Polymers 2017, 9(8), 336; doi:10.3390/polym9080336
New Eco-Friendly Phosphorus Organic Polymers as Gas Storage Media
1
Department of Chemistry, College of Science, Tikrit University, Tikrit, Iraq
2
Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
3
Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq
*
Authors to whom correspondence should be addressed.
Received: 12 July 2017 / Revised: 30 July 2017 / Accepted: 1 August 2017 / Published: 3 August 2017
Abstract
Three phosphate esters 1–3 were successfully synthesized from the reaction of 2-, 3- and 4-hydroxybenzaldehyde with phosphoryl chloride. Reactions of 1–3 with benzidine in the presence of glacial acetic acid gave the corresponding novel phosphorus organic polymers 4–6 containing the azomethane linkage. The structures of the synthesized compounds were confirmed by Fourier transform infrared spectroscopy, nuclear magnetic resonance and elemental analysis. Interesting physiochemical properties for the polymeric materials 4–6 were observed using a combination of several techniques such as gel permeation chromatography, scanning electron microscopy, Brunauer–Emmett–Teller and nitrogen adsorption–desorption isotherm, Barrett–Joyner–Halenda and H-sorb 2600 analyzer. The mesoporous polymers 4–6 exhibit tunable porosity with Brunauer–Emmett–Teller surface area (SABET = 24.8–30 m2·g–1), pore volume (0.03–0.05 cm3·g–1) and narrow pore size distribution, in which the average pore size was 2.4–2.8 nm. Polymers 4–6 were found to have high gas storage capacity and physico-chemical stability, particularly at a high pressure. At 323 K and 50 bars, polymers 4–6 have remarkable carbon dioxide uptake (up to 82.1 cm3·g–1) and a low hydrogen uptake (up to 7.4 cm3·g–1). The adsorption capacity of gasses for polymer 5 was found to be higher than those for polymers 4 and 6. View Full-TextKeywords:
eco-friendly polymers; phosphorus polymers; gas storage; gas uptake; gas capture; Brunauer–Emmett–Teller surface area
▼
Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Scifeed alert for new publications
Never miss any articles matching your research from any publisher- Get alerts for new papers matching your research
- Find out the new papers from selected authors
- Updated daily for 49'000+ journals and 6000+ publishers
- Define your Scifeed now
Share & Cite This Article
MDPI and ACS Style
Ahmed, D.S.; El-Hiti, G.A.; Yousif, E.; Hameed, A.S.; Abdalla, M. New Eco-Friendly Phosphorus Organic Polymers as Gas Storage Media. Polymers 2017, 9, 336.
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Related Articles
Article Metrics
Comments
[Return to top]
Polymers
EISSN 2073-4360
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert

