPDTBT and PC71BM; because holes (or electrons) in the PCPDTBT (or PC71BM) layer
should travel through the PC71BM (or PCPDTBT) layer to be collected at the Ag (or ITO) electrode,
which is not the proper direction for hole (or electron) transporting. However, when there is significant
intermixing of PCPDTBT and PCBM, the inverted bilayer OPV would show a similar JSC as the
conventional-type device. The difference in JSC between the conventional-type and inverted-type
device (∆JSC) for the ID-BHJ(M) is much smaller than that of ID-BHJ(E). This implies that DCM assisted
PC71BM in penetrating into the bottom polymer layer and formed BHJ throughout the film; however,
the PC71BM dissolved in DCE could not penetrate far into the PCPDTBT layer.
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DCM seems more suitable solvent than DCE for the formation of ID-BHJ. However, considering
that the DCM is highly volatile, the formation of the ID-BHJ(M) would be influenced by the processing
temperature significantly. Furthermore, obtaining a uniform PC71BM top layer would be difficult.
The large standard deviation (SD) values of the ID-BHJ(M) (Table 2) indicate the low reproducibility
and inhomogeneous film. We fabricated many ID-BHJ(M) films in different surrounding atmospheres
and found that the film-forming process was highly sensitive to the temperature. A DCM-casted
PC71BM did not form homogeneous layer on top of the PCPDTBT bottom layer at below room
temperature, while DCE always produced a uniform PC71BM layer, regardless of the temperature
(Figure S4 in the Supplementary Information). The SD value of the PCE of the ID-BHJ(E) was obtained
as±1.5% whereas that of ID-BHJ(M) was±5.0%, which indicates that the performance of the ID-BHJ(E)
is more reproducible. In addition, OPVs were fabricated at different temperatures to investigate the
temperature dependence of solar cell performance. The solar performance of the ID-BHJ(E) was
less dependent on the fabrication temperature compared to that of ID-BHJ(M) (Figure S4e in the
Supplementary Information). The SD value of PCE of ID-BHJ(M) was significantly increased to±15.8%
when the processing temperature was increased to 60 ◦C. In contrast, the SD value of the PCE of
ID-BHJ(E) was only ±1.1% when it was fabricated at the same temperature. The value was similar
to the value of the ID-BHJ(E) fabricated at room temperature. This clearly showed that the solar cell
performance of the DCE based OPV was less affected by the various fabrication conditions, which is
an essential requirement for the commercialization of OPV.

Although DCE provided a high film quality and reproducibility, the small heterojunction area
due to the poor swelling property of DCE should be addressed. We built a nano-morphology on the
surface of PCPDTBT and deposited PC71BM by taking advantage of the low swelling property of
DCE to minimize the intermixing and preserve the nanostructure of the PCPDTBT. There are several
ways to induce the nano-morphology on the polymer layer, including nano-imprinting, lithography
and self-assembly [21–23]. We used an ordering agent (OA) to evolve the nanostructured polymer
surface, because a high boiling point OA reduces the solvent evaporation time and enhances the



Polymers 2017, 9, 456 7 of 13

ordering of the polymer chains [9,24]. Two OAs with different polymer solubilities, polymer-soluble
1-chloronaphthalene (CN) and polymer-insoluble 1,8-diiodooctane (DIO), were used to study the
nano-morphology evolution of PCPDTBT. Films that were prepared by PCPDTBT solution without OA,
with CN and with DIO were denoted as PCPDTBT(N), PCPDTBT(C) and PCPDTBT(D), respectively.
The three different volumes (5/10/20 vol % OA in chlorobenzene (CB)) were denoted as C5, C10, C20,
D5, D10 and D20 for simplicity.

Figure 5 shows the AFM-scanned polymer topography and height profile. The addition of
OA roughened the polymer surface drastically by increasing the root-mean-square roughness value
from 1.16 nm–4.33 nm for PCPDTBT (C5) and to 10.8 nm for PCPDTBT (D5), which resulted in
increased surface area. We defined the S value to quantitatively compare the increased surface area;
the S value is a normalized surface area increment obtained from the AFM measurement. Figure 6a
displays the S value versus OA volume. OA-roughened films had 10–20-times larger S values than
the PCPDTBT(N) film. OA not only roughened the polymer surface, but it also produced a unique
nano-morphology. PCPDTBT(C) films have a nano-fibril-like morphology, while PCPDTBT(D) films
have a rough morphology. Interestingly, a high-resolution image (Figure S5 in the Supplementary
Information) of the CN-driven morphology reveals that a fibril is composed of several circular polymer
domains in a row. The exact mechanism for domain formation is unknown, but Liu et al. proposed that
some high boiling point additives can promote polymer aggregation in solution and form fibril-like
aggregates while spin coating [25]. It is suggested that the different chemical structure of the OAs is the
major cause of the different nano structures on the polymer surface. The CN has a benzene ring-based
structure, which is similar to the chlorobenzene host solvent and polymer main chain, while DIO has
no conjugated rings. Therefore, it is believed that the CN-containing solvent would have stronger π–π
interactions with the polymer main chain than the DIO-containing solvent did, which provided the
formation of the distinct fibril array morphology.
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Figure 5. Atomic force microscopy images of the ordering agent (OA)-induced polymer surface
morphology and height profile. PCPDTBT (a) without OA; (b) with 5 vol % 1-chloronaphthalene (CN);
(c) with 10 vol % CN; (d) with 20 vol % CN; (e) with 5 vol % 1,8-diiodooctane (DIO); (f) with 10 vol %
DIO; and (g) with 20 vol % DIO.
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To investigate the crystalline structure of the nanostructured polymer films, a grazing-incidence
wide-angle X-ray scattering (GIWAXS) study was performed using the PCPDTBT films on a
PEDOT:PSS-coated silicon wafer. Figure 6d,e shows the out-of-plane (OOP) and in-plane (IP) line-cut
profiles of PCPDTBT(N), PCPDTBT(C5) and PCPDTBT(D5) (the corresponding diffraction patterns
and profiles of the other PCPDTBT films with different OA volumes can be found in Figures S6 and S7
in the Supplementary Information). Table 3 summarizes the diffraction peak analysis results for each
film. The peak position values (q) and full-width at half-maximum values (∆q) are consistent with
other studies [17,25]. In the OOP X-ray profiles, the PCPDTBT(N) film shows a peak at qz ≈ 1.57 Å−1,
corresponding to the π–π stacking reflection of (010). However, in both PCPDTBT(C) and PCPDTBT(D)
films, the (010) intensity becomes much weaker, implying that no π–π stacking exists along the direction
normal to the substrate. Instead, the ∆q value for the (100) peak (inter-chain separation within lamellae)
is reduced in the OOP profiles. The reduction of ∆q is related to the increase of the polymer domain
size and crystallinity. In addition, the coherence length (ξ) increased from 28.0 nm–51.0 nm for C5
and to 61.3 nm for D5, implying a larger size of the ordered domains. In the IP line-cut profile, the
intensity of the (010) plane became stronger after OA addition, and the coherence length increased
in the IP direction. Moreover, the peak positions slightly shifted to higher values (qxy ≈ 1.62 Å−1),
corresponding to a decrease in the π–π stacking spacing to ~3.89 Å for both PCPDTBT(C5) and
PCPDTBT(D5). The (001) reflection in the IP profile refers to the spacing distances along the polymer
backbone direction and shows similar changes as for (010). Overall, the GIWAXS profile reveals
that both CN and DIO incorporation into the PCPDTBT solution significantly enhanced the polymer
ordering in the edge-on direction after spin coating, while the PCPDTBT(N) film has mixed face-on
and edge-on orientations (Figure 6f).

Polymers 2017, 9, 456 8 of 13 

 

