Next Article in Journal
Polyphilic Interactions as Structural Driving Force Investigated by Molecular Dynamics Simulation (Project 7)
Previous Article in Journal
Topological Models for Open-Knotted Protein Chains Using the Concepts of Knotoids and Bonded Knotoids
Previous Article in Special Issue
Study on the Mechanism of a Side Coupling Reaction during the Living Anionic Copolymerization of Styrene and 1-(Ethoxydimethylsilyphenyl)-1-phenylethylene (DPE-SiOEt)
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Polymers 2017, 9(9), 443; doi:10.3390/polym9090443

Thermoresponsive and Reducible Hyperbranched Polymers Synthesized by RAFT Polymerisation

1
School of Chemistry, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
2
Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland
*
Author to whom correspondence should be addressed.
Received: 20 July 2017 / Revised: 24 August 2017 / Accepted: 6 September 2017 / Published: 13 September 2017
(This article belongs to the Special Issue Living Polymerization)
View Full-Text   |   Download PDF [2167 KB, uploaded 13 September 2017]   |  

Abstract

Here, we report the synthesis of new thermoresponsive hyperbranched polymers (HBPs) via one-pot reversible addition-fragmentation chain transfer (RAFT) copolymerisation of poly(ethylene glycol)methyl ether methacrylate (PEGMEMA, Mn = 475 g/mol), poly(propylene glycol)methacrylate (PPGMA, Mn = 375 g/mol), and disulfide diacrylate (DSDA) using 2-cyanoprop-2-yl dithiobenzoate as a RAFT agent. DSDA was used as the branching agent and to afford the HBPs with reducible disulfide groups. The resulting HBPs were characterised by Nuclear Magnetic Resonance Spectroscopy (NMR) and Gel Permeation Chromatography (GPC). Differential Scanning Calorimetry (DSC) was used to determine lower critical solution temperatures (LCSTs) of these copolymers, which are in the range of 17–57 °C. Moreover, the studies on the reducibility of HBPs and swelling behaviours of hydrogels synthesized from these HBPs were conducted. The results demonstrated that we have successfully synthesized hyperbranched polymers with desired dual responsive (thermal and reducible) and crosslinkable (via thiol-ene click chemistry) properties. In addition, these new HBPs carry the multiplicity of reactive functionalities, such as RAFT agent moieties and multivinyl functional groups, which can afford them with the capacity for further bioconjugation and structure modifications. View Full-Text
Keywords: hyperbranched polymers; thermoresponsive; reducible; RAFT polymerisation; disulfide diacrylate; hydrogels hyperbranched polymers; thermoresponsive; reducible; RAFT polymerisation; disulfide diacrylate; hydrogels
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Tochwin, A.; El-Betany, A.; Tai, H.; Chan, K.Y.; Blackburn, C.; Wang, W. Thermoresponsive and Reducible Hyperbranched Polymers Synthesized by RAFT Polymerisation. Polymers 2017, 9, 443.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top