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Abstract: This short review article summarizes recent reports on using controlled radical polymerization
(CRP) of inimers (compounds containing initiating group and vinyl group in one molecule) or transmers
(compounds containing chain transfer group and vinyl group in one molecule) for the synthesis of
hyperbranched polymers. These inimers and transmers that carry numerous functional groups could
be homopolymerized, i.e., self-condensing vinyl polymerization, or copolymerized with monovinyl
monomers, i.e., self-condensing vinyl copolymerization, using atom transfer radical polymerization
(ATRP), nitroxide-mediated polymerization (NMP) or reversible addition fragmentation chain transfer
(RAFT) polymerization techniques, producing hyperbranched polymers and hyperstar polymers with
tunable molecular weights, compositions and degree of branching. Recent reports that attempted
different strategies to regulate polymer–polymer reactions were introduced, demonstrating possible
syntheses of hyperbranched polymers with better defined structures and relatively low molecular
weight dispersity. Finally, several CRP-produced hyperbranched polymers were discussed on their
applications for encapsulation of guest molecules, nanomedicine, diagnostic imaging and catalysis.

Keywords: hyperbranched polymer; controlled radical polymerization; inimer; transmer; self-condensing
vinyl polymerization

1. Introduction

Highly branched polymers that are comprised of dendrimers and hyperbranched polymers
represent an intriguing class of macromolecules with compact structure, high density of branching
linkers, three-dimensional globular shape and multiple chain-end groups [1–6]. They have demonstrated
promising properties for a variety of applications, ranging from specialty additives, lubricants and
nanomedicine to molecular catalysis [7–10]. Interestingly, dendrimers and hyperbranched polymers
present a sharp contrast regarding their structural controllability and synthetic simplicity. As compared
to dendrimers that have an elegant structure at the cost of a sophisticated multi-step reaction [2,11,12],
hyperbranched polymers from the one-pot facile polymerization suffer random bimolecular reactions
with no control of polymer structures [1,3,8].

Till now, various techniques have been developed to synthesize hyperbranched polymers,
including: (1) step-growth [3,10] or chain-growth [13,14] polymerization of ABm (m ≥ 2) monomers
where A and B represent two functional groups that can react with each other; (2) step-growth
copolymerization of An and Bm monomers (m,n ≥ 2, m × n > 4) [15–17]; (3) chain-growth
polymerization of divinyl or multivinyl crosslinkers with or without monovinyl monomers [18–23];
(4) self-condensing ring-opening polymerization (SCROP) [24–26]; and (5) self-condensing vinyl
polymerization (SCVP) [27]. In particular, the last method requires the use of controlled polymerization

Polymers 2017, 9, 188; doi:10.3390/polym9060188 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
http://dx.doi.org/10.3390/polym9060188
http://www.mdpi.com/journal/polymers


Polymers 2017, 9, 188 2 of 22

methods, such as controlled radical polymerization (CRP) [28–34], living ionic polymerization [35,36]
and group transfer polymerization [37].

This review article highlights the recent progress on using CRP methods to produce
hyperbranched polymers via routes of SCVP and self-condensing vinyl copolymerization (SCVCP)
with monovinyl monomers. Three of the following sections focus on the use of nitroxide-mediated
polymerization (NMP) [38–41] and atom transfer radical polymerization (ATRP) [42–68] of AB* inimers
(compounds containing initiator fragment B* and vinyl group A in one molecule) and reversible
addition fragmentation chain transfer (RAFT) polymerization of transmers [69–103] (compounds
containing chain-transfer group and vinyl group in one molecule) to produce various functional
hyperbranched polymers. Photo-mediated radical polymerization of polymerizable “iniferter”
monomers [71,104–107] is also discussed in the section of RAFT polymerization since iniferter
monomers share very similar structures as transmers. In addition, recent progress on regulating the
structural heterogeneity of hyperbranched polymers and on demonstrating functions of hyperbranched
polymers in various applications are discussed in Sections 5 and 6, respectively. Meanwhile,
hyperbranched polymers produced via SCVP using other initiation techniques, such as cationic
polymerization [27,108], anionic polymerization [109–116], group transfer polymerization [37,117,118]
and ruthenium-catalyzed coordinative polymerization [119], will not be discussed in this short
review article.

2. Synthesis of Hyperbranched Polymers Using NMP

Immediately after the first report of NMP in 1993 by Georges [120], Hawker and Fréchet quickly
applied the NMP method in the first synthesis of hyperbranched polymers (Figure 1) [38]. In this case,
a styrenic AB* inimer functionalized with an alkoxyamine initiating group was homopolymerized
at 130 ◦C and produced a hyperbranched polymer in 72 h without gelation. The polymer showed
an apparent molecular weight Mn = 6000 based on linear polystyrene standards with a dispersity
Mw/Mn = 1.40 and a glass transition temperature Tg = 45 ◦C. The produced hyperbranched
polymer was further utilized as a macroinitiator (MI) for a second-step chain extension to produce
a hyperbranched star (hyperstar) polymer with Mn = 300,000 and Mw/Mn = 4.35. Cleavage of the
benzyl ether linkers in the hyperbranched polymers produced degraded products with lower molecular
weights, confirming the presence and nature of branching units in the hyperstar polymers. This report
also represents the first example on synthesis of hyperstar polymers using hyperbranched polymers
as MIs.
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Figure 1. Illustration of the homopolymerization of an alkoxyamine-based inimer using  
nitroxide-mediated polymerization (NMP) self-condensing vinyl polymerization (SCVP) to form a 
hyperbranched polymer (HBP) [38]. 

Polymerizable nitroxides, such as 4-methacryloyloxy-2,2,6,6-tetramethyl-1-piperidinyloxy 
(MTEMPO) and 4-(4′-vinylphenylmethoxy)2,2,6,6-tetramethyl-1-piperidinyloxy (STEMPO) [40,72] 
(Figure 2), were used to introduce branching points into polymers. The branching points in these 
hyperbranched polymers underwent reversible thermolysis/recombination reactions at the  
C-nitroxide linkage, which mediates the polymerization and maintains the “livingness” of  
the polymers. 

Figure 1. Illustration of the homopolymerization of an alkoxyamine-based inimer using
nitroxide-mediated polymerization (NMP) self-condensing vinyl polymerization (SCVP) to form
a hyperbranched polymer (HBP) [38].

Polymerizable nitroxides, such as 4-methacryloyloxy-2,2,6,6-tetramethyl-1-piperidinyloxy
(MTEMPO) and 4-(4′-vinylphenylmethoxy)2,2,6,6-tetramethyl-1-piperidinyloxy (STEMPO) [40,72]
(Figure 2), were used to introduce branching points into polymers. The branching points in these
hyperbranched polymers underwent reversible thermolysis/recombination reactions at the C-nitroxide
linkage, which mediates the polymerization and maintains the “livingness” of the polymers.
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Figure 3. (A) Illustration of the homopolymerization of p-(chloromethyl)styrene (CMS) by atom 
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exchange during ATRP of inimer [47], A* and B* representing two types of dormant alkyl halogen 
initiating groups; A** and B** represent two types of propagating radicals. 
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Figure 2. Structure of polymerizable nitroxides: 4-methacryloyloxy-2,2,6,6-tetramethyl-1-piperidinyloxy
(MTEMPO) and 4-(4′-vinylphenylmethoxy)2,2,6,6-tetramethyl-1-piperidinyloxy (STEMPO).

Overall, NMP of inimers has been applied in a couple of very first reports for the preparation of
hyperbranched polymers, although its broad application is limited by some challenges, including the
slow polymerization kinetics, the often required high temperature, the inability to easily control
methacrylate polymerization and the multi-step synthesis of alkoxyamine-based inimers [121].
In contrast, most of the hyperbranched polymers synthesized via CRP techniques were reported
using either ATRP or RAFT methods, as will be discussed in the next two sections.

3. Synthesis of Hyperbranched Polymers via ATRP

The first ATRP SCVP of inimer was reported by Matyjaszewski using commercially available,
p-(chloromethyl)styrene (CMS), in the presence of Cu(I) and 2,2′-bipyridine (bpy) [42] (Figure 3A).
The structures of various AB* inimers reported in the ATRP SCVP and ATRP SCVCP so far are listed
in Table 1. Three types of inimers in terms of polymerizable vinyl group (A group) could be found
in published reports covering: (1) acrylate inimers (AB*1–9); (2) styrenyl inimers (AB*10, AB*11);
and (3) methacrylate inimers (AB*12–20). The other ends of these AB* inimers all contained alkyl
halide groups: either alkyl bromide or alkyl chloride, which generally employed Cu-based catalyst for
initiating the polymerization.
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Figure 3. (A) Illustration of the homopolymerization of p-(chloromethyl)styrene (CMS) by atom transfer
radical polymerization (ATRP) SCVP to form a hyperbranched polymer [42]; (B) Dynamic exchange
during ATRP of inimer [47], A* and B* representing two types of dormant alkyl halogen initiating
groups; A** and B** represent two types of propagating radicals.



Polymers 2017, 9, 188 4 of 22

In general, the branched structure of hyperbranched polymers synthesized via ATRP of AB*
inimers is critically affected by the competition between radical propagation and deactivation reactions.
Conceptually, a propagating radical from the activation of alkyl halide could either react with a new
inimer to form a linear unit (such as Lv) or be deactivated by reacting with Cu(II) deactivator (Figure 3B).
An increased rate ratio of propagation over deactivation would produce more Lv linear units from
one radical in an activation/deactivation cycle and lower the degree of branching (DB) of polymers.
In contrast, a fast deactivation reaction could quickly stop the propagation of linear units and raise
the chance of activating a different alkyl halide in another activation/deactivation cycle, which is the
essential step to form a branched unit (D in Figure 3B) [47,67,68,122].

It is useful to note that SCVP of inimers has both step-growth and chain-growth mechanistic
features; high molecular weights and highly branched polymer structures could only be achieved
at very high conversion. It was reported that SCVP of inimers AB*13 and AB*14 could not produce
high molecular weight polymers using various ligands and temperatures mainly because of the
fast radical termination reaction forming an excess amount of deactivator Cu(II) species. Thus,
Cu-based ATRP with the addition of Cu(0) for AB*13 and AB*14 [123] and Ni-based CRP for AB*13 [52]
were applied to achieve better results. The accumulated deactivator Cu(II) during ATRP of inimers
could also be removed using a heterogeneous microemulsion polymerization system. For instance,
the polymerization of inimer AB*13 in a microemulsion not only regulated the polymer structure
based on the dimension and uniformity of the discrete latexes, but also significantly increased the
polymerization kinetics via the effective partition of Cu(II) deactivator into aqueous media [45,47].

So far, a few reports have been published on ATRP SCVP of styrenic AB* inimers. AB*10 and
AB*11 as shown in Table 1 are two representative examples, in which the asymmetric structure of AB*10
offered tunable structures from linear to hyperbranched under different temperatures and ligands [65].
Through manipulating three polymerization parameters including temperature, ligand and solvents,
the authors could manipulate the reactivities of initiating groups and catalysts and the solubility of
deactivators in the polymerization solution, resulting in polymers with different architectures [67,68].
Low reaction temperature with high concentration of Cu(II) deactivator gave a higher chance of
activation from the formed A* initiating site, forming linear polyester LP1. In contrast, the use
of less reactive and low-concentration deactivator promoted the polymerization from B* sites and
produced linear polymer LP2 (Figure 4). Between these two situations, a series of branched polymers
with different DB values could be produced by simply tuning the reaction temperature and the
effective concentration of deactivators in solution. The linear polymers LP1 and LP2 that carried many
reactive benzylic bromides on the backbone have further potentials for modification via organic and
polymerization reactions to incorporate additional functionalities on the polymers.

Table 1. Summary of AB* inimers used in ATRP SCVP.

AB* Reference Structure AB* Reference Structure

AB*1 [43,122]
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radical termination reaction forming an excess amount of deactivator Cu(II) species. Thus, Cu-based 
ATRP with the addition of Cu(0) for AB*13 and AB*14 [123] and Ni-based CRP for AB*13 [52] were 
applied to achieve better results. The accumulated deactivator Cu(II) during ATRP of inimers could 
also be removed using a heterogeneous microemulsion polymerization system. For instance, the 
polymerization of inimer AB*13 in a microemulsion not only regulated the polymer structure based 
on the dimension and uniformity of the discrete latexes, but also significantly increased the 
polymerization kinetics via the effective partition of Cu(II) deactivator into aqueous media [45,47].  

So far, a few reports have been published on ATRP SCVP of styrenic AB* inimers. AB*10 and 
AB*11 as shown in Table 1 are two representative examples, in which the asymmetric structure of 
AB*10 offered tunable structures from linear to hyperbranched under different temperatures and 
ligands [65]. Through manipulating three polymerization parameters including temperature, ligand 
and solvents, the authors could manipulate the reactivities of initiating groups and catalysts and the 
solubility of deactivators in the polymerization solution, resulting in polymers with different 
architectures [67,68]. Low reaction temperature with high concentration of Cu(II) deactivator gave a 
higher chance of activation from the formed A* initiating site, forming linear polyester LP1. In 
contrast, the use of less reactive and low-concentration deactivator promoted the polymerization 
from B* sites and produced linear polymer LP2 (Figure 4). Between these two situations, a series of 
branched polymers with different DB values could be produced by simply tuning the reaction 
temperature and the effective concentration of deactivators in solution. The linear polymers LP1 
and LP2 that carried many reactive benzylic bromides on the backbone have further potentials for 
modification via organic and polymerization reactions to incorporate additional functionalities on 
the polymers. 
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In general, the branched structure of hyperbranched polymers synthesized via ATRP of AB* 
inimers is critically affected by the competition between radical propagation and deactivation 
reactions. Conceptually, a propagating radical from the activation of alkyl halide could either react 
with a new inimer to form a linear unit (such as Lv) or be deactivated by reacting with Cu(II) 
deactivator (Figure 3B). An increased rate ratio of propagation over deactivation would produce 
more Lv linear units from one radical in an activation/deactivation cycle and lower the degree of 
branching (DB) of polymers. In contrast, a fast deactivation reaction could quickly stop the 
propagation of linear units and raise the chance of activating a different alkyl halide in another 
activation/deactivation cycle, which is the essential step to form a branched unit (D in  
Figure 3B) [47,67,68,122].  

It is useful to note that SCVP of inimers has both step-growth and chain-growth mechanistic 
features; high molecular weights and highly branched polymer structures could only be achieved at 
very high conversion. It was reported that SCVP of inimers AB*13 and AB*14 could not produce 
high molecular weight polymers using various ligands and temperatures mainly because of the fast 
radical termination reaction forming an excess amount of deactivator Cu(II) species. Thus, Cu-based 
ATRP with the addition of Cu(0) for AB*13 and AB*14 [123] and Ni-based CRP for AB*13 [52] were 
applied to achieve better results. The accumulated deactivator Cu(II) during ATRP of inimers could 
also be removed using a heterogeneous microemulsion polymerization system. For instance, the 
polymerization of inimer AB*13 in a microemulsion not only regulated the polymer structure based 
on the dimension and uniformity of the discrete latexes, but also significantly increased the 
polymerization kinetics via the effective partition of Cu(II) deactivator into aqueous media [45,47].  

So far, a few reports have been published on ATRP SCVP of styrenic AB* inimers. AB*10 and 
AB*11 as shown in Table 1 are two representative examples, in which the asymmetric structure of 
AB*10 offered tunable structures from linear to hyperbranched under different temperatures and 
ligands [65]. Through manipulating three polymerization parameters including temperature, ligand 
and solvents, the authors could manipulate the reactivities of initiating groups and catalysts and the 
solubility of deactivators in the polymerization solution, resulting in polymers with different 
architectures [67,68]. Low reaction temperature with high concentration of Cu(II) deactivator gave a 
higher chance of activation from the formed A* initiating site, forming linear polyester LP1. In 
contrast, the use of less reactive and low-concentration deactivator promoted the polymerization 
from B* sites and produced linear polymer LP2 (Figure 4). Between these two situations, a series of 
branched polymers with different DB values could be produced by simply tuning the reaction 
temperature and the effective concentration of deactivators in solution. The linear polymers LP1 
and LP2 that carried many reactive benzylic bromides on the backbone have further potentials for 
modification via organic and polymerization reactions to incorporate additional functionalities on 
the polymers. 
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In general, the branched structure of hyperbranched polymers synthesized via ATRP of AB* 
inimers is critically affected by the competition between radical propagation and deactivation 
reactions. Conceptually, a propagating radical from the activation of alkyl halide could either react 
with a new inimer to form a linear unit (such as Lv) or be deactivated by reacting with Cu(II) 
deactivator (Figure 3B). An increased rate ratio of propagation over deactivation would produce 
more Lv linear units from one radical in an activation/deactivation cycle and lower the degree of 
branching (DB) of polymers. In contrast, a fast deactivation reaction could quickly stop the 
propagation of linear units and raise the chance of activating a different alkyl halide in another 
activation/deactivation cycle, which is the essential step to form a branched unit (D in  
Figure 3B) [47,67,68,122].  

It is useful to note that SCVP of inimers has both step-growth and chain-growth mechanistic 
features; high molecular weights and highly branched polymer structures could only be achieved at 
very high conversion. It was reported that SCVP of inimers AB*13 and AB*14 could not produce 
high molecular weight polymers using various ligands and temperatures mainly because of the fast 
radical termination reaction forming an excess amount of deactivator Cu(II) species. Thus, Cu-based 
ATRP with the addition of Cu(0) for AB*13 and AB*14 [123] and Ni-based CRP for AB*13 [52] were 
applied to achieve better results. The accumulated deactivator Cu(II) during ATRP of inimers could 
also be removed using a heterogeneous microemulsion polymerization system. For instance, the 
polymerization of inimer AB*13 in a microemulsion not only regulated the polymer structure based 
on the dimension and uniformity of the discrete latexes, but also significantly increased the 
polymerization kinetics via the effective partition of Cu(II) deactivator into aqueous media [45,47].  

So far, a few reports have been published on ATRP SCVP of styrenic AB* inimers. AB*10 and 
AB*11 as shown in Table 1 are two representative examples, in which the asymmetric structure of 
AB*10 offered tunable structures from linear to hyperbranched under different temperatures and 
ligands [65]. Through manipulating three polymerization parameters including temperature, ligand 
and solvents, the authors could manipulate the reactivities of initiating groups and catalysts and the 
solubility of deactivators in the polymerization solution, resulting in polymers with different 
architectures [67,68]. Low reaction temperature with high concentration of Cu(II) deactivator gave a 
higher chance of activation from the formed A* initiating site, forming linear polyester LP1. In 
contrast, the use of less reactive and low-concentration deactivator promoted the polymerization 
from B* sites and produced linear polymer LP2 (Figure 4). Between these two situations, a series of 
branched polymers with different DB values could be produced by simply tuning the reaction 
temperature and the effective concentration of deactivators in solution. The linear polymers LP1 
and LP2 that carried many reactive benzylic bromides on the backbone have further potentials for 
modification via organic and polymerization reactions to incorporate additional functionalities on 
the polymers. 
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In general, the branched structure of hyperbranched polymers synthesized via ATRP of AB* 
inimers is critically affected by the competition between radical propagation and deactivation 
reactions. Conceptually, a propagating radical from the activation of alkyl halide could either react 
with a new inimer to form a linear unit (such as Lv) or be deactivated by reacting with Cu(II) 
deactivator (Figure 3B). An increased rate ratio of propagation over deactivation would produce 
more Lv linear units from one radical in an activation/deactivation cycle and lower the degree of 
branching (DB) of polymers. In contrast, a fast deactivation reaction could quickly stop the 
propagation of linear units and raise the chance of activating a different alkyl halide in another 
activation/deactivation cycle, which is the essential step to form a branched unit (D in  
Figure 3B) [47,67,68,122].  

It is useful to note that SCVP of inimers has both step-growth and chain-growth mechanistic 
features; high molecular weights and highly branched polymer structures could only be achieved at 
very high conversion. It was reported that SCVP of inimers AB*13 and AB*14 could not produce 
high molecular weight polymers using various ligands and temperatures mainly because of the fast 
radical termination reaction forming an excess amount of deactivator Cu(II) species. Thus, Cu-based 
ATRP with the addition of Cu(0) for AB*13 and AB*14 [123] and Ni-based CRP for AB*13 [52] were 
applied to achieve better results. The accumulated deactivator Cu(II) during ATRP of inimers could 
also be removed using a heterogeneous microemulsion polymerization system. For instance, the 
polymerization of inimer AB*13 in a microemulsion not only regulated the polymer structure based 
on the dimension and uniformity of the discrete latexes, but also significantly increased the 
polymerization kinetics via the effective partition of Cu(II) deactivator into aqueous media [45,47].  

So far, a few reports have been published on ATRP SCVP of styrenic AB* inimers. AB*10 and 
AB*11 as shown in Table 1 are two representative examples, in which the asymmetric structure of 
AB*10 offered tunable structures from linear to hyperbranched under different temperatures and 
ligands [65]. Through manipulating three polymerization parameters including temperature, ligand 
and solvents, the authors could manipulate the reactivities of initiating groups and catalysts and the 
solubility of deactivators in the polymerization solution, resulting in polymers with different 
architectures [67,68]. Low reaction temperature with high concentration of Cu(II) deactivator gave a 
higher chance of activation from the formed A* initiating site, forming linear polyester LP1. In 
contrast, the use of less reactive and low-concentration deactivator promoted the polymerization 
from B* sites and produced linear polymer LP2 (Figure 4). Between these two situations, a series of 
branched polymers with different DB values could be produced by simply tuning the reaction 
temperature and the effective concentration of deactivators in solution. The linear polymers LP1 
and LP2 that carried many reactive benzylic bromides on the backbone have further potentials for 
modification via organic and polymerization reactions to incorporate additional functionalities on 
the polymers. 

Table 1. Summary of AB* inimers used in ATRP SCVP. 
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In general, the branched structure of hyperbranched polymers synthesized via ATRP of AB* 
inimers is critically affected by the competition between radical propagation and deactivation 
reactions. Conceptually, a propagating radical from the activation of alkyl halide could either react 
with a new inimer to form a linear unit (such as Lv) or be deactivated by reacting with Cu(II) 
deactivator (Figure 3B). An increased rate ratio of propagation over deactivation would produce 
more Lv linear units from one radical in an activation/deactivation cycle and lower the degree of 
branching (DB) of polymers. In contrast, a fast deactivation reaction could quickly stop the 
propagation of linear units and raise the chance of activating a different alkyl halide in another 
activation/deactivation cycle, which is the essential step to form a branched unit (D in  
Figure 3B) [47,67,68,122].  

It is useful to note that SCVP of inimers has both step-growth and chain-growth mechanistic 
features; high molecular weights and highly branched polymer structures could only be achieved at 
very high conversion. It was reported that SCVP of inimers AB*13 and AB*14 could not produce 
high molecular weight polymers using various ligands and temperatures mainly because of the fast 
radical termination reaction forming an excess amount of deactivator Cu(II) species. Thus, Cu-based 
ATRP with the addition of Cu(0) for AB*13 and AB*14 [123] and Ni-based CRP for AB*13 [52] were 
applied to achieve better results. The accumulated deactivator Cu(II) during ATRP of inimers could 
also be removed using a heterogeneous microemulsion polymerization system. For instance, the 
polymerization of inimer AB*13 in a microemulsion not only regulated the polymer structure based 
on the dimension and uniformity of the discrete latexes, but also significantly increased the 
polymerization kinetics via the effective partition of Cu(II) deactivator into aqueous media [45,47].  

