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Abstract: Chitosan (CS) films doped with sodium triflate (NaTf) were prepared by the solution cast
technique. The structural and morphological behaviors of the samples were examined by X-ray
diffraction (XRD) and scanning electron microscopy (SEM) techniques. The XRD patterns were
deconvoluted to estimate the degree of crystallinity of the samples. The SEM micrograph showed
the crystalline structure of the sample contained 50 wt % of NaTf salt. The disappearance of broad
peaks of chitosan at 2θ ≈ 21◦ and 2θ ≈ 32◦ confirmed the occurrence of ion association at 50 wt %
of NaTf salt. In impedance plots, a low frequency spike region and a high frequency semicircle,
were distinguishable for low salt concentrations. The highest ambient temperature direct current
(DC) electrical conductivity obtained for CS:NaTf was found to be 2.41 × 10−4 S/cm for the sample
containing 40 wt % of NaTf salt. The role of lattice energy of salts on DC ionic conductivity was also
discussed. The temperature dependence of DC conductivity was found to follow the well-known
Arrhenius relationship. From the alternating current (AC) conductivity spectra, three distinct regions
were recognized for the samples with NaTf salt concentration ranging from 10 wt % to 30 wt %.
The plateau region of AC spectra was used to estimate the DC conductivity.

Keywords: chitosan polymer electrolyte; degree of crystallinity; SEM; impedance plots; DC and
AC conductivity

1. Introduction

Solid polymer electrolytes (SPEs), have been intensively studied [1], because of their possible
application as electrolytes in solid state electrochemical devices such as fuel cells, batteries, super
capacitors, sensors, and electrochromic windows [2]. SPEs are usually formed by dissolving alkali
metal salts in polar polymers [3]. The advantages of SPEs over conventional liquid electrolytes are
high energy density, leak proof, high ionic conductivity, wide electrochemical stability windows,
light weight, solvent free condition and easy to design to any shape [4]. Chitosan (CS) polymer,
is a derivative of chitin, the most abundant natural amino polysaccharide and is estimated to be
produced annually almost as much as cellulose [5,6]. The main commercial sources of chitin are crab
and shrimp shells, which are abundantly supplied as waste products of the seafood industry [6].
CS is a polycationic polymer due to the existence of one amino group and two hydroxyl groups in
its repeating units [7]. Recently, chitosan has been extensively studied because of its biodegradable,
biocompatible, and non-toxic behavior [8]. Some solid polymer electrolytes based on chitosan that have
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been reported, are chitosan-NH4NO3-EC [9], chitosan-NH4CF3SO3 [10], chitosan-LiCF3SO3-EC [11],
chitosan-NH4I-EC [12], chitosan-PVA-NH4NO3-EC [13], and chitosan-AgNO3 [14]. The conductivity
of the above mentioned systems without plasticizers are found to be less than 10−4 S/cm.
The development of polymeric systems with high ionic conductivity is one of the main goals in
polymer electrolyte research, due to their potential application in electrochemical devices [15]. From the
fundamental point of view, ionic conduction in polymer electrolytes is poorly understood due to the
existence of both crystalline and amorphous phases. It has been reported that the ion conduction takes
place primarily in the amorphous phase [16]. To the best of our knowledge, little attention has been paid
to polymer electrolytes containing sodium salts. The use of sodium salts in the preparation of polymer
electrolytes has several advantages over their lithium counterparts. The softness of sodium based
materials makes it easier to achieve and maintain contact with other components in the battery [17].
According to the recent review of Vignarooban et al., [18], research and development efforts on
sodium-ion batteries are gaining momentum due to their accessibility in abundance at a lower cost
than lithium (Li). Many electrolytes used in the state of the art of Li batteries are in general valid also
for Na-based batteries due to the chemical similarity between sodium and lithium [19]. Moreover,
sodium (Na) based rechargeable batteries are environmentally friendly, non-toxic, and low cost [20].
The main objective of the present work was to investigate the effect of high NaTf salt concentration on
structural, morphological, and electrical characteristics of chitosan based solid electrolytes.

2. Experimental Details

2.1. Materials and Sample Preparation

Solution cast technique was used to prepare chitosan based polymer electrolytes. NaCF3SO3

(NaTf) (purity 98%, Sigma Aldrich, Warrington, PA, USA) and chitosan (from crab shells; ≥75%
deacetylated, Sigma Aldrich, Warrington, PA, USA) were used as the raw materials in this study.
One gram of chitosan was dissolved in 100 mL of 1% acetic acid solution. The mixture was stirred
continuously with a magnetic stirrer for several hours at room temperature until the chitosan powder
was completely dissolved. To these set of solutions 10–50 wt % of NaTf was added separately and
the mixtures were stirred continuously until homogeneous solutions were achieved. After casting
into various plastic Petri dishes, the solutions were left to dry at room temperature to allow complete
evaporation of solvent. The films were kept in desiccators with silica gel desiccant for a further drying
process. This procedure yields mechanically stable and free standing samples. Table 1 summarizes the
concentration of the prepared solid polymer electrolytes based on chitosan.

Table 1. Composition of chitosan:NaTf based solid polymer electrolytes.

Sample designation Chitosan (g) NaTf (wt %) NaTf (g)

HSCP 0 1 0 0
HSCP 1 1 10 0.11
HSCP 2 1 20 0.25
HSCP 3 1 30 0.42
HSCP 4 1 40 0.66
HSCP 5 1 50 1

2.2. Structural and Morphological Analysis

The X-ray diffraction (XRD) measurement was performed to study the nature of complexation
between NaTf and chitosan using an X-ray diffractometer (Bruker AXS GmbH, Berlin, Germany).
The XRD spectrum was collected at room temperature with operating voltage and current of 40 kV
and 40 mA, respectively. The samples were scanned with a beam of monochromatic X-rays with
a wavelength of λ = 1.5406 A◦ and glancing angles of 5◦ ≤ 2θ≤ 80◦ with a step size of 0.1◦. A scanning
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electron micrograph (SEM) was taken to study the morphological appearance using the FEI Quanta
200 FESEM scanning electron microscope (FEI Company, Hillsboro, OR, USA).

2.3. Electrical Impedance Spectroscopy (EIS)

Complex impedance spectroscopy is the most commonly used technique for studying the electrical
properties of materials and their interface with electronically conducting electrodes. The solid polymer
electrolyte (SPE) films were cut into small discs (2 cm diameter) and sandwiched between two stainless
steel electrodes under spring pressure. The impedance of the films was measured in the frequency
range of 50 Hz to 1000 kHz and at temperatures in the range of 303 K to 413 K, using the HIOKI 3531
Z Hi-tester (No. 1036555, Hioki, Nagano, Japan), which is interfaced to a computer. A LabView 8.2
based software (National Instruments, Austin, TX, USA) was used to control the measurements and
calculate the real and imaginary parts of the impedance. Z′ and Z” data were presented as a plot of
Nyquist and the bulk resistance was obtained from the intercept of the plot with the real impedance
axis. The conductivity was calculated from the following equation [21]:

σdc =

(
1

Rb

)
×

(
t
A

)
(1)

where, t and A are the thickness and area of the film, respectively. The real (Z′) and imaginary (Z”) parts
of complex impedance (Z*) was also used for the evaluation of AC conductivity using the following
Equations [22–24]:

σac =

[
Z′

Z′2 + Z′′ 2

]
×

(
t
A

)
(2)

3. Results and Discussion

3.1. Structural and Morphological Analysis

In order to investigate the effect of NaTf on the structure of chitosan-based polymer electrolyte,
X-ray diffraction of pure NaCF3SO3, pure chitosan film and their complexes was performed. Figure 1
shows the X-ray diffraction patterns of pure NaTf. The crystalline peaks of pure NaTf salt can be
detected at 2θ = 8.4◦, 9.9◦, 16.8◦, 22.15◦, 26.2◦, 32.9◦, 35.6◦, and 40.9◦.
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Figure 1. X-ray diffraction (XRD) pattern of pure NaTf salt.
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The diffractograms of pure chitosan film and chitosan:NaTf complexes (deconvolution) are
exhibited in Figure 2. Pure chitosan is known to possess a semi-crystalline structure with distinguishable
peaks at around 2θ = 10.9◦, 15.1◦, 17.7◦ and 20.9◦ [25,26], which are in agreement with the reported
values of Wan et al., [27]. These peaks can be ascribed to the average intermolecular distance of the
crystalline part of pure chitosan membrane [28]. In our previous work, which was carried out on low
NaTf salt concentration (2 wt % to 10 wt %), we observed that the main peaks of chitosan were shifted
and split as a result of complex formation between chitosan and NaTf salt [25]. It is clear that the
crystalline structure of chitosan is largely retained by intramolecular and intermolecular hydrogen
bonding [25,29]. The peak at 2θ = 11.2◦ is attributed to the reflection plane of (020), while, the peak
at around 20.9◦, which corresponds to the contribution of two peaks at 18.2◦ and 22.7◦ observed in
the HSCP1 sample, is related to the reflection planesof (200) and (220) [30]. Another peak appearing
near 15.1◦ is reported to be an indication of the relatively regular crystal lattice (110) of chitosan [30].
It can be noticed that the position of these peaks changes depending on the amount of the incorporated
NaTf salt. The sharp peaks at around 11◦, 18◦, and 22.7◦ in the doped, HSCP1 to HSCP4, samples are
ascribed to the crystalline peaks of chitosan. The broad peaks centered at about 18◦ and 32◦ can be
attributed to the amorphous nature of chitosan. According to Alves et al., [31] these Gaussian-shaped
broad peaks depicted in Figure 2, confirm the predominantly amorphous nature of chitosan solid
electrolyte samples. It can be seen that the deconvoluted band appeared at 30◦ for pure chitosan
(Figure 2a) is shifted to about 40◦ for chitosan incorporated with 10 wt % to 40 wt % of NaTf. As well,
the other crystalline peaks of pure chitosan are shifted and their intensities are decreased in the doped
samples. The broadening, shifting, and lowering of the relative intensity of chitosan (CS) diffraction
peaks on the incorporation of the NaTf salt can be ascribed to the disruption of hydrogen bonding
between the polymer chains [23,25,29].

It is clear from Figure 2 that the amorphous area increases with increasing NaTf concentration
up to 40 wt % and then the main crystalline peaks of NaTf are found for the sample incorporating
50 wt % of NaTf. To measure the degree of crystallinity (Xc) of membranes, the areas of amorphous
and crystalline peaks were calculated. The relative percentage of crystallinities (Xc) were calculated
from the following relationship [27,32]

Xc = [Ac/(Ac + Aa)] × 100% (3)

where Ac and Aa are the areas of crystalline and amorphous peaks, respectively. It is interesting to note
that the degree of crystallinity is suppressed more effectively upon the addition of more NaTf salt
(see Table 2). This can be related to the disruption of the polymer crystalline phase [33]. In our previous
works we confirmed through Fourier Transform Infrared (FTIR) spectroscopy that the inter-and
intra-molecular hydrogen bonds of chitosan can be weakened or disrupted as a result of complexation
occurring between the functional groups of chitosan and the cations of the dopant salt [25,34]. At a high
salt content (40 wt %) the system is almost amorphous and only one crystalline peak (peak 1) of chitosan
remains. The achieved degree of crystallinity (see Table 2) for pure chitosan (15.1) in the present work
was found to be close to the reported value (≈14) of other researchers [27,32,35]. The crystalline peaks
appearing in the XRD pattern of HSCP5 are close to the crystalline peaks of NaTf salt (see Figure 1).
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Table 2. Degree of crystallinity (Xc) for all the samples.

Sample designation Degree of crystallinity (Xc)

HSCP 0 15.1
HSCP 1 13.4
HSCP 2 9.7
HSCP 3 7.2
HSCP 4 1.97
HSCP 5 -

To support the XRD results, SEM images were taken for the selected samples. SEM is an efficient
technique to explore the surface structure and one of the advantages is that the range of magnification
is broad, allowing the area of interest of the sample to be easily focused on by the investigators [36].
The surface morphology was obtained using SEM. SEM provides useful analysis of surface structure
and morphology. The nature and morphology of solid polymer electrolyte films are important
properties for elucidating their behaviors. Figure 3a,b, show the SEM images of chitosan:NaTf (HSCP 4
and HSCP 5) samples. Morphologically, the HSCP 4 membrane had a uniform surface and it was
observed to be smooth and homogenous without any phase separation. When 50 wt % of NaTf
salt was added, some crystalline structures appeared to protrude through the surface of the film as
shown in Figure 3b. The formation of the crystalline structures can be attributed to ion pair formation,
in which the ionic conduction is subtracted [37]. From the SEM results, it is easy to understand that
the crystalline peaks obtained for the XRD pattern of the HSCP 5 system (see Figure 2f) are related to
the crystalline structures of NaTf salt. These results show that chitosan polymer can dissolve NaTf salt
up to 40 wt %. Kadir et al., also used SEM imaging to detect the protruded crystalline structures of
salts at high concentrations in the chitosan based solid polymer electrolytes [13,37].
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3.2. Impedance Analysis

Electrochemical impedance is a powerful tool to study the electrical properties of electrodes and
polymer electrolytes [38]. Electrical impedance plots (i.e., Zi vs. Zr) for all the samples are shown in
Figure 4a–f. From Figure 4a–d, it can be seen that the plots show two obvious regions, high frequency
semicircle and low frequency spike regions. The spike region occurs as a result of the formation
of electric double layer (EDL) capacitances by free charge accumulation at the interface between
the solid electrolyte and electrode surfaces [39]. In fact the plots of complex impedance at the low
frequency region must show a straight line parallel to the imaginary axis, i.e., the inclination of the
straight line should be 90◦, but the blocking double-layer capacitance at the blocking electrodes causes
this inclination [40,41]. The high frequency region can be used to obtain the bulk resistance (Rb) as
shown in Figure 4. From Figure 4a–d, the high frequency semicircular region and low frequency
spike can be observed. It is obvious that the high frequency semicircle diameter gradually decreases
with increasing salt concentration and almost disappears at 40 wt %. The disappearance of the high
frequency semicircular region in the impedance plot leads to the conclusion that the total conductivity
is mainly the result of ion migration at higher salt concentration [42].This makes the determination
of DC conductivity more difficult because the arc is completely absent (see Figure 4e). In this case,
the DC conductivity was determined by extrapolating the polarization “spike” in the complex plane to
the intersection with the real impedance as depicted in Figure 4e [43]. The spike tail usually appears
in polymer electrolytes at high salt concentration and at high temperatures [13,42]. The appearance
of a high frequency semicircle in the HSCP 5 system can be ascribed to ion association at high salt
concentration, which in turn decreases the conductivity. When ion association occurs at high salt
concentration; the peaks of crystalline NaTf salt may appear as depicted in the XRD pattern of the
HSCP 5 system (see Figure 2f). The distinguishable crystalline structures observed in SEM micrograph
for the HSCP 5 system (Figure 3b) confirmed the occurrence of ion association. Thus, the electrical
properties are strongly supported by the results of XRD and SEM.
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3.3. DC and AC Conductivity Analysis

It has been well reported that the ionic conductivity of solid polymer electrolytes depends on the
number of the charge carriers and their mobility as follows [44]:

σ = Σ ni zi µi (4)

where ni, zi, and µi refer to the number of charge carriers, the ionic charge, and the ionic mobility,
respectively. Therefore, according to Equation (4) the DC ionic conductivity can be enhanced by
increasing the salt concentration or mobility. Table 3 represents the calculated DC conductivity
for all the samples. It is obvious that the DC ionic conductivity is increased with increasing salt
concentration up to 40 wt % of NaTf and then drops. Previous study revealed that the dependence of
ionic conductivity on the salt concentration may be useful to obtain certain information on polymer-salt
interactions and their miscibility [45]. From Table 3 it is clear that with up to 40 wt % of NaTf salt,
there is a good compatibility between the chitosan and the added salt, whereas incorporation of more
salt causes a drop in DC conductivity. The room temperature DC conductivity of the samples is
strongly supported by the results of XRD and SEM. Thus, a good structure-property relationship can
be observed from the results of the present work. The appearance of crystalline peaks of NaTf salt at
50 wt % (see Figure 2) is responsible for the drop in DC conductivity. The observed crystalline structures
in SEM image at 50 wt % of NaTf salt supports the XRD results. The occurrence of re-association of
anions and cations of dissolved salt in polymer electrolytes is expected at high salt concentrations.
It has been well established that when a high salt is added to the polymer host, the ions and cations
can be close enough to form salt aggregates, which will hinder other free ions from moving and
reduce the number of the density of free mobile ions [46]. This phenomenon (salt aggregation) has
been reported widely in the literature for chitosan based solid polymer electrolytes incorporated
with high salt concentrations [13,37,46,47]. A maximum DC conductivity of 2.41 × 10−4 S/cm was
achieved in the present work, which is higher than 1.53 × 10−6 S/cm for chitosan:europium triflate
and 5 × 10−6 S/cm for chitosan:lithium triflate (LiCF3SO3) reported by Silva et al., and Arof et al.
respectively [48,49]. However, it is very close to the value of 2.27 × 10−4 S/cm reported by Rosli et al.,
for hexanoyl chitosan/polystyrene-LiCF3SO3 incorporated with TiO2 nanoparticle [50]. The high DC
conductivity of chitosan with Na+ cation compared to other salts can be explained based on the theory
of Hard-Soft-Acid-Base (HSAB) introduced by Ralph Pearson. According to this theory, the larger
(e.g., Ag+ or Na+) and smaller (e.g., Li+) cations are considered to be soft and hard, respectively [51].
A strong bond can be formed between a hard cation and a hard anion as well as a weak bond between
a soft cation and a hard anion, resulting in a higher DC conductivity. The formation of bonds between
cations and anions of the salts can be better understood from the salts’ lattice energy. It was established
that the dissociation of inorganic salts in macromolecular solids depends on the lattice energy of salts
and the dielectric constant of the host polymer [52]. The lattice energy of NaTf is 650 kJ/mol and is
smaller than the lattice energy of LiCF3SO3, which was found to be 725 kJ/mol [52]. From the above
discussion it is clear that in addition to the dielectric constant of the host polymers the lattice energy of
the salts significantly affects the conductivity behavior of polymer electrolytes.

Table 3. DC ionic conductivity of pure chitosan and chitosan:NaTf complexes at 30 ◦C.

Sample designation DC conductivity (S/cm)

HSCP0 1.65 × 10−10

HSCP1 4.78 × 10−9

HSCP2 5.84 × 10−7

HSCP3 8.53 × 10−6

HSCP4 2.41 × 10−4

HSCP5 7.34 × 10−7
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Figure 5 shows the temperature variation of DC conductivity for various salt concentrations.
One can see that the DC conductivity is increased almost linearly with increasing temperature. At high
temperature, the thermal movement of polymeric chain segments and salt dissociation could be
improved. This encourages the ion transport and accordingly causes the ionic conductivity of the
polymer salt complex to be raised [25,53]. It is interesting to note that the increase of DC conductivity
versus 1000/T is not a rapid process. This reveals that the hopping of mobile ions from one site
to another is a thermally activated process [54]. The linear relations observed in all chitosan:NaTf
samples highlights that there is no phase transition in the polymer electrolyte [55], i.e., the temperature
dependence of ionic conductivity in the temperature range is of the Arrhenius type:

σdc = σo exp[−Ea/KBT] (5)

where σo is a pre-exponential factor, Ea is the activation energy, KB is the Boltzmann constant, and T
is the temperature (K). The calculated Ea value for the highest conducting sample was found to be
0.27 eV. Figure 6 illustrates the activation energy as a function of NaTf salt concentration. One can
clearly see that the activation energy has decreased with increasing salt concentration up to 40 wt %
and then increased. The activation energy may be considered as an energy barrier, which the ion has to
overcome for a successful jump between the sites [21]. It is well known that ionic motion in polymers
with high amorphous portions is easier than in polymers with high crystalline portions. The low
activation energy of HSCP 4 is related to its high amorphousness (Xc). Kumar et al., [56], reported
that crystalline regions in SPEs can hinder the ion movement by blocking the paths to ions. However,
the increase of amorphous region results in an increase in the free volume. The increase in free volume
would facilitate the motion of ionic carriers. Consequently, the sample with a large amorphous portion
exhibits a higher DC conductivity with lower activation energy.
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Figure 7 illustrates the AC conductivity spectra for all the doped samples. It is clear that the
contribution of the spike region increased with increasing salt concentration. Previous studies
established that different electrical phenomena can be seen in AC conductivity spectra, such as,
(i) dielectric relaxations (dispersion region), which can be measured usually at high frequencies and
low temperature; (ii) phenomena related to transport of charge through the electrolyte, e.g., ionic
DC conductivity (plateau region); and (iii) interfacial properties, which dominate the spectra at low
frequencies and high temperature (spike region) [22,57]. Therefore, different contribution can be studied
from the frequency dependent measurements. The low frequency region (I), which appears as a spike,
can be due to electrode–electrolyte interfacial phenomena, i.e., electrode polarization (EP) effect [24].
It can be observed that the contribution of the spike region (I) increases with the increase of salt
concentration. From the intermediate frequency region (II), a plateau of AC conductivity is observed.
This region corresponds to the DC conductivity [23] and decreases significantly with increasing salt
concentration as a result of electrode polarization (EP) enhancement as well as shifts to the higher
frequency side. It has been well reported that DC conductivity is related to the presence of free charges
in the polymer electrolyte systems. Whereas, AC conductivity belongs to trapped charges in the defect
levels that can be activated in the high frequency region [58]. The extrapolation of the plateau region to
the y-axis was used to estimate the DC conductivity. The DC conductivity values achieved from the AC
conductivity spectra are close to those calculated from the bulk resistance (Rb) (see Table 3).
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4. Conclusions

Chitosan (CS) films doped with sodium triflate (NaTf) were prepared by the solution cast
technique. NaTf was added to CS in different weight ratios ranging from 10 wt % to 50 wt % in
steps of 10 wt %. The results of XRD revealed that the amorphous portion increases with increasing
NaTf concentration up to 40 wt %. The XRD patterns were deconvoluted to estimate the degree of
crystallinity. The smallest degree of crystallinity was obtained for the HSCP4 sample. The crystalline
peaks appearing at 50 wt % NaTf were attributed to the ion aggregates that resulted from ion
association, occurring at high salt concentrations. The disappearance of broad peaks of chitosan
at 2θ ≈ 21◦ and 2θ ≈ 32◦ confirms the formation of crystalline domains as a result of ion association
at 50 wt % NaTf. The SEM result of HSCP5 proved that ion aggregates are able to leak from the
surface. In impedance plots the low frequency spike region and high frequency semicircle were
distinguishable for salt concentrations ranging from 10 wt % to 30 wt %. The highest ambient
temperature DC electrical conductivity obtained for CS:NaTf was 2.41 × 10−4 S/cm for the sample
containing 40 wt % NaTf. The temperature dependence of DC conductivity was found to follow the
Arrhenius equation. The smallest activation energy was achieved for the sample incorporated with
40 wt % NaTf. The dispersion region in the AC conductivity spectra was found to be distinguishable
up to 30 wt % NaTf. The estimated DC conductivity from the extrapolation of the plateau region of
the AC spectra was close to those values calculated from the bulk resistance. These results reveal the
accuracy of our measurements in the present work.
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