To investigate the crystalline structure of the nanostructured polymer films, a grazing-incidence 
wide-angle X-ray scattering (GIWAXS) study was performed using the PCPDTBT films on a 
PEDOT:PSS-coated silicon wafer. Figure 6d,e shows the out-of-plane (OOP) and in-plane (IP)  
line-cut profiles of PCPDTBT(N), PCPDTBT(C5) and PCPDTBT(D5) (the corresponding diffraction 
patterns and profiles of the other PCPDTBT films with different OA volumes can be found in  
Figures S6 and S7 in the Supplementary Information). Table 3 summarizes the diffraction peak 
analysis results for each film. The peak position values (q) and full-width at half-maximum values 
(∆q) are consistent with other studies [17,25]. In the OOP X-ray profiles, the PCPDTBT(N) film shows 
a peak at qz ≈ 1.57 Å−1, corresponding to the π–π stacking reflection of (010). However, in both 
PCPDTBT(C) and PCPDTBT(D) films, the (010) intensity becomes much weaker, implying that no  
π–π stacking exists along the direction normal to the substrate. Instead, the ∆q value for the (100) 
peak (inter-chain separation within lamellae) is reduced in the OOP profiles. The reduction of ∆q is 
related to the increase of the polymer domain size and crystallinity. In addition, the coherence length 
(ξ) increased from 28.0 nm–51.0 nm for C5 and to 61.3 nm for D5, implying a larger size of the ordered 
domains. In the IP line-cut profile, the intensity of the (010) plane became stronger after OA addition, 
and the coherence length increased in the IP direction. Moreover, the peak positions slightly shifted 
to higher values (qxy ≈ 1.62 Å−1), corresponding to a decrease in the π–π stacking spacing to ~3.89 Å 
for both PCPDTBT(C5) and PCPDTBT(D5). The (001) reflection in the IP profile refers to the spacing 
distances along the polymer backbone direction and shows similar changes as for (010). Overall, the 
GIWAXS profile reveals that both CN and DIO incorporation into the PCPDTBT solution 
significantly enhanced the polymer ordering in the edge-on direction after spin coating, while the 
PCPDTBT(N) film has mixed face-on and edge-on orientations (Figure 6f). 

 
Figure 6. Various PCPDTBT films characterized by (a) normalized surface area increment (S value); 
(b) hole mobility (μh+); and (c) JSC versus OA volume; the grazing-incidence wide-angle X-ray 
scattering (GIWAXS) line-cuts in the (d) out-of-plane (OOP) direction and (e) in-plane (IP) direction; 
(f) proposed PCPDTBT film orientation change after OA addition. 

  

Figure 6. Various PCPDTBT films characterized by (a) normalized surface area increment (S value);
(b) hole mobility (µh+); and (c) JSC versus OA volume; the grazing-incidence wide-angle X-ray
scattering (GIWAXS) line-cuts in the (d) out-of-plane (OOP) direction and (e) in-plane (IP) direction;
(f) proposed PCPDTBT film orientation change after OA addition.
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Table 3. Grazing-incidence wide-angle X-ray scattering (GIWAXS) diffraction peak analysis of
PCPDTBT(N), PCPDTBT(C5) and PCPDTBT(D5) films.

OA Index q a (Å−1) d b (Å) ∆q c (Å−1) ξ d (Å)

N OOP (100) 0.555 11.3 0.202 28.1
OOP (010) 1.58 3.98 0.294 19.2

IP (001) 0.489 12.9 0.199 28.4
IP (010) 1.44 4.36 0.455 12.4

C5 OOP (100) 0.548 11.5 0.111 51.0
IP (001) 0.538 11.7 0.0856 66.1
IP (010) 1.62 3.89 0.184 30.8

D5 OOP (100) 0.549 11.4 0.0922 61.3
IP (001) 0.532 11.8 0.0945 59.9
IP (010) 1.62 3.89 0.140 40.3

a Peak position; b spacing distance; c full-width at half-maximum; d coherence length, calculated using the Scherrer
equation (ξ = 2π/∆q).

A hole mobility measurement was performed to investigate the influence of the film crystallinity
on the hole mobility. The space-charge-limited current (SCLC) model is commonly used to calculate
the hole mobility (µh+) in the vertical direction in the PCPDTBT film. The calculated mobility (Table 4)
is analogous to the other reference values [26,27]. Figure 6b is a plot of the hole mobility versus OA
volume. Although the addition of OA increased the crystallinity of the polymer film in the GIWAXS
result, it did not provide a large influence on the vertical hole mobility. Since the direction of π–π
stacking was not normal to the substrate (face-on direction), the improved π–π stacking in polymer
had not resulted in the enhancement of charge transport.

Table 4. Photovoltaic parameters and hole mobility of ID-BHJ OPVs using different polymer
bottom layers.

Photoactive
Layer Structure

PCPDTBT
Bottom Layer Voc (V) Jsc

(mA/cm2)
Fill Factor
(FF) (%) PCE (%) µh+

(cm2/Vs)

BHJ - 0.62 ± 0.00 11.88 ± 0.13 52.5 ± 0.19 3.87 ± 0.06 4.9 × 10−5

ID-BHJ

N 0.64 ± 0.00 6.23 ± 0.07 49.3 ± 0.86 1.95 ± 0.05 7.0 × 10−5

C5 0.63 ± 0.00 10.16 ± 0.10 48.0 ± 0.00 3.06 ± 0.03 9.7 × 10−5

C10 0.62 ± 0.00 9.39 ± 0.16 46.6 ± 0.73 2.72 ± 0.06 6.8 × 10−5

C20 0.62 ± 0.00 9.19 ± 0.22 46.3 ± 0.48 2.62 ± 0.06 1.4 × 10−4

D5 0.63 ± 0.00 10.66 ± 0.15 49.9 ± 0.25 3.36 ± 0.03 2.0 × 10−4

D10 0.63 ± 0.00 10.35 ± 0.12 48.7 ± 0.09 3.15 ± 0.02 2.5 × 10−4

D20 0.62 ± 0.00 9.77 ± 0.11 47.5 ± 0.11 2.90 ± 0.03 1.6 × 10−4

ID-BHJ structured films showing minimized intermixing were prepared by spin coating
PC71BM(E) onto roughened polymer films. The absorbance of the polymer films was measured
(Figure S8 in the Supplementary Information) to show that the addition of OA did not influence
the film thickness nor absorption. AFM measurements revealed that the PCPDTBT film thickness
was about 30–35 nm for all variables and that no morphological changes occurred after PC71BM(E)
deposition due to the limited swelling of DCE into the polymer bottom layer (Figure S9 in the
Supplementary Information). This implies that the surface morphology created on the polymer surface
will be retained after forming heterojunctions with the PC71BM(E) layer.

To investigate whether the ID-BHJ could dissociate excitons effectively, we have investigated the
PL quenching experiments for the ID-BHJ(D5) and ID-BHJ(C5) films (Figure S10 in the Supplementary
Information). As expected, both films exhibited perfect PL quenching, which indicates that the
morphology of the ID-BHJ structure was sufficient for the efficient exciton dissociation.

OPV devices were fabricated by using the ID-BHJ as a photoactive layer to demonstrate the
influence of the bottom layer’s surface roughness on the device performances. Table 4 compares the
solar cell performances of ID-BHJ devices with different OAs and BHJ devices. The ID-BHJ(D) and
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ID-BHJ© devices show better solar cell performances than ID-BHJ(N), which is mainly attributed
to JSC enhancement. As shown in Figure 6c, the change of the S value matches the change of the
JSC value, and ID-BHJ(D5) and ID-BHJ(C5) that have the highest S values exhibited the highest JSC

values of ~10.66 mA/cm2 and 10.16 mA/cm2. The PCE increased by about 72.3% for D5 addition
compared to ID-BHJ(N). Although PCPDTBT(N) had the most favorable face-on orientation that
is proper for facile charge transport, the ID-BHJ device incorporated with the edge-on orientation
developed PCPDTBT(C5) and PCPDTBT(D5) showed larger values for JSC by nearly a factor of two.
Those results suggest that enhancing the surface area of the polymer bottom layer through the evolution
of nanostructured morphology is the major factor influencing solar cell performances rather than
polymer chain orientation. In other words, the heterojunction area is more important than the ordering
of the polymer chain in fabricating the PCPDTBT/PC71BM ID-BHJ by using the low swelling DCE as
the solvent for PC71BM.

The best ID-BHJ devices are compared to the BHJ device in Figure 7 and Table 4. The optimization
procedure for the BSJ device is included in the Supplementary Information (Table S1) to explain
the inferior device performance compared to the reported results [28–31]. Both ID-BHJ devices
showed comparable performances to that of BSJ in the J–V and EQE measurements. In particular,
in the EQE spectra, the ID-BHJ(D) and ID-BHJ(E) had almost the same spectral shape, and the EQE
value ofID-BHJ(D) and ID-BHJ(E) at 650–800 nm was greater than that of the ID-BHJ(N) (Figure 3).
These results reflect that the heterojunction area of the ID-BHJ is similar with that of BHJ prepared by
the conventional BSD method in spite of minimized intermixing.

From a morphological point of view, the morphology of the ID-BHJ photoactive layer, formed
by the SqD process, was expected to be stable during the thermal stress test because the intermixing
between the PCPDTBT and the PC71BM was minimized by the prevention of PC71BM diffusion into
the pre-formed ordered PCPDTBT bottom layer; whereas, the PC71BM could be remained in the
polymer domains in the conventional BHJ, and the demixing would proceed further when the thermal
stress was applied to the optimized BHJ morphology, resulting in the poor thermal stability of the BHJ
morphology, especially for the low crystalline polymers.

The thermal stability of the ID-BHJ device (Figure 7c) was tested on an 80 ◦C hotplate for more
than 12 days. The stability result indicated that the ID-BHJ architecture was significantly superior to
that of the conventional BHJ under the thermal stress condition. The conventional BHJ device retained
only ~40% of its initial efficiency after 12 days, while both types of ID-BHJ devices retained ~70% of
their initial efficiencies. To prove more clearly that the morphology of the ID-BHJ layer is stable under
the thermal annealing, the topologies of the PCPDTBT bottom layer after selective removal of the
PCBM layer from the ID-BHJ before and after thermal annealing were compared. As shown in the
Figure S11 in the Supplementary Information, the surface morphology of the PCPDTBT layer remained
almost unchanged even after 12 days of thermal annealing at 80 ◦C. This result clearly supports the
superior morphological stability of the ID-BHJ.
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4. Conclusions

A nanostructured PCPDTBT layer and PC71BM dissolved in the less swelling solvent of DCE were
applied to construct the ID-BHJ morphology with minimized intermixing of the polymer and PC71BM.
The performance of the ID-BHJ-based OPVs was more reproducible than for those that used PC71BM
dissolved in highly volatile DCM. The ID-BHJ OPVs exhibited a superior morphological stability
during thermal stress than conventional BHJ-based OPVs. We believe that the nanostructured polymer
bottom layer and less volatile DCE could make the SqD-processed OPVs applicable to large-scale
coating methods, such as slot die and bar coating.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/9/456/s1:
Figure S1: UV-absorption spectra of as-cast PCPDTBT film and after spin casting with each solvent.
(a) Chlorobenzene (CB), (b) chloroform (CF), (c) o-dichlorobenzene (DCB), (d) 1,2-dichloroethane (DCE),
(e) dichloromethane (DCM), (f) diiodomethane (DIM) and (g) toluene. Figure S2: (a) UV absorption spectra of the
PC71BM solution with different concentrations. (b) The absorbance values obtained from 460 nm plotted with
the concentration. The red star marks the absorbance of the diluted solution. Figure S3: Surface topography of
(a) DCE-, (b) 1 vol % DPE-containing DCM- and (c) 1 vol % DPE-containing DCE-casted PC71BM films. Figure S4:
DCM-casted PC71BM at (a) below RT and (b) 60 ◦C. DCE-casted PC71BM at (c) below RT (d) and 60 ◦C (e). PCE and
JSC are dependent on the processing temperature. Figure S5: The surface topography of ordering agent-driven
PCPDTBT film scanned by an atomic force microscope (AFM). (1 × 1 µm). (a) PCPDTBT(N). (b) PCPDTBT(C5).
(c) PCPDTBT(D5). Figure S6: Original grazing-incidence wide-angle X-ray scattering (GIWAXS) diffraction
patterns of Figure 7d–e. (a) PCPDTBT(N). (b) PCPDTBT(C5). (c) PCPDTBT (D5). Figure S7: In-plane (IP) and
out-of-plane (OOP) line-cuts from GIWAXS images. (a) IP and (c) OOP X-ray scattering profiles of PCPDTBT(C).
(b) IP and (d) OOP X-ray scattering profiles of PCPDTBT(D). Figure S8: Absorption spectra of ordering agent
(OA)-added PCPDTBT films. Figure S9: AFM-measured PCPDTBT film surface topography after PC71BM(E)
removal from ID-BL. (a) PCPDTBT(N). (b) PCPDTBT(C5). (c) PCPDTBT(D5). Figure S10: Photoluminescence (PL)
quenching effect of two different types of solar cells. Table S1: Optimization of device performance according to
different active layer thicknesses.
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AFM atomic force microscopy
BHJ bulk heterojunction
BSD blended solution deposition
CB chlorobenzene
CN 1-chloronaphthalene
DCE 1,2-dichloroethane
DCM dichloromethane
DIM diiodomethane
DIO 1,8-diiodooctane
DPE diphenyl ether
EQE external quantum efficiency
GIWAXS grazing-incidence wide-angle X-ray scattering
ID-BHJ inter-diffused bilayer
IP in-plane
IPCE incident photon-to-current efficiency
ITO indium tin oxide
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OA ordering agent
OOP out-of-plane
OPV organic photovoltaics
PC71BM phenyl-C71-butyric-acid-methyl ester
PCE power conversion efficiency

PCPDTBT
poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta
[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)]

PEDOT:PSS poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate)
PVDF polyvinylidene fluoride
SCLC space-charge-limited current
SqD sequential deposition
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