So far, a few reports have been published on ATRP SCVP of styrenic AB* inimers. AB*10 and 
AB*11 as shown in Table 1 are two representative examples, in which the asymmetric structure of 
AB*10 offered tunable structures from linear to hyperbranched under different temperatures and 
ligands [65]. Through manipulating three polymerization parameters including temperature, ligand 
and solvents, the authors could manipulate the reactivities of initiating groups and catalysts and the 
solubility of deactivators in the polymerization solution, resulting in polymers with different 
architectures [67,68]. Low reaction temperature with high concentration of Cu(II) deactivator gave a 
higher chance of activation from the formed A* initiating site, forming linear polyester LP1. In 
contrast, the use of less reactive and low-concentration deactivator promoted the polymerization 
from B* sites and produced linear polymer LP2 (Figure 4). Between these two situations, a series of 
branched polymers with different DB values could be produced by simply tuning the reaction 
temperature and the effective concentration of deactivators in solution. The linear polymers LP1 
and LP2 that carried many reactive benzylic bromides on the backbone have further potentials for 
modification via organic and polymerization reactions to incorporate additional functionalities on 
the polymers. 
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In general, the branched structure of hyperbranched polymers synthesized via ATRP of AB* 
inimers is critically affected by the competition between radical propagation and deactivation 
reactions. Conceptually, a propagating radical from the activation of alkyl halide could either react 
with a new inimer to form a linear unit (such as Lv) or be deactivated by reacting with Cu(II) 
deactivator (Figure 3B). An increased rate ratio of propagation over deactivation would produce 
more Lv linear units from one radical in an activation/deactivation cycle and lower the degree of 
branching (DB) of polymers. In contrast, a fast deactivation reaction could quickly stop the 
propagation of linear units and raise the chance of activating a different alkyl halide in another 
activation/deactivation cycle, which is the essential step to form a branched unit (D in  
Figure 3B) [47,67,68,122].  

It is useful to note that SCVP of inimers has both step-growth and chain-growth mechanistic 
features; high molecular weights and highly branched polymer structures could only be achieved at 
very high conversion. It was reported that SCVP of inimers AB*13 and AB*14 could not produce 
high molecular weight polymers using various ligands and temperatures mainly because of the fast 
radical termination reaction forming an excess amount of deactivator Cu(II) species. Thus, Cu-based 
ATRP with the addition of Cu(0) for AB*13 and AB*14 [123] and Ni-based CRP for AB*13 [52] were 
applied to achieve better results. The accumulated deactivator Cu(II) during ATRP of inimers could 
also be removed using a heterogeneous microemulsion polymerization system. For instance, the 
polymerization of inimer AB*13 in a microemulsion not only regulated the polymer structure based 
on the dimension and uniformity of the discrete latexes, but also significantly increased the 
polymerization kinetics via the effective partition of Cu(II) deactivator into aqueous media [45,47].  

So far, a few reports have been published on ATRP SCVP of styrenic AB* inimers. AB*10 and 
AB*11 as shown in Table 1 are two representative examples, in which the asymmetric structure of 
AB*10 offered tunable structures from linear to hyperbranched under different temperatures and 
ligands [65]. Through manipulating three polymerization parameters including temperature, ligand 
and solvents, the authors could manipulate the reactivities of initiating groups and catalysts and the 
solubility of deactivators in the polymerization solution, resulting in polymers with different 
architectures [67,68]. Low reaction temperature with high concentration of Cu(II) deactivator gave a 
higher chance of activation from the formed A* initiating site, forming linear polyester LP1. In 
contrast, the use of less reactive and low-concentration deactivator promoted the polymerization 
from B* sites and produced linear polymer LP2 (Figure 4). Between these two situations, a series of 
branched polymers with different DB values could be produced by simply tuning the reaction 
temperature and the effective concentration of deactivators in solution. The linear polymers LP1 
and LP2 that carried many reactive benzylic bromides on the backbone have further potentials for 
modification via organic and polymerization reactions to incorporate additional functionalities on 
the polymers. 
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In general, the branched structure of hyperbranched polymers synthesized via ATRP of AB* 
inimers is critically affected by the competition between radical propagation and deactivation 
reactions. Conceptually, a propagating radical from the activation of alkyl halide could either react 
with a new inimer to form a linear unit (such as Lv) or be deactivated by reacting with Cu(II) 
deactivator (Figure 3B). An increased rate ratio of propagation over deactivation would produce 
more Lv linear units from one radical in an activation/deactivation cycle and lower the degree of 
branching (DB) of polymers. In contrast, a fast deactivation reaction could quickly stop the 
propagation of linear units and raise the chance of activating a different alkyl halide in another 
activation/deactivation cycle, which is the essential step to form a branched unit (D in  
Figure 3B) [47,67,68,122].  

It is useful to note that SCVP of inimers has both step-growth and chain-growth mechanistic 
features; high molecular weights and highly branched polymer structures could only be achieved at 
very high conversion. It was reported that SCVP of inimers AB*13 and AB*14 could not produce 
high molecular weight polymers using various ligands and temperatures mainly because of the fast 
radical termination reaction forming an excess amount of deactivator Cu(II) species. Thus, Cu-based 
ATRP with the addition of Cu(0) for AB*13 and AB*14 [123] and Ni-based CRP for AB*13 [52] were 
applied to achieve better results. The accumulated deactivator Cu(II) during ATRP of inimers could 
also be removed using a heterogeneous microemulsion polymerization system. For instance, the 
polymerization of inimer AB*13 in a microemulsion not only regulated the polymer structure based 
on the dimension and uniformity of the discrete latexes, but also significantly increased the 
polymerization kinetics via the effective partition of Cu(II) deactivator into aqueous media [45,47].  

So far, a few reports have been published on ATRP SCVP of styrenic AB* inimers. AB*10 and 
AB*11 as shown in Table 1 are two representative examples, in which the asymmetric structure of 
AB*10 offered tunable structures from linear to hyperbranched under different temperatures and 
ligands [65]. Through manipulating three polymerization parameters including temperature, ligand 
and solvents, the authors could manipulate the reactivities of initiating groups and catalysts and the 
solubility of deactivators in the polymerization solution, resulting in polymers with different 
architectures [67,68]. Low reaction temperature with high concentration of Cu(II) deactivator gave a 
higher chance of activation from the formed A* initiating site, forming linear polyester LP1. In 
contrast, the use of less reactive and low-concentration deactivator promoted the polymerization 
from B* sites and produced linear polymer LP2 (Figure 4). Between these two situations, a series of 
branched polymers with different DB values could be produced by simply tuning the reaction 
temperature and the effective concentration of deactivators in solution. The linear polymers LP1 
and LP2 that carried many reactive benzylic bromides on the backbone have further potentials for 
modification via organic and polymerization reactions to incorporate additional functionalities on 
the polymers. 
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Figure 4. Control of polymer architectures in the ATRP SCVP of AB*10. Reproduced with 
permission [65], copyright 2010 American Chemical Society  

4. Synthesis of Hyperbranched Polymers by RAFT 

Chain transfer agent (CTA), usually a thiocarbonylthio compound with a structure as 
Z(C=S)SR, is the key component in the RAFT process, which mediates the equilibrium between 
active and dormant chains. The Z-group activates the thiocarbonyl double bond and provides 
stability to the intermediate adduct formed when radicals are added to the CTA, while the R-group 
is a good leaving group capable of reinitiating RAFT polymerization after fragmentation. Similar as 
an AB* inimer in ATRP and NMP, the monomer used in RAFT SCVP composes a polymerizable 
vinyl group (A group) installed into the CTA structure (equivalent to the B* group) on either the 
R-group or Z-group side. Different from the AB* inimer that has a real initiating group B*, the 
polymerizable CTA used in the RAFT method needs an external radical source to cleave the S–R 
bond and generate a propagating radical. This structural difference gives the polymerizable CTA 
another name, i.e., transmer. Although designing a transmer by placing a polymerizable vinyl group 
at either the R group (R approach) or the Z group (Z approach) is available, two main limitations of 
the Z-approach become significant: steric hindrance to access the CTA functionalities and the 
potential weakness of the branch points (Figure 5) [71,128]. To solve this problem, Puskas and 
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4. Synthesis of Hyperbranched Polymers by RAFT 

Chain transfer agent (CTA), usually a thiocarbonylthio compound with a structure as 
Z(C=S)SR, is the key component in the RAFT process, which mediates the equilibrium between 
active and dormant chains. The Z-group activates the thiocarbonyl double bond and provides 
stability to the intermediate adduct formed when radicals are added to the CTA, while the R-group 
is a good leaving group capable of reinitiating RAFT polymerization after fragmentation. Similar as 
an AB* inimer in ATRP and NMP, the monomer used in RAFT SCVP composes a polymerizable 
vinyl group (A group) installed into the CTA structure (equivalent to the B* group) on either the 
R-group or Z-group side. Different from the AB* inimer that has a real initiating group B*, the 
polymerizable CTA used in the RAFT method needs an external radical source to cleave the S–R 
bond and generate a propagating radical. This structural difference gives the polymerizable CTA 
another name, i.e., transmer. Although designing a transmer by placing a polymerizable vinyl group 
at either the R group (R approach) or the Z group (Z approach) is available, two main limitations of 
the Z-approach become significant: steric hindrance to access the CTA functionalities and the 
potential weakness of the branch points (Figure 5) [71,128]. To solve this problem, Puskas and 
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4. Synthesis of Hyperbranched Polymers by RAFT 

Chain transfer agent (CTA), usually a thiocarbonylthio compound with a structure as 
Z(C=S)SR, is the key component in the RAFT process, which mediates the equilibrium between 
active and dormant chains. The Z-group activates the thiocarbonyl double bond and provides 
stability to the intermediate adduct formed when radicals are added to the CTA, while the R-group 
is a good leaving group capable of reinitiating RAFT polymerization after fragmentation. Similar as 
an AB* inimer in ATRP and NMP, the monomer used in RAFT SCVP composes a polymerizable 
vinyl group (A group) installed into the CTA structure (equivalent to the B* group) on either the 
R-group or Z-group side. Different from the AB* inimer that has a real initiating group B*, the 
polymerizable CTA used in the RAFT method needs an external radical source to cleave the S–R 
bond and generate a propagating radical. This structural difference gives the polymerizable CTA 
another name, i.e., transmer. Although designing a transmer by placing a polymerizable vinyl group 
at either the R group (R approach) or the Z group (Z approach) is available, two main limitations of 
the Z-approach become significant: steric hindrance to access the CTA functionalities and the 
potential weakness of the branch points (Figure 5) [71,128]. To solve this problem, Puskas and 
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4. Synthesis of Hyperbranched Polymers by RAFT 

Chain transfer agent (CTA), usually a thiocarbonylthio compound with a structure as 
Z(C=S)SR, is the key component in the RAFT process, which mediates the equilibrium between 
active and dormant chains. The Z-group activates the thiocarbonyl double bond and provides 
stability to the intermediate adduct formed when radicals are added to the CTA, while the R-group 
is a good leaving group capable of reinitiating RAFT polymerization after fragmentation. Similar as 
an AB* inimer in ATRP and NMP, the monomer used in RAFT SCVP composes a polymerizable 
vinyl group (A group) installed into the CTA structure (equivalent to the B* group) on either the 
R-group or Z-group side. Different from the AB* inimer that has a real initiating group B*, the 
polymerizable CTA used in the RAFT method needs an external radical source to cleave the S–R 
bond and generate a propagating radical. This structural difference gives the polymerizable CTA 
another name, i.e., transmer. Although designing a transmer by placing a polymerizable vinyl group 
at either the R group (R approach) or the Z group (Z approach) is available, two main limitations of 
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4. Synthesis of Hyperbranched Polymers by RAFT

