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Abstract: In this paper we focus on the relaxation dynamics of a multihierarchical polymer network
built through the replication of the dual Sierpinski gasket in the form of a regular dendrimer.
The relaxation dynamics of this multihierarchical structure is investigated in the framework of
the generalized Gaussian structure model using both Rouse and Zimm approaches. In the Rouse-type
approach, we show a method whereby the whole eigenvalue spectrum of the connectivity matrix of
the multihierarchical structure can be determined iteratively, thereby rendering possible the analysis
of the Rouse-dynamics at very large generations. Remarkably, the general picture that emerges from
both approaches, even though we have a mixed growth algorithm and the monomers interactions
are taken into account specifically to the adopted approach, is that the multihierarchical structure
preserves the individual relaxation behaviors of its constituent components. The theoretical findings
with respect to the splitting of the intermediate domain of the relaxation quantities are well supported
by experimental results.

Keywords: multihierarchical structure; dynamics; rheological quantities; Rouse-Zimm approaches;
independent relaxation processes

1. Introduction

Polymers, being intricate systems, demonstrate a wide range of dynamic features that cannot
be fully understood without clarifying the relationship between the topology of the structure and its
reflection in the dynamics. How the topology of the polymer system affects its static and dynamic
properties is a central question in polymer physics. It has a long-standing history and was first
addressed in the seminal works of Rouse [1] and Zimm [2] who focused on the investigation of dilute
solutions of linear polymers. These early, very fundamental investigations shaped the understanding
of the problem for many years, also in what scaling properties were concerned. With the continuous
advancement in polymer synthesis and analysis, new macromolecules and supramolecules with very
complex architectures and tunable properties have been synthesized. Among the polymers with
well defined shape and size of broad interest are the dendrimers [3–16]. They are a class of synthetic
polymers that have monodisperse molecular weight and a well-defined highly branched structure
consisting of monomers radially attached to a core in successive generations. Viewed topologically,
the dendrimers are chemical realisations of the finite Cayley trees. Chemically, the synthesis of
dendrimers is far for being simple. Their geometrical perfection requires either inside-out or outside-in
procedures consisting of several reaction sequences, between which one has to purify the samples from
the unwanted reaction by-products [3,15]. Because of their shape and topology these macromolecules
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are very interesting both to pure science and everyday life. Dendrimers provide promising applications
in biosensors [17], catalysis [18], nanomedicine for drug delivery and gene therapy [19,20].

Fractal constructs are based on the incorporation of identical motifs that repeat on differing size
scales. The concept of fractal geometry, first introduced by Mandelbrot [21], has turned out to be
a very useful tool in many fields of science. In medical science and biology, fractal properties have
been reported for various cases like the organization of DNA into hierarchical structures [22], cardiac
rhythm of a beating heart [23], cerebral blood flow [24], the folds of the surface of the brain [25],
and human fixational eye movements [26]. Hierarchical assembly has been found in the formation of
protein fibers [27] related to neurodegenerative diseases such as Parkinson, Alzheimer, and Huntington.
Hierarchically organized surfaces are found in the endoplasmic reticulum [28], in mitochondria [29],
and in other cell organelles [30]. In physics and chemistry the concept of fractals is widely used for
describing the disordered systems [31], growth phenomena [32], chemical reactions controlled by
diffusion [33], and energy transfer [34], to mention but a few.

Scientists have been struggling to build molecular fractals through various synthesis strategies.
The chemical synthesis of the first nondendritic fractal polymer based on Sierpinski hexagonal gaskets
was reported by Newkome et al. [35]. This fractal polymer was created based on repeating hexameric
architectures incorporated with increasing dimensions at successive higher generations. Soon after,
Shang et al. [36] reported the fabricating of a whole series of molecularly assembled and defect-free
Sierpinski triangles.

For the aforementioned polymers, the scaling patterns found for linear chains were not expected
to hold, at least not in their simple forms. Going further to polymer networks [37–42] the situation
becomes even more complex; whether the networks are built by connecting subunits into regular
lattices [43] or by creating the networks randomly through the insertion of additional links (scale-free
networks [44,45]), up to multihierarchical networks [46] and multilayer networks [47] also known
as networks of the networks. The space-spanning, net-like structure gives polymer networks their
advantageous dynamic properties, the most essential factor that governs their responses to external
mechanical, electrical, thermal, and chemical stimuli.

The relaxation dynamics of regular dendrimers and of the dual Sierpinski gaskets have been
intensively investigated in many previous studies [4,10,11,48–50]. For regular dendrimers, the drawn
conclusion was that the relevant physical quantities which describe the dynamics (average monomer
displacement and mechanical moduli) do not obey scaling laws in both, Rouse and Zimm approaches.
Instead, for the class of dual Sierpinski fractals it was clearly shown that the dynamical quantities do
scale in the Rouse-type approach and do not scale in the Zimm approach.

Knowing the individual dynamical behavior of these two types of structures, a step forward
in the quest of understanding how the geometry of the structure affects its dynamics is to build
and to study the relaxation dynamics of a new polymer network which incorporates the two types
of structures. By replicating the dual Sierpinski gasket in shape of regular dendrimer we have
succeeded to built a new multihierarchical structure that connects in a very regular way the dendrimer
with the dual Sierpinski gasket. Hence the name DSGRSD (dual Sierpinski gasket replicated in
shape of dendrimer). The choice of dendrimer and of dual Sierpinski gasket as constituents of
the new multihierarchical polymer network is based on the fact that both are already synthesized
experimentally. So that, for a possible future chemical synthesis of the multihierarchical structure
the ingredients exist. Another reason is that we wish to link a structure with loops with a loopless
structure in order to see if the loops of one component may affect the whole dynamical behavior
of the multihierarchical structure, especially when the hydrodynamics interactions are taken into
account. Of major interest here is to understand how the individual components will be reflected
in the dynamics of the multihierarchical structure. Specifically, if the scaling behavior of the dual
Sierpinski fractal and the non-scaling behavior of the dendrimer, obtained in the Rouse model, will still
hold when the two stuctures are coupled to form the multihierarchical structure. In Ref. [50] for
the dual Sierpinski gasket investigated in the Zimm model, the lost of scaling was attributed to
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the loops which affect the interbead distances and make them to be very sensitive to the location
in the fractal. These distances are larger at the periphery and smaller inside of the fractal because
there, due to the loops and loops on loops, they feel the action of a larger number of entropic springs.
This fact influences the hydrodynamic matrix and leads to the disappearance of scaling. Instead,
the Vicsek fractal, a loopless structure, obeys scaling in the Zimm-type approach [39]. The situation
gets more complex for the DSGRSD structure. Both components, when treated individual, do not
obey scaling in the Zimm model. Therefore, the important question is whether the non-scaling
behaviors of the dual Sierpinski fractal and of the dendrimer are still obeyed in their original form
by the multihierarchical structure in the Zimm model, or one obtaines a single bulk-like behavior.
The multihierarchical structures may be viewed as possible theoretical models for polymers consisting
of distinct components.

The relaxation dynamics of the DSGRSD multihierarchical structure will be studied in
the framework of the generalized Gaussian structures (GGS) model [10,51–58] which represents
the extensions of the Rouse and Zimm models [1,2], developed for linear polymers, to polymer systems
of arbitrary topologies and which highlights both the connectivity of the molecules under investigation,
as well as the influence of hydrodynamic interactions. The dynamical quantities on which we focus
are the‘mechanical relaxation moduli (storage modulus and loss modulus) and the averaged monomer
displacement under locally acting forces. They are readily measurable quantities in rheological
measurements. The main advantage of using the GGS model is that, in the Rouse-type approach
which considers only interactions between nearest neighbour monomers, the relaxation quantities
can be calculated by using only the eigenvalues of the connectivity matrix of the structure. The most
important aspect when one deals with GGS model is the size of the investigated structure. In this
respect, fundamental in the study of relaxation patterns is the intermediate time/frequency domain
of the relaxation quantities, where the topological details of the structure reveals. The intermediate
domain increases by increasing the size of the structure and is always bounded by large crossover
regions. At small structures the intermediate domain is blurred up by crossover features. Therefore,
in order to be able to extract precise information about the structures their sizes have to be very
large. Consequently, this leads to very large connectivity matrices whose storage and numerical
diagonalization exceed the limit of the available computational resources. If one somehow succeeds
to store such very large matrices, the enormous computational time required by their numerical
diagonalization cannot be handled. To overcome this problem we developed a method whereby
the eigenvalues of the connectivity matrix are determined iteratively. Based on the eigenvalues obtained
in the iterative manner, we are able to study, in the Rouse type-approach, the relaxation dynamics of
the DSGRSD multihierarchical structure at very large generations of its components. We can easily treat
structures consisting of hundred million monomers. It is noteworthy to mention that the connectivity
matrix, being the discrete version of the Laplacian operator, is greatly used in different areas of science.
For instance: in graph theory applied to biological systems [59], reaction-diffusion systems [60,61],
and in the study of different properties of the polymers [39,62–64]. Therefore, the determination of its
eigenvalue spectrum through recursive means is of great importance and leads to interdisciplinary
scientific advances that generate new avenues of research related, in particular, to chemical physics.

The GGS model allows the inclusion of hydrodynamic interactions. These solvent-mediated
interactions are taken into account in the Zimm model by using the preaveraged Oseen tensor [2,52].
In the Zimm approach the dynamical quantities are calculated based on the eigenvalues of the product
matrix between the connectivity matrix and hydrodynamic matrix. The eigenvalues of the product
matrix are obtained through numerical diagonalizations, fact that restricts considerably the sizes of
investigated structures.

2. Generalized Gaussian Structures

The generalized Gaussian structure model is a valuable tool in investigating the dynamics of
polymers with complex architecture. It allows one to treat the dynamical problem in the framework
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of linear algebra. A GGS, being the generalization of the basic Rouse-Zimm models to include
polymers with different geometries, has inherit all limitations of its predecessors: it does not account
for excluded volume interactions and for entanglement effects. We recall that the excluded volume
effects are often screened in rather dense media, such as dry polymer networks and polymer melts.
In turn, the entanglement effects are negligible for polymer networks with high densities of cross-links,
meaning that the network strands between the cross-link points are rather short.

Given that the procedure of GGS was explained in detail in Refs. [10,51–58], here we mainly recall
the basic concepts and summarize the main formulas concerning the relaxation patterns. A GGS is
modelled as a structure consisting of beads (monomers) connected to each other by elastic entropic
springs. For simplicity, all beads of the GGS are subject to the same friction constant ζ with respect to
the solvent. In this model, the solvent is substituted by a continuous immobile medium which is felt by
the monomers through viscous friction and thermal noise. Now, the configuration of a GGS is described
by the set of position vectors {Rk}, where Rk(t) = (Rxk(t), Ryk(t), Rzk(t)) = (Xk(t), Yk(t), Zk(t)) is
the position vector of the kth bead at time t. The GGS assumption is that the potential energy [51,56] is
built only of harmonic terms, involving monomers directly bounded to each other. Including, also,
interactions with external forces {Fn} the potential energy reads

U({RK}) =
K
2 ∑

β,m,n
Rβm AnmRβn −∑

β,n
FβnRβn. (1)

In the first sum of the right-hand side of Equation (1) all bonds are treated as equal with square root
of the mean-square length l, K denotes the spring constant of the bond, β runs over the components x, y,
and z, and the whole GGS configuration is accounted through the N×N connectivity matrix A = (Aij)

that shows the connections between monomers. The connectivity matrix A is a real symmetric matrix
and one builds it as follows: the diagonal elements Aii indicate the number of bonds originating
from the ith monomer, while the off-diagonal elements Aij are either −1 if i and j are connected by a
bond or 0 otherwise. The hydrodynamic couplings between the monomers may also be taken into
account; one introduces the hydrodynamics interaction tensor (mobility matrix) H = Hij [51,52,65]
whose components in the preaveraged picture are

Hij = δij + ζr < l/Rij > (1− δij), (2)

where Rij = |Rij| = |Ri − Rj| are the interbead distances (i.e., the mutual separation between
the centers of the beads i and j). The dimensionless damping factor ζr equals ζ/6πη0l, where η0

is the solvent viscosity. Using an effective hydrodynamic interaction radius a, one may write ζr = a/l.
As a further simplification, we assume that the distribution of GGS interbead distances is Gaussian;
this leads to

〈
R−1

ij

〉
=

(
6

π < R2
ij >

)1/2

. (3)

Furthermore, the beads are subject to fluctuating forces, fi(t), which are zero-centered and
Gaussian distributed. It is now a relatively straightforward matter to compute the dynamical properties,
since the GGS problem is linear and the different components (Xi, Yi, Zi) decouple. With coordinates
Y = (Y1, Y2, . . . , YN)

T and forces f = ( f1, f2, . . . , fN)
T , the corresponding Langevin equation reads in

matrix notation [51,52,56]

∂Y(t)
∂t

+ σHAY(t) =
1
ζ

H[f(t) + F(t)], (4)

where we set σ = K/ζ. Equation (4) has the following formal solution:
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Y(t) =
1
ζ

∫ t

−∞
dt′exp[−σ(t− t′)HA]H[f(t′) + [F(t′)]. (5)

To bring Equation (5) to a more manageable form, one proceeds by diagonalizing the product
HA, i.e., by determining N eigenvectors Qi of HA, so that HAQi = λiQi. HA has only one vanishing
eigenvalue, which we denote by λ1. A further simplification of Equation (5) arises when a constant
external force F acts on a single monomer. Assuming that this monomer is chosen randomly, but once
chosen fixed (quenched disorder) one obtains [51,56,58] for the doubly averaged Y(t) (averaged over
the thermal forces and over all positions of the monomers in GGS):

<< Y(t) >>=
FH11t

Nζ
+

F
σNζ

N

∑
i=2

1− exp(−σλit)
λi

Hii, (6)

where the elements which depend on H are given by Hii = ∑k,j Q−1
ik HklQli and H11 =

√
N ∑k Q−1

1k Hk1.
It is noteworthy that Equation (6) contains only the eigenvalues, λi, of the product matrix HA and its
eigenvectors through the elements Hii. In the Rouse-type approach, which neglects the hydrodynamic
interactions, the hydrodynamic matrix reduces to the unitary matrix, H = I, i.e., Hij = δij for all i and j,
leading to further simplification of average monomer displacement form:

<< Y(t) >>=
Ft
Nζ

+
F

σNζ

N

∑
i=2

1− exp(−σλit)
λi

. (7)

From Equation (7) we remark that for the calculation of the averaged monomer displacement
in the Rouse model we need only the eigenvalues of the connectivity matrix A. We also note that
in Equation (7), due to λ1 = 0, the motion of the center of mass has separated automatically from
the remaining sum. From Equations (6) and (7), the behavior of the motion for extremely short and for
very long times is obvious: in the limit of very short times << Y(t) >>= Ft/ζ, while, for very long
times one has << Y(t) >>= FH11t/Nζ. Physically, this means that at very short times only one bead
is moving, whereas at very long times the whole structure drifts. These very general features make
clear that the particular structure of the GGS is revealed in the intermediate time domain [10,39,48,49].

Apart from<< Y(t) >>, a quantity which may be accessed through micromechanical manipulations,
other classical experiments allow investigations up to the level of single monomers [66–69]. In this way
information on basic macroscopic features, such as the mechanical moduli, gets complemented by
observations on the microscopic level; microscopic parts of the polymer can be moved by optical
tweezers or by attached magnetic beads. Most mechanical experiments probe the complex dynamic
modulus G∗(ω), or, equivalently, its real G′(ω) and imaginary G′′(ω) components known as the storage
and the loss modulus [10,52]. For very dilute solutions and for ω > 0, the storage and loss modulus
are given by (see also Equations (4.159) and (4.160) of Ref. [52])

G′(ω) =
C
N

N

∑
i=2

ω2

ω2 + (2σλi)2 (8)

and

G′′(ω) =
C
N

N

∑
i=2

2σωλi
ω2 + (2σλi)2 . (9)

For very dilute solutions one has C = νkBT, with ν being the number of polymer segments (beads)
per unit volume. In Equations (8) and (9) ω represents the frequency and λi are the eigenvalues of
the connectivity matrix A in the Rouse model and of the matrix HA in the Zimm model, respectively.
Also, for concentrate solutions (when the entanglement effects are negligible) the Equations (8) and (9)
are still valid, the only change being in the value of the constant C [70]. The factor 2 arises from
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the second moment of the displacements involved in computing the stress [52]. It is noteworthy to
mention that in the GGS theory the considered rheological properties correspond to other experimental
(non-mechanical) techniques. Besides mechanical viscoelastic experiments, one can also perform
dielectric relaxation measurements, which constitute another well-established technique in polymer
physics. In turn, the average monomer displacement under a constant external force is related to
the mean-square displacement of a monomer on which no such force is applied.

3. DSGRSD Multihierarchical Structure and Eigenvalue Spectrum

In this section we present the procedure for building our multihierarchical structure and
the iterative method for the determining of the eigenvalues of its connectivity matrix. Before showing
the building procedure of the DSGRSD structure we recall the construction of its constituent
components. In the left-hand side panel of Figure 1 we present the classical dendrimer with
functionality f = 3 at the generation gd = 2. Its construction is very easy. Dendrimers start from
a central core from which f arms emerge; then at each new generation the ends of the arms get f − 1
new arms attached to them. The right-hand side panel of Figure 1 displays the dual Sierpinski gasket
at generation gs = 2. Its construction stems from the well-known Sierpinski gasket in 2d in which
the center of each small triangle belonging to the gasket is connected with springs to its neighbors;
the so-connected centers play the role of beads in the dual structure. We note that the coordination
number changes from 4 to 3 upon the application of the duality transformation. However, the dual
structure has the same fractal and spectral dimensions as the original gasket, namely

d f =
ln 3
ln 2

= 1.58496... (10)

and
ds =

2 ln 3
ln 5

= 1.36521... (11)

Figure 1. Left-hand side: regular dendrimer at generation gd = 2; Right-hand side: dual Sierpinski
gasket at generation gs = 2.

The multihierarchical structure on which we focus is built through the replication of the dual
Sierpinski gasket in shape of a regular dendrimer. Specifically, to build the multihierarchical structure
at any desired generation (gd, gs), one has first to replace every bead of the dendrimer (of generation
gd) with a configuration of beads customized in the dual Sierpinski gasket (at generation gs) shape
and then to connect with bonds all these identical configurations in the dendrimer form. Figure 2
exemplifies the construction of the DSGRSD structure at generation (gd = 2, gs = 2). In order to
obtain the DSGRSD structure at generation (gd = 2, gs = 2) (the right-hand side structure of Figure 2),
first every bead of the dendrimer of generation gd = 2 (the left-hand side structure of Figure 2) is
substituted with an arrangement of beads (indicated in Figure 2 through Transformation) in the form
of a dual Sierpinski gasket at generation two and then all the arrangements are connected with bonds
in the dendrimer form. All over the paper the generation of the multihierarchical structure is indicated
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through (gd, gs), where gd represents the generation of the dendrimer component and gs represents
the generation of the dual Sierpinski gasket component. The total number of beads of a dendrimer at
generation gd is Nd = 3 · 2gd − 2 and the number of beads of a dual Sierpinski fractal at generation
gs is Ns = 3gs; hence, the total number of beads of the DSGRSD structure at any generation (gd,gs) is
N = 3gs · (3 · 2gd − 2).

Transformation

Figure 2. Construction of the DSGRSD (dual Sierpinski gasket replicated in shape of dendrimer)
structure at generation (gd = 2, gs = 2).

We continue with the evaluation of the eigenvalue spectrum. As we mentioned in the Introduction,
the DSGRSD structure admits an iterative method for the determining of the whole eigenvalues
spectrum of its connectivity matrix. The determination of the eigenvalues, i.e., the solution of

(A− λI)Φ = 0, (12)

is performing in two distinct stages which, practically, parallel the procedure of building the structure.
For the DSGRSD structure at any generation gd ≥ 1 and gs ≥ 1, the first stage of the iterative
method consists in the determining the whole eigenvalue spectrum of the dendrimer at generation
gd. For dendrimers, the method of getting the eigenvalues in iterative manner was detailed in
Refs. [4,5,10,11] and here we follow their analysis. The basic idea is that one can divide all eigenvectors
(denoted by k in the following) into two classes. In the first class the component Q1k of the eigenvector
k corresponding to the central bead i = 1 is non-vanishing, Q1k 6= 0, meaning that the central bead
can move. In the second class of eigenvectors, one has Q1k = 0 which means that the central bead is
immobile. In the first class of eigenvectors the eigenvalues are nondegenerate and are obtained from
the roots of the equation

−
√

2 sin(gd + 1)ψk = sin gd ψk, (13)

so that λk is given by

λk = 3− 2
√

2 cos ψk, (14)

From Equation (14) one obtains gd distinct eigenvalues. To these, nondegenerate eigenvalues of
the first class, is added the eigenvalue λ1 = 0.

For the case of immobile core, Q1k = 0, a similar procedure applies. One starts from the center
sequencing generation after generation, by denoting with n the last generation in which the eigenvector
k under scrutiny is such that the components Qik of all the beads i belonging to generation n vanish,
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but where at least one component Qjk related to a bead j of the next generation n + 1 does not vanish.
For 0 ≤ n ≤ gd− 2 the equation to be solved reads

sin(gd + 1− n)ψk =
√

2 sin(gd− n)ψk, (15)

with the eigenvalues λk given by Equation (14) as well. Here, however, one may possibly find
only gd − n − 1 roots instead of gd − n. If this is the case, an additional root is obtained from
the implicit equation

sinh(gd + 1− n)ψ =
√

2 sinh(gd− n)ψ, (16)

with the eigenvalue given by

λ = 3− 2
√

2 cosh ψ. (17)

For the case of immobile core, each of these eigenvalues is two-fold degenerate for n = 0 and
3 · 2n−1-fold degenerate otherwise. For n = gd − 1 one achieves the eigenvalue λk = 1 which is
3 · 2gd−2-fold degenerate.

In the second stage, based on a real-space decimation method and also using as input
the eigenvalues of the dendrimer, we determine the whole eigenvalue spectrum of the DSGRSD
structure. The procedure consists in reducing the multihierarchical structure from any given generation
(gd, gs) up to a dendrimer of generation gd. This can be directly performed by decimating, generation
by generation, the dual Sierpinski gasket component of the multihierarchical structure. The decimation
method relies on the fact that the dual Sierpinski fractal rescales under real-space renormalization
transformations. The DSGRSD structure consists of two types of beads: triple-coordinated beads and
double-coordinated beads; hence, each of the beads of structure has either 3 or 2 nearest neighbors.
In the following, we particularize Equation (12) for each type of beads and denote the components of
the eigenvector Φ by φj. For any triple-coordinated bead, one has

(3− λ)φ0 =
3

∑
j=1

φj, (18)

where φ0 is the eigenvector component of the triple-coordinated bead for which the equation is
written and φjs are the eigenvector components corresponding to its nearest neighbors; these may
themselves be either triple-coordinated or double-coordinated beads. The corresponding equation for
the double-coordinated bead reads

(2− λ)φj = φ0 + φm, (19)

where φ0 and φm represent the eigenvector components of the triple-coordinated beads that are nearest
neighbors of j.

We use two specific transformations to reduce the multihierarchical structure from generation
(gd, gs) to generation (gd, gs − 1). The transformations by which the structure is decimated in
a stepwise fashion are detailed in the Appendix. The result is that in the new decimated structure
the Equations (18) and (19) get replaced by (see Equations (A16) and (A30))

[3− P(λ)]φ̃0 =
3

∑
j=1

φ̃j, (20)

and

[2− P(λ)]φ̃j = φ̃0 + φ̃m, (21)

where φ̃0, φ̃j, and φ̃m, are the eigenvectors components in the decimated structure. Practically,
the eigenvector components from Equations (20) and (21) are sums of the eigenvector components
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coresponding to either triple-coordinated or double-coordinated beads of the structure before
decimation. The engine of the iterative method is the polynomial

P(λ) = −λ2 + 5λ. (22)

Equations (20)–(22) allow one to iterate at will the decimation procedure presented in
the Appendix A and outlined above. Furthermore, they also permit (apart from the eigenvalue
λ = 0) to determine the eigenvalues at generation (gd, gs) from those at generation (gd, gs− 1) through
the relation

P(λ(gd,gs)
i ) = λ

(gd,gs−1)
i . (23)

Solving Equation (23) we simply find the relation between the eigenvalues belonging to
consecutive generations

λ
(gd,gs)
± =

5±
√

25− 4 · λ(gd,gs−1)

2
(24)

Note that in this way each previous eigenvalue λ
(gd,gs−1)
i 6= 0 gives rise to two new ones at

the generation (gd, gs). It is worth to mention that a similar form to Equation (24) was obtained by
M. G. Cosenza and R. Kapral [71] in the study of eigenvalue spectrum of a single dual Sierpinski
fractal. Here, using a different procedure (real-space decimation) than theirs, we extend the issue to
a more complicated case where we have many dual Sierpinski gaskets and they are connected in shape
of dendrimer.

At any generation (gd, gs) of the DSGRSD structure the whole eigenvalue spectrum of its
connectivity matrix is determined as follows: a part of the eigenvalue spectrum is calculated
from the eigenvalues of generation (gd, gs− 1) by employing Equation (24); these eigenvalues are
complemented by the nondegenerate vanishing eigenvalue λ1 = 0, ∆gd,gs

3 degenerate eigenvalues

equal to 3 each, and ∆gd,gs
5 degenerate eigenvalues equal to 5 each, where the degeneracies ∆gd,gs

3 and

∆gd,gs
5 are given by

∆gd,gs
3 = 2gd−1 · (3gs + 3)− 3gs−1 (25)

and

∆gd,gs
5 = 2gd−1 · (3gs − 3)− 3gs−1 + 1. (26)

We note that the above procedure makes it also clear that the new eigenvalues, obtained through
Equation (24), keep the degeneracy of their predecessors.

We remark that the eigenvalues, in turn, are classified in persistent and nonpersistent. Persistent
eigenvalues are the eigenvalues appearing at one generation continue to appear in all subsequent
generations. In contrast, the nonpersistent eigenvalues are the eigenvalues appearing at only one
generation and will not continue to appear in all subsequent generations. The persistent eigenvalues
are all those obtained from the dual Sierpinski gasket component of the multihierarchical structure.
They are the eigenvalues 3 and 5 and all those that are obtained from them in the subsequent
generations, based on Equation (24), as well as the eigenvalue λ1 = 0. The nonpersistent eigenvalues
are the eigenvalues of the dendrimer and all those that are determined from them, based on
Equation (24), in the subsequent generations of the DSGRSD structure.

To make more clear how the iterative method works, we discuss in the following the determining
of the eigenvalue spectrum of the DSGRSD structure at the first two generations. The dendrimer
component of the structure can be at any generation gd. In the first stage we determine, based on
Equations (13)–(17), the eigenvalue spectrum of the dendrimer. Then, in the second stage, we insert
in Equation (24) each eigenvalue from the dendrimer (except λ1 = 0) and in this way determine
a part of the eigenvalue spectrum the multihierarchical structure at first generation, (gd, gs = 1).
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To this spectrum one adds ∆gd,gs=1
3 degenerate modes corresponding to the eigenvalue 3, as well as

the vanishing eigenvalue λ1 = 0. One part of the eigenvalues spectrum of the DSGRSD structure
at the second generation, (gd, gs = 2), is determined by solving Equation (24) for each λ of the first
generation (apart of λ1 = 0). To this spectrum one adds ∆gd,gs=2

3 degenerate modes corresponding to

the eigenvalue 3, ∆gd,gs=2
5 degenerate modes corresponding to the eigenvalue 5, and the eigenvalue

λ1 = 0. The iteration to higher generations is now obvious.
Now, it is a simple matter to prove that through our iterative method one obtains the whole

eigenvalue spectrum. The total number of nonpersistent eigenvalues is

Ngd,gs
np = 2gs · (3 · 2gd − 3) (27)

The total number of persistent degenerate eigenvalues obtained from the eigenvalue 3 (including
also the eigenvalue 3) is:

Ngd,gs
3 =

gs−1

∑
i=0

2i · ∆gd,gs−i
3 = 2gd−1 · (3gs+1 − 3) + 2gs − 3gs (28)

The total number of persistent degenerate eigenvalues obtained from the eigenvalue 5 (including
also the eigenvalue 5) is:

Ngd,gs
5 =

gs−1

∑
i=0

2i · ∆gd,gs−i
5 = 2gd−1 · (3gs+1 + 3) + 2gs+1 · (1− 3 · 2gd−1)− 3gs − 1 (29)

Finally, the total number of modes at generation (gd, gs) is:

N = 1 + Ngd,gs
np + Ngd,gs

3 + Ngd,gs
5 = 3gs · (3 · 2gd − 2) (30)

where we, also, took into account the nondegenerate eigenvalue λ1 = 0. For small generations of
the multihierarchical structure, it is a simple matter to diagonalize numerically the corresponding
A matrices and to verify the correctness of the procedure (eigenvalues and degeneracies).
The comparison with the eigenvalues and their degeneracies achieved through iterative method
showed a perfect agreement.

In the Rouse model, the longest relaxation time of the investigated polymer system, called
Rouse relaxation time τR, is inversely proportional to the smallest eigenvalue (different from zero)
of the connectivity matrix A. Making use of Equation (24), with the the minus sign considered,
the smallest eigenvalue of the connectivity matrix of the DSGRSD structure may be approximated
through the analytical expression (see the proof in the Appendix):

λ
(gd,gs)
min ≈ 5−gs · 2−(gd+1) (31)

The smallest eigenvalue at generation (gd = 6, gs = 6) is 5.451986 · 10−7, at generation
(gd = 8, gs = 8) is 5.143539 · 10−9, and at generation (gd = 10, gs = 10) is 5.044676 · 10−11.
The smallest eigenvalue obtained trrough the relation (31) is 5 · 10−7 at generation (gd = 6, gs = 6),
5 · 10−9 at generation (gd = 8, gs = 8), and 5 · 10−11 at generation (gd = 10, gs = 10).
From the comparison, it results that the analytical expression (31) estimates the smallest eigenvalue
with precision of 91.71% at generation (gd = 6, gs = 6), of 97.21% at generation (gd = 8, gs = 8),
and of 99.11% at generation (gd = 10, gs = 10). Now, the longest relaxation time of the DSGRSD
structure can be estimated through:

τR ≈ τ0 · 5gs · 2gd+1 (32)

where, τ0 = ζ/K is the monomeric relaxation time.
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4. Relaxation Patterns

4.1. Relaxation Dynamics in the Rouse Model

We are now in the position to use the eigenvalues achieved in the iterative manner in order to
calculate the different relaxation quantities introduced in Section 2. We mention that all relaxation
quantities in which we focus are presented in dimensionless units. We start with the averaged
monomer displacement, << Y(t) >>, given by Equation (7) in which we set σ = 1 and F/ζ = 1.
The left-hand side panel of Figure 3 presents the results obtained for the DSGRSD structure whose
generation varies from (gd = 6, gs = 6) to (gd = 10, gs = 10), so that the total number of beads
in the structure extends from N = 138, 510 to N = 181, 280, 430. The scales on the left-hand side
panel of the figure are double logarithmic to basis 10. Given that the scales are doubly-logarithmic,
one sees that in the very short times domain one has << Y(t) >>∼ t which is due to the diffusive
motion of single beads. On the other hand, at long times one reaches the domain << Y(t) >>∼ t/N,
which indicates that the structure moves as a whole and in the absence of an external field, based on
the Einstein relation for GGS [10,52,58] is the hallmark of simple diffusion. Due to the N-dependence
of << Y(t) >> in Equation (7) at long times the curves belonging to structures of different sizes are
shifted with respect to each other. However, neither the very short nor the very long time domains
are typical for the GGS under investigation; typical is the intermediate time domain. Remarkably,
we found that the intermediate time domain of << Y(t) >> splits into two regions. Given that
our multihierarchical structure consists of two components, this is a clear sign of reflection of
the topology in the relaxation dynamics. Now, the question is how far. The region located at
lower intermediate times appears as a straight line thus obeying a power law << Y(t) >>∼ tγ.
Going from N = 138, 510 to N = 181, 280, 430 we have a change in the slope from γ ≈ 0.351 to
γ ≈ 0.319. From the comparison of the last value with γ = 1− ds

2 = 0.31739 results clearly that
the region corresponds to the dual Sierpinski gasket component of the multihierarchical structure.
The region located at higher intermediate times appears as a concave curvature which indicates
a typical dendrimer behavior.
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Figure 3. Left-hand side panel: Average monomer displacement for DSGRSD structure at generations
(gd = 6, gs = 6), (gd = 8, gs = 8), and (gd = 10, gs = 10). Rouse model. Right-hand side panel: Local
slopes γ of the curves from the left-hand side panel.

In order to render this analysis more quantitative we present in the right-hand side panel of
Figure 3 the derivative of the curves from the left-hand side panel. Displayed is the local slope
γ = d(log10 << Y(t) >>)/d(log10t) with the analytical expression



Polymers 2017, 9, 245 12 of 26

γ =
t + t ·∑N

i=2 exp(−σλit)

t + σ−1 ∑N
i=2

1−exp(−σλit)
λi

(33)

In the right-hand side panel the x-axis is logarithmic and the y-axis is linear. The limiting time
behaviors with slope 1 are evident. One can clearly see in the intermediate time domain of the curves
the appearance of two regions, a plateau region corresponding to the scaling behavior of the dual
Sierpinski fractal component followed by a region with continuously decreasing the slope as the time
increases which corresponds to the dendrimer component. Also, oscillations due to the local structure
and multihierarchical construction are evident.

Figure 4 shows in an explicit manner the reflection of the geometry of each component of
the DSGRSD structure in the dynamical behavior of the average monomer displacement. Plotted are
the results obtained for the DSGRSD structure at generation (gd = 10 and gs = 10) (black solid line),
for a pure dendrimer at generation gd = 10 (blue dashed line), and for a dual Sierpinski gasket at
generation gs = 10 (red dashed line). The scales of the figure are double logarithmic to basis 10.
Note that, for the comparison, the number density of pure dual Sierpinski gaskets is the same as
in the DSGRSD structure. Also, the friction coefficient of the beads in the dendrimer is equal to
the total friction coefficient of the dual Sierpinski gasket in the DSGRSD structure. One observes a very
good matching, each component of the multihierarchical structure being explicitly highlighted by the
overlapping with its original structure.
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Figure 4. Averaged monomer displacement for DSGRSD structure at generation (gd = 10, gs = 10),
for pure dendrimer at generation gd = 10, and for pure dual Sierpinski gasket at generation gs = 10.
See text for details.

As mentioned in Section 2, << Y(t) >> may be measured by microscopic means.
Most measurements on polymers, however, are not monitored in the time but in the frequency
domain; furthermore they involve macroscopic changes. Given the relative ease by which mechanical
relaxation measurements can be nowadays performed, we focus on the moduli G′(ω) and G′′(ω),
given by Equations (8) and (9), and presented in Figures 5 and 6. In our calculations, we again
used DSGRSD structure whose generation extends from (gd = 6, gs = 6) to (gd = 10, gs = 10),
so that the total number of beads varies from N = 138, 510 to N = 181, 280, 430. In Figures 5 and 6
we plot Equations (8) and (9) in dimensionless units, by setting σ = 1 and C/N = 1. Note that
the scales in both figures are double logarithmic to basis 10. Evidently in both figures are the limiting,
connectivity-independent behaviors at very small and very large frequencies; for ω � 1 one has
G′(ω) ∼ ω2 and G′′(ω) ∼ ω which represents the mechanical response of the entire polymer network,
whereas for ω � 1 one finds G′(ω) ∼ ω0 and G′′(ω) ∼ ω−1 which signifies single-bead mechanical
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response. The microscopic characteristics of the system reveals in the intermediate regime. Similarly to
the case of average monomer displacement discussed above, we found, for both G′(ω) and G′′(ω),
that the in-between frequency regime decomposes into two regions. The region located at smaller
intermediate frequencies developes as a concave curve; behavior that is characteristic to dendrimers.
The region located at larger intermediate frequencies appears as a straight line which, in the double
logarithmic scales, denote scaling behavior G′(ω) ∼ ωα′ and G′′(ω) ∼ ωα′′ . Based on theoretical
grounds, we expect the slopes of these scaling regions to have values equal to half of the spectral
dimension. In Figure 5 linear fits in the scaling region of the intermediate frequency domain result in
α′ ≈ 0.712 for generation (gd = 6, gs = 6), α′ ≈ 0.693 for generation (gd = 8, gs = 8), and α′ ≈ 0.684
for generation (gd = 10, gs = 10). In Figure 6 the best approximation in the scaling region of the
intermediate frequency domain leads to α′′ ≈ 0.649 for generation (gd = 6, gs = 6), α′′ ≈ 0.663 for
generation (gd = 8, gs = 8), and to α′′ ≈ 0.675 for generation (gd = 10, gs = 10). From the comparison
of the values obtained for the largest generation with the theoretical value ds/2 = 0.68261 we infer
that the region corresponds to the relaxation dynamics of the dual Sierpinski gasket component of
the multihierarchical structure.
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Figure 5. Storage modulus for DSGRSD structure at generations (gd = 6, gs = 6), (gd = 8, gs = 8),
and (gd = 10, gs = 10). Rouse model.
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Figure 6. Loss modulus for DSGRSD structure at generations (gd = 6, gs = 6), (gd = 8, gs = 8),
and (gd = 10, gs = 10). Rouse model.
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To render these aspects more evident, we plot in Figure 7 the local slopes of the curves from
Figures 5 and 6. The left-hand side panel of the figure displays the quantity α′ = d(log10G′(ω))/d(log10ω)

and the right-hand side panel displays the quantity α′′ = d(log10G′′(ω))/d(log10ω). The analytical
expressions for the local slopes, α′ and α′′, are given by

α′ =
8σ2 ∑N

i=2
λ2

i
(ω2+4σ2λ2

i )
2

∑N
i=2

1
ω2+4σ2λ2

i

(34)

and

α′′ =
∑N

i=2
4σ2λ3

i−ω2λi
(ω2+4σ2λ2

i )
2

∑N
i=2

λi
ω2+4σ2λ2

i

. (35)
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Figure 7. Left-hand side panel: Local slopes α′ of the curves of Figure 5. Right-hand side panel: Local
slopes α′′ of the curves of Figure 6. Rouse model.

In both panels of the figure the x-axis is logarithmic to basis 10 and the y-axis is linear. Immediately
apparent are for very small and for very large ω the limitations, theoretically expected values, namely 2
and 0 for α′ and 1 and −1 for α′′ respectively. In the intermediate frequency domain one can clearly see
the appearance of two regions, one with decreasing slope corresponding to the dendrimer component,
followed by a plateau region corresponding to the dual Sierpinski gasket component. Even though we
have a mixing algorithm for building the multihierarchical structure, the splitting of the intermediate
domain highlights the existence of two relaxation processes, each component of the multihierarchical
structure relaxes on its frequency range independent of the other component. Again, oscillations due
to the local structure and multihierarchical construction are evident.

In the same fashion as in Figure 4 , in Figure 8 we present in an explicit manner the reflection of
the geometry of each component of the DSGRSD structure in the dynamical behavior of the mechanical
moduli. To achive this, we display comparatively the mechanical relaxation moduli for the DSGRSD
structure at generation (gd = 10 and gs = 10) (black solid line), for a regular dendrimer at generation
gd = 10 (blue dashed line), and for a dual Sierpinski gasket at generation gs = 10 (red dashed
line). The left-hand side panel of the figure shows the results obtained for the storage modulus and
the right-hand side panel shows the results obtained for the loss modulus. The scales in both panels of
the figure are double logarithmic to basis 10. Again, for matching, the number density of pure dual
Sierpinski gaskets is the same as in the DSGRSD structure as well as the friction coefficient of the beads
in the representative dendrimer is equal to the total friction coefficient of the pure dual Sierpinski
gaskets in the DSGRSD structure. The results obtained for the pure dendrimer and for the dual
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Sierpinski fractal perfectly match the ones of the multihierarchical structure. This highlights explicitly
the reflection of the geometry of each component of the multihierarchical structure in the behaviors of
the mechanical relaxation moduli.
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Figure 8. Left-hand side: storage modulus for DSGRSD structure at generations (gd = 10, gs = 10),
for pure dendrimer at generation gd = 10, and for pure dual Sierpinski gasket at generation gs = 10.
Right-hand side: loss modulus for DSGRSD structure at generations (gd = 10, gs = 10), for pure
dendrimer at generation gd = 10, and for pure dual Sierpinski gasket at generation gs = 10. See text
for details.

We now turn to consider dielectric relaxation expressions and note that their evaluation is based
on the frequency-dependent, complex dielectric susceptibility, ∆ε∗(ω). Expressing it in terms of its
real and imaginary parts, ∆ε∗ = ∆ε′ − i∆ε′′, one finds [10]:

∆ε′(ω) =
1
N

N

∑
i=2

λ2
i

ω2τ2
0 + λ2

i
(36)

and

∆ε′′(ω) =
1
N

N

∑
i=2

ωτ0λi

ω2τ2
0 + λ2

i
. (37)

The assumption here, namely the absence of any correlations in the orientations of the dipole
moments of the different GGS bonds is obviously rather simplified. However, it leads to simple
analytical expressions for the dielectric susceptibility, a very important dynamical quantity in
experimental studies of polymers.

In Figure 9 we present in dimensionless units the results obtained for ∆ε′′(ω), calculated based on
Equation (37) in which we set τ0 = 1. In our calculations, we used DSGRSD structure whose generation
extends from (gd = 6, gs = 6) to (gd = 10, gs = 10). Now the limiting cases for small and large ω

are ∆ε′′(ω) ∼ ω and ∆ε′′(ω) ∼ ω−1, respectively. Again concentrating on the intermediate domain,
we find that it splits into two regions. The region located at smaller intermediate frequencies appears
as rather concave curve, denoting a behavior which is characteristic to regular dendrimers. So that,
this region corresponds to the dendrimer component of the multihierarchical structure. The region
located at higher intermediate frequencies appears as a straight line which, in the double logarithmic
scales of the figure, denotes power-law behavior, ∆ε′′(ω) ∼ ωβ. Linear fits in the region of higher
intermediate frequencies result in β ≈ 0.655 for generation (gd = 6, gs = 6), β ≈ 0.667 for generation
(gd = 8, gs = 8), and β ≈ 0.679 for generation (gd = 10, gs = 10). From the comparison of the value
obtained for the largest generation with the theoretical value ds/2 = 0.68261 we infer that the region
corresponds to the dual Sierpinski gasket component of the multihierarchical structure.
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Figure 9. ∆ε′(ω) for DSGRSD structure at generations (gd = 6, gs = 6), (gd = 8, gs = 8), and
(gd = 10, gs = 10). Rouse model.

Concluding the subsection devoted to the Rouse relaxation dynamics, the answer to the above
question is: up to the level of preserving the dynamical behavior of the individual components.

4.2. Relaxation Dynamics in the Zimm Model

In the Rouse-type approach, we have shown that the multihierarchical structure preserves
the individual dynamical characteristics of its components. It is well-known that the hydrodynamic
interactions strongly influence the dynamics of dilute polymer solutions. Zimm approach considers
that the beads of the polymer system disturb the velocity field of the solvent. Such perturbations
propagate through the solvent and influence the motion of the other beads. In other words,
each monomer can interact with any other monomer of the polymer system, the interaction being
mediated by the solvent. The major question here is whether the topology of the multihierarchical
structure is still revealed in the behavior of the dynamical quantities when hydrodynamics interactions
are taken into account.