Chain transfer agent (CTA), usually a thiocarbonylthio compound with a structure as Z(C=S)SR,
is the key component in the RAFT process, which mediates the equilibrium between active and dormant
chains. The Z-group activates the thiocarbonyl double bond and provides stability to the intermediate
adduct formed when radicals are added to the CTA, while the R-group is a good leaving group capable
of reinitiating RAFT polymerization after fragmentation. Similar as an AB* inimer in ATRP and NMP,
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the monomer used in RAFT SCVP composes a polymerizable vinyl group (A group) installed into
the CTA structure (equivalent to the B* group) on either the R-group or Z-group side. Different
from the AB* inimer that has a real initiating group B*, the polymerizable CTA used in the RAFT
method needs an external radical source to cleave the S–R bond and generate a propagating radical.
This structural difference gives the polymerizable CTA another name, i.e., transmer. Although designing
a transmer by placing a polymerizable vinyl group at either the R group (R approach) or the Z group
(Z approach) is available, two main limitations of the Z-approach become significant: steric hindrance
to access the CTA functionalities and the potential weakness of the branch points (Figure 5) [71,128].
To solve this problem, Puskas and coworkers reported the first bulk polymerization of styrene with
4-vinylbenzyl dithiobenzoate, which avoided introducing the CTA into the branching point (R method;
Figure 5A) [78]. Till now, the R method was utilized more frequently to produce a variety of branched
polymer structures. Table 2 summarizes the transmers that have been prepared and reported to date.
While the first transmer reported was strictly limited to styrenic polymerizable group, new examples
of transmers with acrylate/methacrylate polymerizable groups were developed [77]. Xanthate-based
transmers reported by both Poly’s [81] and Zhou’s [83] groups were subsequently used to prepare
hyperbranched poly(vinyl acetate). The development of these new transmers was crucial for this vinyl
ester monomer because poor control was always achieved using any other CTAs. The most commonly
reported iniferter monomers contain dithiocarbamate (DC) chain-transfer group. Photopolymerizations
in benzene solution of 2-(N,N-diethylaminodithiocarbamoyl)ethyl methacrylate (DTCM, Entry 21
Table 2) were carried out by Mori et al. [106] via irradiation with UV light in a sealed glass ampoule
under high vacuum at 20 ◦C.
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In the RAFT polymerization of transmers, so far, only a handful of examples have reported
the homopolymerization of transmers. In 2011, Zhao and coworkers [82] used S-(4-vinyl)benzyl
S’-propyl trithiocarbonate (VBPT) to prepare a hyperbranched polymer as a control experiment with
the intention to compare the solution behavior of branched copolymers obtained by RAFT SCVCP.
A thorough literature research to the best of our knowledge indicates that RAFT homopolymerization
of transmers when using thermal initiators as radical sources could only produce low molecular
weight hyperbranched polymers. The highest molecular weights available in several reports include
Mn = 24,700 in Zhao’s group [82], Mn = 8740 in Sumerlin’s group [80] and Mn < 1000 in Poly’s
group [81]. On the other hand, Ishizu and Tanaka reported the photo-polymerization of iniferter
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monomers and produced hyperbranched polymers with molecular weight above 100,000 [129,130].
Recently, our group reported a systematic study of the homopolymerization of a trithiocarbonate
transmer and produced the first hyperbranched polymers with over half-a-million molecular weight
by applying a concurrent ATRP/RAFT initiation process that generated radicals without the use of
thermal initiator [131].

Most of the RAFT polymerizations of transmers were conducted by SCVCP with various
functional monovinyl monomers, which makes it easy to tune the DB and introduce reactive groups
in the segmented hyperbranched polymers (SHBPs). The addition of monovinyl monomers diluted
the branching density and consequently lowered the DB in general. To achieve a uniform distribution
of branching units in the copolymer structure, similar reactivity between the polymerizable group
of the transmer and the vinyl group of the comonomer is critical. The first report of the RAFT
SCVCP was published in 2003 by Yang et al., who utilized RAFT SCVCP to prepare hyperbranched
polystyrene [72]. The transmer structure was based on a styrenic dithioester transmer 1 (Table 2) with
a styrenyl unit as the Z-group. By introducing the dithioester group into the branching point, it offers
an advantage to prepare segmented hyperbranched copolymers through a two-step polymerization
method. As shown in Figure 5B, one monovinyl monomer was copolymerized with transmer first to
produce a hyperbranched macro-transfer agent before the polymerization of a second monomer by
inserting the second block at the reactive CTA branching points, generating branched block-copolymers.
In contrast, star-shaped copolymers would be produced if the hyperbranched polymers were made out
of the R method since the CTA groups are at the periphery of the hyperbranched polymers (Figure 5A).
This was utilized by Patrickios and coworkers to produce segmented amphiphilic hyperbranched
polymers of styrene and vinylpyridine through stepwise RAFT SCVP [97]. In comparison to NMP
SCVP and ATRP SCVP, which could only provide star-shaped copolymers, RAFT SCVP and RAFT
SCVCP offer more options to alter the polymer structures by using different transmer structures.

Table 2. Summary of transmers used in RAFT SCVP.

Transmer Structure Vinyl Group a CT Group b Reference

1
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polymerization of a second monomer by inserting the second block at the reactive CTA branching 
points, generating branched block-copolymers. In contrast, star-shaped copolymers would be 
produced if the hyperbranched polymers were made out of the R method since the CTA groups are 
at the periphery of the hyperbranched polymers (Figure 5A). This was utilized by Patrickios and 
coworkers to produce segmented amphiphilic hyperbranched polymers of styrene and 
vinylpyridine through stepwise RAFT SCVP [97]. In comparison to NMP SCVP and ATRP SCVP, 
which could only provide star-shaped copolymers, RAFT SCVP and RAFT SCVCP offer more 
options to alter the polymer structures by using different transmer structures. 

Table 2. Summary of transmers used in RAFT SCVP. 

Transmer Structure 
Vinyl 

Group a 
CT Group b Reference 

1 S DTB [72,78,86,97] 

2 S DTB [73,74,76] 

3 S DTB [89,97] 

4 A DTB [96] 

5 M DTB [85] 

6 VA DTC [83] 

7 VA DTC [81] 

8 A TTC [102] 

9 A TTC [84,92,101] 

10 A TTC [85] 

12 A TTC [88] 

13 A TTC [77,80] 

14 M TTC [98] 

M DTB [85]
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report of the RAFT SCVCP was published in 2003 by Yang et al., who utilized RAFT SCVCP to 
prepare hyperbranched polystyrene [72]. The transmer structure was based on a styrenic dithioester 
transmer 1 (Table 2) with a styrenyl unit as the Z-group. By introducing the dithioester group into 
the branching point, it offers an advantage to prepare segmented hyperbranched copolymers 
through a two-step polymerization method. As shown in Figure 5B, one monovinyl monomer was 
copolymerized with transmer first to produce a hyperbranched macro-transfer agent before the 
polymerization of a second monomer by inserting the second block at the reactive CTA branching 
points, generating branched block-copolymers. In contrast, star-shaped copolymers would be 
produced if the hyperbranched polymers were made out of the R method since the CTA groups are 
at the periphery of the hyperbranched polymers (Figure 5A). This was utilized by Patrickios and 
coworkers to produce segmented amphiphilic hyperbranched polymers of styrene and 
vinylpyridine through stepwise RAFT SCVP [97]. In comparison to NMP SCVP and ATRP SCVP, 
which could only provide star-shaped copolymers, RAFT SCVP and RAFT SCVCP offer more 
options to alter the polymer structures by using different transmer structures. 

Table 2. Summary of transmers used in RAFT SCVP. 

Transmer Structure 
Vinyl 

Group a 
CT Group b Reference 

1 S DTB [72,78,86,97] 

2 S DTB [73,74,76] 

3 S DTB [89,97] 

4 A DTB [96] 

5 M DTB [85] 

6 VA DTC [83] 

7 VA DTC [81] 

8 A TTC [102] 

9 A TTC [84,92,101] 

10 A TTC [85] 

12 A TTC [88] 

13 A TTC [77,80] 

14 M TTC [98] 

VA DTC [83]
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report of the RAFT SCVCP was published in 2003 by Yang et al., who utilized RAFT SCVCP to 
prepare hyperbranched polystyrene [72]. The transmer structure was based on a styrenic dithioester 
transmer 1 (Table 2) with a styrenyl unit as the Z-group. By introducing the dithioester group into 
the branching point, it offers an advantage to prepare segmented hyperbranched copolymers 
through a two-step polymerization method. As shown in Figure 5B, one monovinyl monomer was 
copolymerized with transmer first to produce a hyperbranched macro-transfer agent before the 
polymerization of a second monomer by inserting the second block at the reactive CTA branching 
points, generating branched block-copolymers. In contrast, star-shaped copolymers would be 
produced if the hyperbranched polymers were made out of the R method since the CTA groups are 
at the periphery of the hyperbranched polymers (Figure 5A). This was utilized by Patrickios and 
coworkers to produce segmented amphiphilic hyperbranched polymers of styrene and 
vinylpyridine through stepwise RAFT SCVP [97]. In comparison to NMP SCVP and ATRP SCVP, 
which could only provide star-shaped copolymers, RAFT SCVP and RAFT SCVCP offer more 
options to alter the polymer structures by using different transmer structures. 

Table 2. Summary of transmers used in RAFT SCVP. 

Transmer Structure 
Vinyl 

Group a 
CT Group b Reference 

1 S DTB [72,78,86,97] 

2 S DTB [73,74,76] 

3 S DTB [89,97] 

4 A DTB [96] 

5 M DTB [85] 

6 VA DTC [83] 

7 VA DTC [81] 

8 A TTC [102] 

9 A TTC [84,92,101] 

10 A TTC [85] 

12 A TTC [88] 

13 A TTC [77,80] 

14 M TTC [98] 

VA DTC [81]
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report of the RAFT SCVCP was published in 2003 by Yang et al., who utilized RAFT SCVCP to 
prepare hyperbranched polystyrene [72]. The transmer structure was based on a styrenic dithioester 
transmer 1 (Table 2) with a styrenyl unit as the Z-group. By introducing the dithioester group into 
the branching point, it offers an advantage to prepare segmented hyperbranched copolymers 
through a two-step polymerization method. As shown in Figure 5B, one monovinyl monomer was 
copolymerized with transmer first to produce a hyperbranched macro-transfer agent before the 
polymerization of a second monomer by inserting the second block at the reactive CTA branching 
points, generating branched block-copolymers. In contrast, star-shaped copolymers would be 
produced if the hyperbranched polymers were made out of the R method since the CTA groups are 
at the periphery of the hyperbranched polymers (Figure 5A). This was utilized by Patrickios and 
coworkers to produce segmented amphiphilic hyperbranched polymers of styrene and 
vinylpyridine through stepwise RAFT SCVP [97]. In comparison to NMP SCVP and ATRP SCVP, 
which could only provide star-shaped copolymers, RAFT SCVP and RAFT SCVCP offer more 
options to alter the polymer structures by using different transmer structures. 

Table 2. Summary of transmers used in RAFT SCVP. 

Transmer Structure 
Vinyl 

Group a 
CT Group b Reference 

1 S DTB [72,78,86,97] 

2 S DTB [73,74,76] 

3 S DTB [89,97] 

4 A DTB [96] 

5 M DTB [85] 

6 VA DTC [83] 

7 VA DTC [81] 

8 A TTC [102] 

9 A TTC [84,92,101] 

10 A TTC [85] 

12 A TTC [88] 

13 A TTC [77,80] 

14 M TTC [98] 

A TTC [102]
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report of the RAFT SCVCP was published in 2003 by Yang et al., who utilized RAFT SCVCP to 
prepare hyperbranched polystyrene [72]. The transmer structure was based on a styrenic dithioester 
transmer 1 (Table 2) with a styrenyl unit as the Z-group. By introducing the dithioester group into 
the branching point, it offers an advantage to prepare segmented hyperbranched copolymers 
through a two-step polymerization method. As shown in Figure 5B, one monovinyl monomer was 
copolymerized with transmer first to produce a hyperbranched macro-transfer agent before the 
polymerization of a second monomer by inserting the second block at the reactive CTA branching 
points, generating branched block-copolymers. In contrast, star-shaped copolymers would be 
produced if the hyperbranched polymers were made out of the R method since the CTA groups are 
at the periphery of the hyperbranched polymers (Figure 5A). This was utilized by Patrickios and 
coworkers to produce segmented amphiphilic hyperbranched polymers of styrene and 
vinylpyridine through stepwise RAFT SCVP [97]. In comparison to NMP SCVP and ATRP SCVP, 
which could only provide star-shaped copolymers, RAFT SCVP and RAFT SCVCP offer more 
options to alter the polymer structures by using different transmer structures. 

Table 2. Summary of transmers used in RAFT SCVP. 

Transmer Structure 
Vinyl 

Group a 
CT Group b Reference 

1 S DTB [72,78,86,97] 

2 S DTB [73,74,76] 

3 S DTB [89,97] 

4 A DTB [96] 

5 M DTB [85] 

6 VA DTC [83] 

7 VA DTC [81] 

8 A TTC [102] 

9 A TTC [84,92,101] 

10 A TTC [85] 

12 A TTC [88] 

13 A TTC [77,80] 

14 M TTC [98] 

A TTC [84,92,101]
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report of the RAFT SCVCP was published in 2003 by Yang et al., who utilized RAFT SCVCP to 
prepare hyperbranched polystyrene [72]. The transmer structure was based on a styrenic dithioester 
transmer 1 (Table 2) with a styrenyl unit as the Z-group. By introducing the dithioester group into 
the branching point, it offers an advantage to prepare segmented hyperbranched copolymers 
through a two-step polymerization method. As shown in Figure 5B, one monovinyl monomer was 
copolymerized with transmer first to produce a hyperbranched macro-transfer agent before the 
polymerization of a second monomer by inserting the second block at the reactive CTA branching 
points, generating branched block-copolymers. In contrast, star-shaped copolymers would be 
produced if the hyperbranched polymers were made out of the R method since the CTA groups are 
at the periphery of the hyperbranched polymers (Figure 5A). This was utilized by Patrickios and 
coworkers to produce segmented amphiphilic hyperbranched polymers of styrene and 
vinylpyridine through stepwise RAFT SCVP [97]. In comparison to NMP SCVP and ATRP SCVP, 
which could only provide star-shaped copolymers, RAFT SCVP and RAFT SCVCP offer more 
options to alter the polymer structures by using different transmer structures. 

Table 2. Summary of transmers used in RAFT SCVP. 

Transmer Structure 
Vinyl 

Group a 
CT Group b Reference 

1 S DTB [72,78,86,97] 

2 S DTB [73,74,76] 

3 S DTB [89,97] 

4 A DTB [96] 

5 M DTB [85] 

6 VA DTC [83] 

7 VA DTC [81] 

8 A TTC [102] 

9 A TTC [84,92,101] 

10 A TTC [85] 

12 A TTC [88] 

13 A TTC [77,80] 

14 M TTC [98] 

A TTC [85]
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report of the RAFT SCVCP was published in 2003 by Yang et al., who utilized RAFT SCVCP to 
prepare hyperbranched polystyrene [72]. The transmer structure was based on a styrenic dithioester 
transmer 1 (Table 2) with a styrenyl unit as the Z-group. By introducing the dithioester group into 
the branching point, it offers an advantage to prepare segmented hyperbranched copolymers 
through a two-step polymerization method. As shown in Figure 5B, one monovinyl monomer was 
copolymerized with transmer first to produce a hyperbranched macro-transfer agent before the 
polymerization of a second monomer by inserting the second block at the reactive CTA branching 
points, generating branched block-copolymers. In contrast, star-shaped copolymers would be 
produced if the hyperbranched polymers were made out of the R method since the CTA groups are 
at the periphery of the hyperbranched polymers (Figure 5A). This was utilized by Patrickios and 
coworkers to produce segmented amphiphilic hyperbranched polymers of styrene and 
vinylpyridine through stepwise RAFT SCVP [97]. In comparison to NMP SCVP and ATRP SCVP, 
which could only provide star-shaped copolymers, RAFT SCVP and RAFT SCVCP offer more 
options to alter the polymer structures by using different transmer structures. 

Table 2. Summary of transmers used in RAFT SCVP. 

Transmer Structure 
Vinyl 

Group a 
CT Group b Reference 

1 S DTB [72,78,86,97] 

2 S DTB [73,74,76] 

3 S DTB [89,97] 

4 A DTB [96] 

5 M DTB [85] 

6 VA DTC [83] 

7 VA DTC [81] 

8 A TTC [102] 

9 A TTC [84,92,101] 

10 A TTC [85] 

12 A TTC [88] 

13 A TTC [77,80] 

14 M TTC [98] 

A TTC [88]
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report of the RAFT SCVCP was published in 2003 by Yang et al., who utilized RAFT SCVCP to 
prepare hyperbranched polystyrene [72]. The transmer structure was based on a styrenic dithioester 
transmer 1 (Table 2) with a styrenyl unit as the Z-group. By introducing the dithioester group into 
the branching point, it offers an advantage to prepare segmented hyperbranched copolymers 
through a two-step polymerization method. As shown in Figure 5B, one monovinyl monomer was 
copolymerized with transmer first to produce a hyperbranched macro-transfer agent before the 
polymerization of a second monomer by inserting the second block at the reactive CTA branching 
points, generating branched block-copolymers. In contrast, star-shaped copolymers would be 
produced if the hyperbranched polymers were made out of the R method since the CTA groups are 
at the periphery of the hyperbranched polymers (Figure 5A). This was utilized by Patrickios and 
coworkers to produce segmented amphiphilic hyperbranched polymers of styrene and 
vinylpyridine through stepwise RAFT SCVP [97]. In comparison to NMP SCVP and ATRP SCVP, 
which could only provide star-shaped copolymers, RAFT SCVP and RAFT SCVCP offer more 
options to alter the polymer structures by using different transmer structures. 

Table 2. Summary of transmers used in RAFT SCVP. 

Transmer Structure 
Vinyl 

Group a 
CT Group b Reference 

1 S DTB [72,78,86,97] 

2 S DTB [73,74,76] 

3 S DTB [89,97] 

4 A DTB [96] 

5 M DTB [85] 

6 VA DTC [83] 

7 VA DTC [81] 

8 A TTC [102] 

9 A TTC [84,92,101] 

10 A TTC [85] 

12 A TTC [88] 

13 A TTC [77,80] 

14 M TTC [98] 

A TTC [77,80]
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report of the RAFT SCVCP was published in 2003 by Yang et al., who utilized RAFT SCVCP to 
prepare hyperbranched polystyrene [72]. The transmer structure was based on a styrenic dithioester 
transmer 1 (Table 2) with a styrenyl unit as the Z-group. By introducing the dithioester group into 
the branching point, it offers an advantage to prepare segmented hyperbranched copolymers 
through a two-step polymerization method. As shown in Figure 5B, one monovinyl monomer was 
copolymerized with transmer first to produce a hyperbranched macro-transfer agent before the 
polymerization of a second monomer by inserting the second block at the reactive CTA branching 
points, generating branched block-copolymers. In contrast, star-shaped copolymers would be 
produced if the hyperbranched polymers were made out of the R method since the CTA groups are 
at the periphery of the hyperbranched polymers (Figure 5A). This was utilized by Patrickios and 
coworkers to produce segmented amphiphilic hyperbranched polymers of styrene and 
vinylpyridine through stepwise RAFT SCVP [97]. In comparison to NMP SCVP and ATRP SCVP, 
which could only provide star-shaped copolymers, RAFT SCVP and RAFT SCVCP offer more 
options to alter the polymer structures by using different transmer structures. 

Table 2. Summary of transmers used in RAFT SCVP. 

Transmer Structure 
Vinyl 

Group a 
CT Group b Reference 

1 S DTB [72,78,86,97] 

2 S DTB [73,74,76] 

3 S DTB [89,97] 

4 A DTB [96] 

5 M DTB [85] 

6 VA DTC [83] 

7 VA DTC [81] 

8 A TTC [102] 

9 A TTC [84,92,101] 

10 A TTC [85] 

12 A TTC [88] 

13 A TTC [77,80] 

14 M TTC [98] M TTC [98]
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15 M TTC [94] 

16 M TTC [87,92] 

17 S TTC [95] 

18 S TTC [82,93] 

19 S TTC [89,90] 

20 M TTC [99] 

21 S Carbamate/iniferter [129] 

22 M Carbamate/iniferter [106] 

23 M Thiol [132] 

a Vinyl groups include: S: styrenyl; A: acrylate; M: methacrylate; VA: vinyl acetate; b chain transfer 
(CT) groups include: DTB: dithiobenzoate; TTC: trithiocarbonate; DTC: xanthate (dithiocarbonate); 
TTC: trithiocarbonate.  

5. Attempts to Regulate the Structures of Hyperbranched Polymers 

Most of the reported hyperbranched polymers were synthesized by radical polymerization in 
bulk or solution. The homogeneous reaction media cause random monomer–monomer,  
monomer–polymer and polymer–polymer reactions throughout the reactor, which leads to 
polymers with poorly defined structure, i.e., high dispersity. Since the physical properties of 
hyperbranched polymers are critically influenced by their molecular weights and structural 
uniformity, it is highly desirable to develop robust synthetic methods that can regulate the 
molecular weight distribution (MWD) of hyperbranched polymers with minimal compromise of the 
facile one-pot synthesis feature. So far, two major methods were applied to provide a better control 
over the dispersity of hyperbranched polymers. The first method is the application of a 
multifunctional core molecule via either slow addition of monomers into a dilute solution of the 
multifunctional core or the use of core molecule carrying more reactive groups than those on 
monomers. The main concept is to achieve a desired chain-growth polymerization via selective 
monomer-polymer reactions and disfavor monomer-monomer reactions. In contrast, the second 
method focuses on segregating the polymerization of monomers in a confined nanospace in order 
to decrease the dispersity of hyperbranched polymers. 

According to the simulation reported by Frey et al. [133] and Müller et al. [134], the slow 
addition of ABm monomers or AB* inimers into a solution of the multifunctional Bx (x ≥ 2) core 
could decrease the dispersity and increase the DB value of the hyperbranched polymers. In a 
situation when ABm monomers only react with the B functional groups on the Bx core, at complete 
conversion, hyperbranched polymers with Mw/Mn = 1 + (m − 1)/x are produced. Based on this theory, 
many research groups applied a variety of ABm + Bx pairs and achieved experimental results 
qualitatively supporting the simulation. However, examples of radical polymerization using AB* 
inimer and Bx* core are rare. Pan et al. applied a tetrafunctional initiator core (Core 1, Figure 6) in 

M TTC [94]
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15 M TTC [94] 

16 M TTC [87,92] 

17 S TTC [95] 

18 S TTC [82,93] 

19 S TTC [89,90] 

20 M TTC [99] 

21 S Carbamate/iniferter [129] 

22 M Carbamate/iniferter [106] 

23 M Thiol [132] 

a Vinyl groups include: S: styrenyl; A: acrylate; M: methacrylate; VA: vinyl acetate; b chain transfer 
(CT) groups include: DTB: dithiobenzoate; TTC: trithiocarbonate; DTC: xanthate (dithiocarbonate); 
TTC: trithiocarbonate.  

5. Attempts to Regulate the Structures of Hyperbranched Polymers 

Most of the reported hyperbranched polymers were synthesized by radical polymerization in 
bulk or solution. The homogeneous reaction media cause random monomer–monomer,  
monomer–polymer and polymer–polymer reactions throughout the reactor, which leads to 
polymers with poorly defined structure, i.e., high dispersity. Since the physical properties of 
hyperbranched polymers are critically influenced by their molecular weights and structural 
uniformity, it is highly desirable to develop robust synthetic methods that can regulate the 
molecular weight distribution (MWD) of hyperbranched polymers with minimal compromise of the 
facile one-pot synthesis feature. So far, two major methods were applied to provide a better control 
over the dispersity of hyperbranched polymers. The first method is the application of a 
multifunctional core molecule via either slow addition of monomers into a dilute solution of the 
multifunctional core or the use of core molecule carrying more reactive groups than those on 
monomers. The main concept is to achieve a desired chain-growth polymerization via selective 
monomer-polymer reactions and disfavor monomer-monomer reactions. In contrast, the second 
method focuses on segregating the polymerization of monomers in a confined nanospace in order 
to decrease the dispersity of hyperbranched polymers. 

According to the simulation reported by Frey et al. [133] and Müller et al. [134], the slow 
addition of ABm monomers or AB* inimers into a solution of the multifunctional Bx (x ≥ 2) core 
could decrease the dispersity and increase the DB value of the hyperbranched polymers. In a 
situation when ABm monomers only react with the B functional groups on the Bx core, at complete 
conversion, hyperbranched polymers with Mw/Mn = 1 + (m − 1)/x are produced. Based on this theory, 
many research groups applied a variety of ABm + Bx pairs and achieved experimental results 
qualitatively supporting the simulation. However, examples of radical polymerization using AB* 
inimer and Bx* core are rare. Pan et al. applied a tetrafunctional initiator core (Core 1, Figure 6) in 

M TTC [87,92]
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15 M TTC [94] 

16 M TTC [87,92] 

17 S TTC [95] 

18 S TTC [82,93] 

19 S TTC [89,90] 

20 M TTC [99] 

21 S Carbamate/iniferter [129] 

22 M Carbamate/iniferter [106] 

23 M Thiol [132] 

a Vinyl groups include: S: styrenyl; A: acrylate; M: methacrylate; VA: vinyl acetate; b chain transfer 
(CT) groups include: DTB: dithiobenzoate; TTC: trithiocarbonate; DTC: xanthate (dithiocarbonate); 
TTC: trithiocarbonate.  

5. Attempts to Regulate the Structures of Hyperbranched Polymers 

Most of the reported hyperbranched polymers were synthesized by radical polymerization in 
bulk or solution. The homogeneous reaction media cause random monomer–monomer,  
monomer–polymer and polymer–polymer reactions throughout the reactor, which leads to 
polymers with poorly defined structure, i.e., high dispersity. Since the physical properties of 
hyperbranched polymers are critically influenced by their molecular weights and structural 
uniformity, it is highly desirable to develop robust synthetic methods that can regulate the 
molecular weight distribution (MWD) of hyperbranched polymers with minimal compromise of the 
facile one-pot synthesis feature. So far, two major methods were applied to provide a better control 
over the dispersity of hyperbranched polymers. The first method is the application of a 
multifunctional core molecule via either slow addition of monomers into a dilute solution of the 
multifunctional core or the use of core molecule carrying more reactive groups than those on 
monomers. The main concept is to achieve a desired chain-growth polymerization via selective 
monomer-polymer reactions and disfavor monomer-monomer reactions. In contrast, the second 
method focuses on segregating the polymerization of monomers in a confined nanospace in order 
to decrease the dispersity of hyperbranched polymers. 

According to the simulation reported by Frey et al. [133] and Müller et al. [134], the slow 
addition of ABm monomers or AB* inimers into a solution of the multifunctional Bx (x ≥ 2) core 
could decrease the dispersity and increase the DB value of the hyperbranched polymers. In a 
situation when ABm monomers only react with the B functional groups on the Bx core, at complete 
conversion, hyperbranched polymers with Mw/Mn = 1 + (m − 1)/x are produced. Based on this theory, 
many research groups applied a variety of ABm + Bx pairs and achieved experimental results 
qualitatively supporting the simulation. However, examples of radical polymerization using AB* 
inimer and Bx* core are rare. Pan et al. applied a tetrafunctional initiator core (Core 1, Figure 6) in 

S TTC [95]
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15 M TTC [94] 

16 M TTC [87,92] 

17 S TTC [95] 

18 S TTC [82,93] 

19 S TTC [89,90] 

20 M TTC [99] 

21 S Carbamate/iniferter [129] 

22 M Carbamate/iniferter [106] 

23 M Thiol [132] 

a Vinyl groups include: S: styrenyl; A: acrylate; M: methacrylate; VA: vinyl acetate; b chain transfer 
(CT) groups include: DTB: dithiobenzoate; TTC: trithiocarbonate; DTC: xanthate (dithiocarbonate); 
TTC: trithiocarbonate.  

5. Attempts to Regulate the Structures of Hyperbranched Polymers 

Most of the reported hyperbranched polymers were synthesized by radical polymerization in 
bulk or solution. The homogeneous reaction media cause random monomer–monomer,  
monomer–polymer and polymer–polymer reactions throughout the reactor, which leads to 
polymers with poorly defined structure, i.e., high dispersity. Since the physical properties of 
hyperbranched polymers are critically influenced by their molecular weights and structural 
uniformity, it is highly desirable to develop robust synthetic methods that can regulate the 
molecular weight distribution (MWD) of hyperbranched polymers with minimal compromise of the 
facile one-pot synthesis feature. So far, two major methods were applied to provide a better control 
over the dispersity of hyperbranched polymers. The first method is the application of a 
multifunctional core molecule via either slow addition of monomers into a dilute solution of the 
multifunctional core or the use of core molecule carrying more reactive groups than those on 
monomers. The main concept is to achieve a desired chain-growth polymerization via selective 
monomer-polymer reactions and disfavor monomer-monomer reactions. In contrast, the second 
method focuses on segregating the polymerization of monomers in a confined nanospace in order 
to decrease the dispersity of hyperbranched polymers. 

According to the simulation reported by Frey et al. [133] and Müller et al. [134], the slow 
addition of ABm monomers or AB* inimers into a solution of the multifunctional Bx (x ≥ 2) core 
could decrease the dispersity and increase the DB value of the hyperbranched polymers. In a 
situation when ABm monomers only react with the B functional groups on the Bx core, at complete 
conversion, hyperbranched polymers with Mw/Mn = 1 + (m − 1)/x are produced. Based on this theory, 
many research groups applied a variety of ABm + Bx pairs and achieved experimental results 
qualitatively supporting the simulation. However, examples of radical polymerization using AB* 
inimer and Bx* core are rare. Pan et al. applied a tetrafunctional initiator core (Core 1, Figure 6) in 

S TTC [82,93]
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15 M TTC [94] 

16 M TTC [87,92] 

17 S TTC [95] 

18 S TTC [82,93] 

19 S TTC [89,90] 

20 M TTC [99] 

21 S Carbamate/iniferter [129] 

22 M Carbamate/iniferter [106] 

23 M Thiol [132] 

a Vinyl groups include: S: styrenyl; A: acrylate; M: methacrylate; VA: vinyl acetate; b chain transfer 
(CT) groups include: DTB: dithiobenzoate; TTC: trithiocarbonate; DTC: xanthate (dithiocarbonate); 
TTC: trithiocarbonate.  

5. Attempts to Regulate the Structures of Hyperbranched Polymers 

Most of the reported hyperbranched polymers were synthesized by radical polymerization in 
bulk or solution. The homogeneous reaction media cause random monomer–monomer,  
monomer–polymer and polymer–polymer reactions throughout the reactor, which leads to 
polymers with poorly defined structure, i.e., high dispersity. Since the physical properties of 
hyperbranched polymers are critically influenced by their molecular weights and structural 
uniformity, it is highly desirable to develop robust synthetic methods that can regulate the 
molecular weight distribution (MWD) of hyperbranched polymers with minimal compromise of the 
facile one-pot synthesis feature. So far, two major methods were applied to provide a better control 
over the dispersity of hyperbranched polymers. The first method is the application of a 
multifunctional core molecule via either slow addition of monomers into a dilute solution of the 
multifunctional core or the use of core molecule carrying more reactive groups than those on 
monomers. The main concept is to achieve a desired chain-growth polymerization via selective 
monomer-polymer reactions and disfavor monomer-monomer reactions. In contrast, the second 
method focuses on segregating the polymerization of monomers in a confined nanospace in order 
to decrease the dispersity of hyperbranched polymers. 

According to the simulation reported by Frey et al. [133] and Müller et al. [134], the slow 
addition of ABm monomers or AB* inimers into a solution of the multifunctional Bx (x ≥ 2) core 
could decrease the dispersity and increase the DB value of the hyperbranched polymers. In a 
situation when ABm monomers only react with the B functional groups on the Bx core, at complete 
conversion, hyperbranched polymers with Mw/Mn = 1 + (m − 1)/x are produced. Based on this theory, 
many research groups applied a variety of ABm + Bx pairs and achieved experimental results 
qualitatively supporting the simulation. However, examples of radical polymerization using AB* 
inimer and Bx* core are rare. Pan et al. applied a tetrafunctional initiator core (Core 1, Figure 6) in 

S TTC [89,90]

20

Polymers 2017, 9, 188  8 of 22 

 

15 M TTC [94] 

16 M TTC [87,92] 

17 S TTC [95] 

18 S TTC [82,93] 

19 S TTC [89,90] 

20 M TTC [99] 

21 S Carbamate/iniferter [129] 

22 M Carbamate/iniferter [106] 

23 M Thiol [132] 

a Vinyl groups include: S: styrenyl; A: acrylate; M: methacrylate; VA: vinyl acetate; b chain transfer 
(CT) groups include: DTB: dithiobenzoate; TTC: trithiocarbonate; DTC: xanthate (dithiocarbonate); 
TTC: trithiocarbonate.  

5. Attempts to Regulate the Structures of Hyperbranched Polymers 

Most of the reported hyperbranched polymers were synthesized by radical polymerization in 
bulk or solution. The homogeneous reaction media cause random monomer–monomer,  
monomer–polymer and polymer–polymer reactions throughout the reactor, which leads to 
polymers with poorly defined structure, i.e., high dispersity. Since the physical properties of 
hyperbranched polymers are critically influenced by their molecular weights and structural 
uniformity, it is highly desirable to develop robust synthetic methods that can regulate the 
molecular weight distribution (MWD) of hyperbranched polymers with minimal compromise of the 
facile one-pot synthesis feature. So far, two major methods were applied to provide a better control 
over the dispersity of hyperbranched polymers. The first method is the application of a 
multifunctional core molecule via either slow addition of monomers into a dilute solution of the 
multifunctional core or the use of core molecule carrying more reactive groups than those on 
monomers. The main concept is to achieve a desired chain-growth polymerization via selective 
monomer-polymer reactions and disfavor monomer-monomer reactions. In contrast, the second 
method focuses on segregating the polymerization of monomers in a confined nanospace in order 
to decrease the dispersity of hyperbranched polymers. 

According to the simulation reported by Frey et al. [133] and Müller et al. [134], the slow 
addition of ABm monomers or AB* inimers into a solution of the multifunctional Bx (x ≥ 2) core 
could decrease the dispersity and increase the DB value of the hyperbranched polymers. In a 
situation when ABm monomers only react with the B functional groups on the Bx core, at complete 
conversion, hyperbranched polymers with Mw/Mn = 1 + (m − 1)/x are produced. Based on this theory, 
many research groups applied a variety of ABm + Bx pairs and achieved experimental results 
qualitatively supporting the simulation. However, examples of radical polymerization using AB* 
inimer and Bx* core are rare. Pan et al. applied a tetrafunctional initiator core (Core 1, Figure 6) in 

M TTC [99]

21

Polymers 2017, 9, 188  8 of 22 

 

15 M TTC [94] 

16 M TTC [87,92] 

17 S TTC [95] 

18 S TTC [82,93] 

19 S TTC [89,90] 

20 M TTC [99] 

21 S Carbamate/iniferter [129] 

22 M Carbamate/iniferter [106] 

23 M Thiol [132] 

a Vinyl groups include: S: styrenyl; A: acrylate; M: methacrylate; VA: vinyl acetate; b chain transfer 
(CT) groups include: DTB: dithiobenzoate; TTC: trithiocarbonate; DTC: xanthate (dithiocarbonate); 
TTC: trithiocarbonate.  

5. Attempts to Regulate the Structures of Hyperbranched Polymers 

Most of the reported hyperbranched polymers were synthesized by radical polymerization in 
bulk or solution. The homogeneous reaction media cause random monomer–monomer,  
monomer–polymer and polymer–polymer reactions throughout the reactor, which leads to 
polymers with poorly defined structure, i.e., high dispersity. Since the physical properties of 
hyperbranched polymers are critically influenced by their molecular weights and structural 
uniformity, it is highly desirable to develop robust synthetic methods that can regulate the 
molecular weight distribution (MWD) of hyperbranched polymers with minimal compromise of the 
facile one-pot synthesis feature. So far, two major methods were applied to provide a better control 
over the dispersity of hyperbranched polymers. The first method is the application of a 
multifunctional core molecule via either slow addition of monomers into a dilute solution of the 
multifunctional core or the use of core molecule carrying more reactive groups than those on 
monomers. The main concept is to achieve a desired chain-growth polymerization via selective 
monomer-polymer reactions and disfavor monomer-monomer reactions. In contrast, the second 
method focuses on segregating the polymerization of monomers in a confined nanospace in order 
to decrease the dispersity of hyperbranched polymers. 

According to the simulation reported by Frey et al. [133] and Müller et al. [134], the slow 
addition of ABm monomers or AB* inimers into a solution of the multifunctional Bx (x ≥ 2) core 
could decrease the dispersity and increase the DB value of the hyperbranched polymers. In a 
situation when ABm monomers only react with the B functional groups on the Bx core, at complete 
conversion, hyperbranched polymers with Mw/Mn = 1 + (m − 1)/x are produced. Based on this theory, 
many research groups applied a variety of ABm + Bx pairs and achieved experimental results 
qualitatively supporting the simulation. However, examples of radical polymerization using AB* 
inimer and Bx* core are rare. Pan et al. applied a tetrafunctional initiator core (Core 1, Figure 6) in 

S Carbamate/iniferter [129]

22

Polymers 2017, 9, 188  8 of 22 

 

15 M TTC [94] 

16 M TTC [87,92] 

17 S TTC [95] 

18 S TTC [82,93] 

19 S TTC [89,90] 

20 M TTC [99] 

21 S Carbamate/iniferter [129] 

22 M Carbamate/iniferter [106] 

23 M Thiol [132] 

a Vinyl groups include: S: styrenyl; A: acrylate; M: methacrylate; VA: vinyl acetate; b chain transfer 
(CT) groups include: DTB: dithiobenzoate; TTC: trithiocarbonate; DTC: xanthate (dithiocarbonate); 
TTC: trithiocarbonate.  

5. Attempts to Regulate the Structures of Hyperbranched Polymers 

Most of the reported hyperbranched polymers were synthesized by radical polymerization in 
bulk or solution. The homogeneous reaction media cause random monomer–monomer,  
monomer–polymer and polymer–polymer reactions throughout the reactor, which leads to 
polymers with poorly defined structure, i.e., high dispersity. Since the physical properties of 
hyperbranched polymers are critically influenced by their molecular weights and structural 
uniformity, it is highly desirable to develop robust synthetic methods that can regulate the 
molecular weight distribution (MWD) of hyperbranched polymers with minimal compromise of the 
facile one-pot synthesis feature. So far, two major methods were applied to provide a better control 
over the dispersity of hyperbranched polymers. The first method is the application of a 
multifunctional core molecule via either slow addition of monomers into a dilute solution of the 
multifunctional core or the use of core molecule carrying more reactive groups than those on 
monomers. The main concept is to achieve a desired chain-growth polymerization via selective 
monomer-polymer reactions and disfavor monomer-monomer reactions. In contrast, the second 
method focuses on segregating the polymerization of monomers in a confined nanospace in order 
to decrease the dispersity of hyperbranched polymers. 

According to the simulation reported by Frey et al. [133] and Müller et al. [134], the slow 
addition of ABm monomers or AB* inimers into a solution of the multifunctional Bx (x ≥ 2) core 
could decrease the dispersity and increase the DB value of the hyperbranched polymers. In a 
situation when ABm monomers only react with the B functional groups on the Bx core, at complete 
conversion, hyperbranched polymers with Mw/Mn = 1 + (m − 1)/x are produced. Based on this theory, 
many research groups applied a variety of ABm + Bx pairs and achieved experimental results 
qualitatively supporting the simulation. However, examples of radical polymerization using AB* 
inimer and Bx* core are rare. Pan et al. applied a tetrafunctional initiator core (Core 1, Figure 6) in 

M Carbamate/iniferter [106]

23

Polymers 2017, 9, 188  8 of 22 

 

15 M TTC [94] 

16 M TTC [87,92] 

17 S TTC [95] 

18 S TTC [82,93] 

19 S TTC [89,90] 

20 M TTC [99] 

21 S Carbamate/iniferter [129] 

22 M Carbamate/iniferter [106] 

23 M Thiol [132] 

a Vinyl groups include: S: styrenyl; A: acrylate; M: methacrylate; VA: vinyl acetate; b chain transfer 
(CT) groups include: DTB: dithiobenzoate; TTC: trithiocarbonate; DTC: xanthate (dithiocarbonate); 
TTC: trithiocarbonate.  

5. Attempts to Regulate the Structures of Hyperbranched Polymers 

Most of the reported hyperbranched polymers were synthesized by radical polymerization in 
bulk or solution. The homogeneous reaction media cause random monomer–monomer,  
monomer–polymer and polymer–polymer reactions throughout the reactor, which leads to 
polymers with poorly defined structure, i.e., high dispersity. Since the physical properties of 
hyperbranched polymers are critically influenced by their molecular weights and structural 
uniformity, it is highly desirable to develop robust synthetic methods that can regulate the 
molecular weight distribution (MWD) of hyperbranched polymers with minimal compromise of the 
facile one-pot synthesis feature. So far, two major methods were applied to provide a better control 
over the dispersity of hyperbranched polymers. The first method is the application of a 
multifunctional core molecule via either slow addition of monomers into a dilute solution of the 
multifunctional core or the use of core molecule carrying more reactive groups than those on 
monomers. The main concept is to achieve a desired chain-growth polymerization via selective 
monomer-polymer reactions and disfavor monomer-monomer reactions. In contrast, the second 
method focuses on segregating the polymerization of monomers in a confined nanospace in order 
to decrease the dispersity of hyperbranched polymers. 

According to the simulation reported by Frey et al. [133] and Müller et al. [134], the slow 
addition of ABm monomers or AB* inimers into a solution of the multifunctional Bx (x ≥ 2) core 
could decrease the dispersity and increase the DB value of the hyperbranched polymers. In a 
situation when ABm monomers only react with the B functional groups on the Bx core, at complete 
conversion, hyperbranched polymers with Mw/Mn = 1 + (m − 1)/x are produced. Based on this theory, 
many research groups applied a variety of ABm + Bx pairs and achieved experimental results 
qualitatively supporting the simulation. However, examples of radical polymerization using AB* 
inimer and Bx* core are rare. Pan et al. applied a tetrafunctional initiator core (Core 1, Figure 6) in 

M Thiol [132]

a Vinyl groups include: S: styrenyl; A: acrylate; M: methacrylate; VA: vinyl acetate; b chain transfer (CT) groups
include: DTB: dithiobenzoate; TTC: trithiocarbonate; DTC: xanthate (dithiocarbonate); TTC: trithiocarbonate.

5. Attempts to Regulate the Structures of Hyperbranched Polymers

Most of the reported hyperbranched polymers were synthesized by radical polymerization in bulk
or solution. The homogeneous reaction media cause random monomer–monomer, monomer–polymer
and polymer–polymer reactions throughout the reactor, which leads to polymers with poorly defined
structure, i.e., high dispersity. Since the physical properties of hyperbranched polymers are critically
influenced by their molecular weights and structural uniformity, it is highly desirable to develop robust
synthetic methods that can regulate the molecular weight distribution (MWD) of hyperbranched
polymers with minimal compromise of the facile one-pot synthesis feature. So far, two major methods
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were applied to provide a better control over the dispersity of hyperbranched polymers. The first
method is the application of a multifunctional core molecule via either slow addition of monomers into
a dilute solution of the multifunctional core or the use of core molecule carrying more reactive groups
than those on monomers. The main concept is to achieve a desired chain-growth polymerization
via selective monomer-polymer reactions and disfavor monomer-monomer reactions. In contrast,
the second method focuses on segregating the polymerization of monomers in a confined nanospace
in order to decrease the dispersity of hyperbranched polymers.

According to the simulation reported by Frey et al. [133] and Müller et al. [134], the slow
addition of ABm monomers or AB* inimers into a solution of the multifunctional Bx (x ≥ 2) core
could decrease the dispersity and increase the DB value of the hyperbranched polymers. In a situation
when ABm monomers only react with the B functional groups on the Bx core, at complete conversion,
hyperbranched polymers with Mw/Mn = 1 + (m − 1)/x are produced. Based on this theory, many
research groups applied a variety of ABm + Bx pairs and achieved experimental results qualitatively
supporting the simulation. However, examples of radical polymerization using AB* inimer and
Bx* core are rare. Pan et al. applied a tetrafunctional initiator core (Core 1, Figure 6) in the ATRP
SCVP of inimer (AB*15, Table 1) and produced hyperbranched polymers with the most uniform
structure (Mw/Mn = 2.16) with a molar ratio of [AB*15]0/[core 1]0 = 28 [51]. In order to obtain
hyperbranched polymers with even lower dispersity (e.g., Mw/Mn = 1.5), the initial feed ratio of
inimer to core was limited to less than 100:1, and the polymerization required slow monomer addition
during the polymerization. Different from using the slow monomer addition strategy to favor the
monomer–polymer reaction, increasing the reactivity of the core molecules with respect to monomers
could also decrease the dispersity of the resulting polymers. The strategy of using a high-reactivity core
(Core 2, Figure 6) was applied in the ATRP SCVP of inimers AB*8 (Table 1) to synthesize hyperbranched
polymers with low dispersity [50]. Within the studies, an optimal feed ratio of [AB*8]0/[Core 2]0 = 40:1
in one pot produced polymers with Mw/Mn < 1.5.
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Figure 6. Structure of multifunctional cores reported in recent publications to produce hyperbranched
polymers with a narrow molecular weight distribution (MWD).