As stressed in Section 2, in the Zimm model the relaxation quantities require mainly the knowledge
of the eigenvalues and the eigenvectors of the product matrix HA. For our multihierarchical structure
the Zimm model allows us to solve the eigenvalue problem only numerically, so that the size of
the investigated structures is considerably diminished. It is worthy to remark that the preaveraged
scheme leads, for large hydrodynamic interaction parameter ζr, to unphysical behaviors, such as
the appearance of negative eigenvalues. For moderate hydrodynamic interaction parameter as
ζr = 0.25 preaveraging is in general reasonable and leads to qualitatively correct results.

Keeping the same order, we start by focussing on the average monomer displacement under
hydrodynamic interactions, << Y(t) >>, given by Equation (6) in which we set σ = 1 and F/ζ = 1.
The results are presented in Figure 10 for DSGRSD structure at generations (gd = 4, gs = 4) and
(gd = 5, gs = 4); accordingly, the total number of monomers is N = 3726 and respectively N = 7614.
The hydrodynamic interaction strength is ζr = 0.25. The scales of the figure are double logarithmic
to basis 10. The first observation is that the figure renders clearly the limiting cases of Equation (6),
i.e., at very long times one reaches the domain << Y(t) >>' FH11t/Nζ and, similar to Rouse case,
because of the N-dependence of << Y(t) >> the curves belonging to structures of different sizes
are shifted with respect to each other. On the other hand, at very short times all curves merge; this is
the domain where << Y(t) >>= Ft/ζ. These two domains appear as straight lines with slope 1.
As before, exemplarly is the intermediate time region. Surprisingly, even with the hydrodynamic
interactions taken into account the intermediate time domain divides into two regions. The curves
in these two intermediate time regions are not smooth, which, in the double logarithmic scales of



Polymers 2017, 9, 245 17 of 26

the figure, suggest no scaling behavior. This behavior is in line with the obtained behaviors for
the dual Sierpinski gaskets [48,49] and for the regular dendrimers [10,11] when treated individual.
The region located at lower intermediate times corresponds to dual Sierpinski gasket component of
the multihierarchical structure, whereas the region located at larger intermediate times corresponds to
the dendrimer component.
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Figure 10. Average monomer displacement for DSGRSD structure at generations (gd = 4, gs = 4) and
(gd = 5, gs = 4). Zimm model.

In order to better highlight the two regions of the intermediate time domain we plot in Figure 11
the derivative of the curves of Figure 10, i.e., the quantity γ = d(log10 << Y(t) >>)/d(log10t).
With << Y(t) >> given by Equation (6), the analytical expression for γ is

γ =
tH11 + t ·∑N

i=2 Hii exp(−σλit)

H11t + σ−1 ∑N
i=2

1−exp(−σλit)
λi

Hii

(38)
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Figure 11. Local slopes γ of the curves of Figure 10. Zimm model.

We note that in the figure the x-axis is logarithmic and the y-axis is linear. If in Figure 10 the two
intermediate regions are rather difficult to distinguish, in this representation they are clearly rendered.
For the largest generation considered, namely (gd = 5, gs = 4), with red solid line we indicate
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the intermediate time region corresponding to the dual Sierpinski gasket component and with blue
solid line we indicate the intermediate time region corresponding to the dendrimer component.

Figure 12 shows the behavior of the storage modulus, G′(ω), obtained under the influence of
hydrodynamic interactions. The storage modulus was calculated using Equation (8) in which we set
σ = 1 and C/N = 1. Again, we have used DSGRSD structure at generations(gd = 4, gs = 4) and
(gd = 5, gs = 4). The scales of the figure are double logarithmic to basis 10 and the hydrodynamic
interaction parameter is ζr = 0.25. The connectivity-independent behavior at very small frequencies
(G′(ω) ∼ ω2) and at very large frequencies (G′(ω) ∼ ω0) is well displayed by the curves from
the figure. Very interesting is the fact that the intermediate frequency domain of the storage modulus
also splits into two regions. In the double logarithmic scales of the figure the intermediate frequency
regions do not appear as straight lines, so that they do not obey power-laws. The obtained behavior
agrees the former reported results achieved for single dendrimer [10,11] and for single dual Sierpinski
gaskets [48,49]. The region located at smaller intermediate frequencies corresponds to the dendrimer
component and the region located at higher intermediate frequencies corresponds to the dual Sierpinski
gasket component.
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Figure 12. Storage modulus for DSGRSD structure at generations (gd = 4, gs = 4) and (gd = 5, gs = 4).
Zimm model.

For a better visualisation of the two intermediate frequency regions, we present in Figure 13
the local slopes, α′ = d(log10 G′(ω))/d(log10 ω), of the curves of Figure 12. The analytical expression
for α′ is given by Equation (34). In Figure 13 the x-axis is logarithmic and the y-axis is linear.
For the largest generation considered, namely (gd = 5, gs = 4), in the same manner as in Figure 11
we emphasize with color lines the two regions of the intermediate frequency domain. The blue
solid line indicates the intermediate region corresponding to the dendrimer component and the red
solid line indicates the intermediate region corresponding to the dual Sierpinski gasket component
of the multihierarchical structure. In this way we have shown that, even with hydrodynamic
interactions considered, the multihierarchical structure preserves the individual relaxation behaviors of
its components. We are, of course, aware of the fact that the structures are not large enough as the ones
considered in the Rouse case. Nonetheless, we can certainly assess that for the structures considered
here and accounting for hydrodynamic interactions in the Zimm approach leads to a splitting of
the intermediate time/frequency domain of the dynamical quantities in two parts, one reflecting
the dendrimer dynamics and the other the dual Sierpinski gasket dynamics.
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Figure 13. Local slopes α′ of the curves of Figure 12. Zimm model.

The DSGRSD structure contains loops, and even loops on loops, at every level. Because of
the loops the interbead distances (which enter directly into the hydrodynamic interaction matrix,
Equation (2)) depend on the positions of the (i; j)-pairs on the structure. These distances are larger at
the periphery and smaller inside of the structure. The loops in the multihierarchical structure affects
the dynamics in a similar way like they do on the original dual Sierpinski gasket. Their presence leads
to lost of scaling of the dual Sierpinski gasket component in the Zimm model, but they do not affect in
such a way to interfere with the dendrimer component and to result a mixture-like behavior.

Remarkably, our theoretical findings with respect to the division of the intermediate domain
into two regions are well supported by mechanical relaxation experiments performed on different
types of polymers. Similar behaviors in the intermediate frequency domain have been reported for
styrene-isoprene (SI) diblock copolymer micelles [72], associative polymers/polymer networks [73,74],
complex supramolecular dendritic polymer networks in melt state [75,76], and associative protein
hydrogels [77]. Also, close experimental results to our theoretical findings have been also reported for
collagen systems [78], multifunctional polyhedral oligomeric silsesquioxane (POSS)/poly(propylene
oxide) (PPO) nanocomposites [79], and covalently crosslinked Diels-Alder polymer networks [80].