As an alternative method, the growth of hyperbranched polymers from an insoluble support
could also lower the polymer dispersity. Moore et al. applied a multifunctional ATRP initiator based
on surface-functionalized multi-walled carbon nanotubes (Core 3, Figure 6) for the polymerization
of AB*8 (Table 1) [135]. The resulting nanotubes with a hyperbranched polymer shell showed good
dispersibility in THF and CHCl3, although no DB and dispersity values were determined. A second
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example synthesized hyperbranched polymers grafted on the exterior surface of mesoporous silica
nanoparticles (MSN, Core 4, Figure 6) by surface-initiated ATRP of AB*8 (Table 1) [59]. It was found
that the molecular weights of hyperbranched polymers after cleavage from the MSN core increased
from Mn = 18.6 × 103–29.2 × 103 when the initial weight ratios of [AB*8]0/[Core 4]0 changed from
30–125 with relatively low dispersity (Mw/Mn = 1.80–2.30).

In contrast to the homogeneous solution polymerization, our group recently reported the application
of heterogeneous micelle-based confined space, i.e., microemulsion, to regulate the synthesis of
hyperbranched polymers by conducting one-pot ATRP SCVP of AB* inimers (Figure 7) [45]. The random
polymer–polymer reactions were effectively confined in each discrete polymerizing nanoparticle in the
microemulsion, and the obtained hyperbranched polymers showed narrow MWD and a hydrodynamic
size similar to that of nanoparticles, i.e., one hyperbranched polymer per latex particle by the end of
the polymerization. This ATRP of inimers in heterogeneous microemulsion has been demonstrated
as a robust method by exploring five methacrylate-based inimers under various microemulsion
conditions [47]. The produced hyperbranched polymers showed varied compositions with tunable
DB = 0.26–0.41, molecular weights (Mn = 194 × 103–1301 × 103) and low dispersity (Mw/Mn = 1.1–1.7).
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Meanwhile, all hyperbranched polymers produced within the spatially-confined micelles
(i.e., latexes) contained hundreds of bromine initiating sites. They could be subsequently used as MIs
for polymerization of another functional monomer to synthesize hyperstar polymers with core-shell
structures. The composition and dimension of the core and shell segments could be independently
controlled based on several experimental variables, including the monomer species, the feed ratios
and the conversions. Very recently, this type of synthesis was further accomplished in a one-pot
procedure via sequential polymerization of ABm monomer and a second functional monomer in the
oil-in-water emulsion. The surfactant-protected emulsion latexes functioned as segregated reactors to
effectively eliminate the undesired star-star coupling, achieving both high monomer conversion and
fast polymerization at the same time [48]. We anticipate that the general concept of polymerization
in confined space will enable many synthetic opportunities to better regulate the side reactions
and produce various structurally-defined polymer nanostructures, including star polymers, cyclic
polymers and graft polymers. In addition, Jiang’s group conducted a radical copolymerization of
styrene with Transmer 23 (Table 2) (3-mercaptohexyl methacrylate) in an aqueous emulsion system
with high monomer/transmer ratio (100/25), producing branched polymers with Mw/Mn = 5.37 [132].
As compared to the previous microemulsion system, this emulsion polymerization seems less effective
in controlling the polymer structure, probably due to the poor uniformity of the emulsion latexes and
the presence of many branched polymers per latex particle.
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6. Applications of Hyperbranched Polymers Produced from Radical-Based SCVP

In general, hyperbranched polymers display many useful properties, such as highly compact
structure, few chain entanglements, high solubility, low viscosity and multiple peripheral groups.
They have been utilized in various fields ranging from photoelectric materials, nanotechnology,
biomedicines, composites, coatings, adhesives and lubricants. Regarding the hyperbranched polymers
produced from controlled radical SCVP, a few examples have been published recently giving emphasis
on the functionality.

6.1. Hyperbranched Polymers for Loading Guest Molecules

Hyperbranched polymers are considered as unimolecular containers and could be applied as hosts
to encapsulate small guest molecules. The loading capability of hyperbranched polymers is one of the
most important parameters, which is critically affected by the density and functionality of the branching
points. For instance, as compared to commonly-used nanogels that have an “X”-shaped branching unit
from which four chains radiate out, hyperbranched polymers have a “T”-shaped branching unit from
which three arms radiate out (Figure 8). The effect of branching unit structure on the loading properties
of these two unimolecular containers was first studied by our group. A family of hyperbranched
polymers and crosslinked nanogels with similar molecular weights, similar hydrodynamic diameters
in THF and the same density of azido groups per structural unit were synthesized via ATRP and
conventional radical polymerization (RP) of azido-functionalized inimers, divinyl cross-linkers and
monovinyl monomers in microemulsion. The hyperbranched polymers demonstrated three-times
higher loading efficiency than crosslinked nanogels when both reacted with three alkynyl-containing
dendron molecules using Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reactions (Figure 8) [49].
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In a separate study, the Gao Chao group at Zhejiang University reported that the high polarity
difference between the core and shell of an amphiphilic hyperbranched polymer could selectively load
organic dyes into the core domain [92]. In this study, core–shell amphiphilic hyperbranched polymers
were produced by RAFT SCVCP of Transmer 9 (Table 2) and 2-(dimethylamino)ethyl methacrylate
(DMAEMA) monomer in one pot. After chain extension with polystyrene to introduce the hydrophobic
shell, the multifunctional tertiary amino groups in the core were converted into quaternary ammonium
by reacting with propargyl bromide, which can efficiently load azido-functionalized dye molecules
into the charged hydrophilic core area in high efficiency.

6.2. Application of Hyperbranched Polymers for Drug Delivery

Hyperbranched polymers have potential applications in nanomedicine because of their compact
architecture and multiple peripheral chain ends, enhancing multivalent targeting efficiency. In 2015,
Pan’s and Gao’s groups reported the ability of a novel combinatorial therapy targeting triple negative
breast cancer cells using a hyperstar polymer (HSP) to encapsulate two enzyme inhibitors inside:
niclosamide (e.g., 5-chloro-N-(2-chloro-4-nitrophenyl)-2-hydroxybenzamide), a known STAT3 inhibitor
and amonafide (e.g., 5-amino-2-[2-(dimethylamino)ethyl]-1H-benzo[de]isoquinoline-1,3(2H)-dione),
an agent activating topoisomerase-II pathways [136]. The HSP was constructed in two steps: ATRP
of AB*19 inimer (Table 1) in microemulsion followed by a surface-initiated ATRP of DMAEMA in
solution (Figure 9). After encapsulation of given amounts of inhibitors, this nano-cocktail showed
at least 2–4-fold better inhibition of triple negative breast cancer cells than the individual drugs and
6–20-times more selective than the parent drugs.
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Gong et al. reported an enzyme- and pH-sensitive branched poly[N-(2-hydroxypropyl)
methacrylamide] (polyHPMA) copolymer-doxorubicin conjugate, which was prepared via a one-pot
RAFT SCVCP of one transmer and three functional monomers followed by drug conjugation
(Figure 10) [137]. The amphiphilic polymer–drug conjugates formed nanoparticles in water, but degraded
to low molecular weight products in the presence of papain or cathepsin B. The drug–conjugated polymer
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nanoparticles exhibited greater accumulation in breast tumors and released doxorubicin molecules under
acidic environment, resulting in enhanced antitumor therapeutic indexes with targeted delivery.Polymers 2017, 9, 188  13 of 22 
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In another report, Lu and coworkers prepared a redox-responsive branched polymer-drug
conjugate, in which the branched poly(VBPT-co-PEGMA) was synthesized by one-pot
RAFT copolymerization of S-(4-vinyl) benzyl S′-propyl trithiocarbonate (VBPT) transmer and
poly(ethylene glycol) methacrylate (PEGMA) monomer followed by several steps of chain-end
transformations (Figure 11) [93]. The amphiphilic polymer–drug conjugates self-assembled into
micelles in aqueous solution and destructed under the reductive cellular environment to release the
anticancer drug 6-mercaptopurine.
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6.3. Application of Hyperbranched Polymers for Bioimaging

There is great interest in developing active targeting nanomaterials for various diagnostic
bioimaging applications, such as magnetic resonance imaging (MRI), to alter biodistribution and
improve imaging sensitivity [138]. Robins et al. used RAFT SCVP and synthesized branched
block copolymers carrying 1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic acid (DO3A)
macrocycles within their cores and octreotide (somatostatin mimic) cyclic peptides at their periphery
(Figure 12A) [139]. These polymeric nanoparticles have been chelated with Gd3+ and applied as
MRI nanocontrast agents. As another example of the application of hyperbranched polymer in MRI,
Whittaker et al. produced a series of highly branched polymers consisting of fluoro- and PEG-based
segments by RAFT SCVCP (Figure 12B) [98]. It was demonstrated that the chain sequence of fluorinated
monomers along the polymer backbone and the polymer DB values significantly determined the final
19F NMR properties.
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6.4. Application of Hyperbranched Polymers for Catalysis

Hyperbranched polymers synthesized via CRP methods have also been used as unimolecular
containers to stabilize catalytic metal nanoparticles inside. Recently, our group developed a type of
reusable hyperstar polymer–Au25(SR)18 nanocomposites for catalysis of reduction of 4-nitrophenol
by NaBH4 [140]. A hyperbranched copolymer was first constructed via ATRP SCVCP of AB*13
inimer (shown as BIEM in Figure 13) with a cyclic disulfide-containing methacrylate monomer
(MAOELP) in microemulsion in a 5:1 molar feed ratio, before it was used as an MI for polymerization
of oligo(ethylene glycol) methyl ether methacrylate (OEGMA, Mn = 500) to grow the radiating arms.
The hyperstar polymer HS–(MAOELP1-r-BIEM5)@POEGMA with disulfide groups was proven to
efficiently encapsulate Au25(SR)18 nanoclusters through ligand exchange without destroying the fine
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structure of the Au25(SR)18 clusters. The obtained hyperstar–Au25(SR)18 nanocomposites showed great
stability with no size change after a three-month shelf storage. They were used as efficient catalysts for
the catalytic reduction of 4-nitrophenol by NaBH4 in five cycles, showing convenient catalyst recovery
without losing catalytic efficiency.Polymers 2017, 9, 188  15 of 22 
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7. Conclusions and Outlook

Here, we summarize the recent progress on using CRP methods, including NMP, ATRP and RAFT,
to produce hyperbranched polymers and their exploration as materials in numerous applications.
By copolymerizing inimers or transmers with monovinyl monomers, the SCVP technique could be
extended to SCVCP that allows easy functionalization of the hyperbranched copolymers with various
reactive groups and tunable DB values. Currently, most of the hyperbranched polymers synthesized by
using this method suffered from limited structural control, i.e., the broad molecular weight distribution,
due to the random polymer-polymer reaction. Several methods have been explored to better control the
polymer structures, such as the application of a multifunctional core and the use of a confined space.
Robust synthetic methods are still in high demand that can achieve accurate placement of one or a few
monomers per time into a hyperbranched polymer with the orthogonality of reactive groups for the
modification in different domains. In particular, photo-mediated CRP methods [141,142], any ATRP
techniques with ppm amount of Cu [143] or no Cu catalysts [144,145] are expected to be applied in the
polymerization of inimers and transmers for producing hyperbranched polymers with robust conditions,
free of catalyst contaminants and better control of polymer structures [146]. Meanwhile, the intriguing
features of these hyperbranched polymers for easy synthesis and multiple chain-end groups have
attracted the exploration of their applications as materials in drug delivery, imaging diagnostics and
catalysis. These progresses establish a more comprehensive structure-property relationship about these
CRP-produced hyperbranched polymers for their broad utilization in industrial applications.
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