5. Conclusions

In this paper we have studied the relaxation dynamics of a multihierarchical polymer structure
which was built by replicating the fractal dual Sierpinski gasket in shape of a regular dendrimer.
The relaxation dynamics has been studied in the the framework of generalized Gaussian structures
model by employing, both, Rouse and Zimm approaches. In the Rouse model, taking the advantage
that the main relaxation patterns depend only on the eigenvalues, we have shown a procedure whereby
the whole eigenvalue spectrum of the connectivity matrix of the DSGRSD structure can be determined
iteratively. Based on the eigenvalues obtained in the interative manner we were able to investigate
the dynamics of the multihierarchical structure at very large generations, impossible to attain through
numerical diagonalizations. In the Rouse type-approach, where the interactions are considered only
between nearest neighbors monomers, the general picture that emerges is that the multihierarchical
structure preserves the individual behaviors of its constituents. The intermediate time/frequency
domain of the dynamical quantities divides into two regions, each region showing the typical behavior
of a component of the multihierarchical structure.

Beside the dynamical quantities we have investigated in this paper, many other dynamical
quantities can be determined based on eigenvalue spectrum of the connectivity matrix; mean first
passage time of a random walk [81,82], the dielectric relaxation functions [39], the NMR relaxation
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functions [62,83], to recall but a few. Therefore, the knowledge of the eigenvalue spectrum is of great
importance leading to further scientific advances.

Remarkably, the multihierarchical structure still holds the original individual relaxation behaviors
of its components even with the hydrodynamic interactions taken into account. Although the dual
Sierpinski gasket was replicated in form of a dendrimer and in the Zimm approach one allows to
each monomer to interact with any other, not only with nearest neighbors, the intermediate domain of
the dynamical quantities still splits into two independent regions, each highlighting the individual
dynamics of a constituent component of the multihierarchical structure.

These results have been obtained for the case of fully-flexible Gaussian multihierarchical structure
and without the consideration of the excluded volume constraints and the entanglement effects.
The inclusion of the excluded volume effects and a comparison between the results obtained in
the Zimm-type approach with the ones obtained by using Brownian dynamics simulations with
the hydrodynamic interactions will be the subject of a future work.

We address the DSGRSD structure as possible theoretical models for the relaxation dynamics of
different polymer systems as associative polymer networks, micelle networks, physical polymer gels,
and supramolecular dendritic polymer networks.
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The following abbreviations are used in this manuscript:

DSGRSD dual Sierpinski gasket replicated in shape of dendrimer
GGS generalized Gaussian structures

Appendix A

Here we present the real-space decimation transformations under which the DSGRSD structure
reduces from generation (gd, gs) to generation (gd, gs − 1). The first transformation is sketched in
Figure A1. Our starting point is Equation (12). The main eigenvalue Equation we needed for our
calculations are

(3− λ)φ1 = φ2 + φ3 + φ4 (A1)

(3− λ)φ2 = φ1 + φ3 + φ7 (A2)

(3− λ)φ3 = φ1 + φ2 + φ10 (A3)

(3− λ)φ4 = φ1 + φ5 + φ6 (A4)
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(3− λ)φ7 = φ2 + φ8 + φ9 (A5)

(3− λ)φ10 = φ3 + φ11 + φ12 (A6)

Inserting Equation (A2) into Equation (A1) we get

(λ2 − 5λ + 3)φ1 = −φ4 + φ5 + φ6 + φ7 + φ10 (A7)

Equation (A2) with the expression of φ1 from Equation (A1) leads to

(λ2 − 5λ + 3)φ2 = φ4 − φ7 + φ8 + φ9 + φ10 (A8)

Now, by inserting Equation (A1) into Equation (A3) one has

(λ2 − 5λ + 3)φ3 = φ4 + φ7 − φ10 + φ11 + φ12 (A9)

Summing up Equations (A7)–(A9) and after few algebraic calculations and rearranging terms,
one obtains

[3− (−λ2 + 5λ)](φ1 + φ2 + φ3) = φ4 + φ5 + φ6 + φ7 + φ8 + φ9 + φ10 + φ11 + φ12 (A10)

Now, setting

P(λ) = −λ2 + 5λ (A11)

φ′1 = φ1 + φ2 + φ3 (A12)

φ′2 = φ4 + φ5 + φ6 (A13)

φ′3 = φ7 + φ8 + φ9 (A14)

φ′4 = φ10 + φ11 + φ12 (A15)

we obtain

[3− P(λ)]φ′1 = φ′2 + φ′3 + φ′4 (A16)

which is nothing else than Equation (20) from the main text.
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Figure A1. First transformation.

The second transformation is displayed in Figure A2. Our starting point is again Equation (12).
The main eigenvalue Equation which we use in our calculations are

(2− λ)φ1 = φ2 + φ3 (A17)

(3− λ)φ2 = φ1 + φ3 + φ4 (A18)

(3− λ)φ3 = φ1 + φ2 + φ7 (A19)

(3− λ)φ4 = φ2 + φ5 + φ6 (A20)

(3− λ)φ7 = φ3 + φ8 + φ9 (A21)

With the expression of φ2 from Equation (A18), the Equation (A17) becomes

(λ2 − 5λ + 2)φ1 = −2φ1 + φ2 + φ3 + φ4 + φ7 (A22)

By combining Equations (A18) and (A20) one obtains

(λ2 − 5λ + 2)φ2 = φ1 − φ2 − φ4 + φ5 + φ6 + φ7 (A23)

Inserting Equation (A21) into Equation (A19) we get

(λ2 − 5λ + 2)φ3 = φ1 − φ3 + φ4 − φ7 + φ8 + φ9 (A24)

Summing up Equations(A22)–(A24) and after some algebraic calculations and rearranging terms,
one obtains

[2− (−λ2 + 5λ)](φ1 + φ2 + φ3) = φ4 + φ5 + φ6 + φ7 + φ8 + φ9 (A25)

Now, setting

P(λ) = −λ2 + 5λ (A26)

φ′1 = φ1 + φ2 + φ3 (A27)

φ′2 = φ4 + φ5 + φ6 (A28)
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φ′3 = φ7 + φ8 + φ9 (A29)

we obtain

[2− P(λ)]φ′1 = φ′2 + φ′3 (A30)

which is nothing else than the Equation (21) from the main text.

1

2 3

4

5 6

7

8 9

2' 3'

1'

Figure A2. Second transformation.

It is very important to estimate the smallest nonvanishing eigenvalue, λ
(gd,gs)
min , which is related to

the longest relaxation time of the DSGRSD structure. For this, we expand in Maclaurin series the right
hand side of Equation (24) from the main text. Here, we consider Equation (24) only with the minus
sign because this is the case that leads to smaller eigenvalues. Given the fact that in the series expansion
the higher order terms do not bring much contribution we keep only first order term and have:

λ
(gd,gs)
min ≈ 1

5
λ
(gd,gs−1)
min (A31)

Expression (A31) relates the smallest eigenvalues belonging to two consecutive generations.
Relating the smallest eigenvalue of the generation (gd, gs) with the smallest eigenvalue at the first
generation which comes from the dendrimer component, one has

λ
(gd,gs)
min ≈ 1

5gs λ
(gd)
min (A32)

It was shown in Ref. [4] that the smallest eigenvalue of a regular dendrimer at generation gd can
be approximated as

λ
(gd)
min ≈ 2−(gd+1) (A33)

Inserting Equation (A33) into Equation (A32) we get

λ
(gd,gs)
min ≈ 5−gs · 2−(gd+1) (A34)

Now, the longest relaxation time being inversely proportional to the smallest eigenvalue can be
estimated as:

τR ≡
τ0

λ
(gd,gs)
min

≈ τ0 · 5gs · 2gd+1 (A35)

where, τ0 = ζ/K is the monomeric relaxation time.
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