Next Article in Journal
The Significant Influence of Bacterial Reaction on Physico-Chemical Property Changes of Biodegradable Natural and Synthetic Polymers Using Escherichia coli
Next Article in Special Issue
DNA Compaction and Charge Inversion Induced by Organic Monovalent Ions
Previous Article in Journal
Thermo-Responsive Poly(N-Isopropylacrylamide)-Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing
Previous Article in Special Issue
Preparation and Application of Starch/Polyvinyl Alcohol/Citric Acid Ternary Blend Antimicrobial Functional Food Packaging Films
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Polymers 2017, 9(4), 120; doi:10.3390/polym9040120

A Novel Biomimetic Approach to Repair Enamel Cracks/Carious Damages and to Reseal Dentinal Tubules by Amorphous Polyphosphate

1
European Research Council-Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
2
Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University,Johann Joachim Becher Weg 13, D-55099 Mainz, Germany
3
Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China
*
Authors to whom correspondence should be addressed.
Received: 3 February 2017 / Revised: 23 March 2017 / Accepted: 23 March 2017 / Published: 25 March 2017
(This article belongs to the Special Issue Bio-inspired and Bio-based Polymers)
View Full-Text   |   Download PDF [21743 KB, uploaded 27 March 2017]   |  

Abstract

Based on natural principles, we developed a novel toothpaste, containing morphogenetically active amorphous calcium polyphosphate (polyP) microparticles which are enriched with retinyl acetate (“a-polyP/RA-MP”). The spherical microparticles (average size, 550 ± 120 nm), prepared by co-precipitating soluble Na-polyP with calcium chloride and supplemented with retinyl acetate, were incorporated into a base toothpaste at a final concentration of 1% or 10%. The “a-polyP/RA-MP” ingredient significantly enhanced the stimulatory effect of the toothpaste on the growth of human mesenchymal stem cells (MSC). This increase was paralleled by an upregulation of the MSC marker genes for osteoblast differentiation, collagen type I and alkaline phosphatase. In addition, polyP, applied as Zn-polyP microparticles (“Zn-a-polyP-MP”), showed a distinct inhibitory effect on growth of Streptococcus mutans, in contrast to a toothpaste containing the broad-spectrum antibiotic triclosan that only marginally inhibits this cariogenic bacterium. Moreover, we demonstrate that the “a-polyP/RA-MP”-containing toothpaste efficiently repairs cracks/fissures in the enamel and dental regions and reseals dentinal tubules, already after a five-day treatment (brushing) of teeth as examined by SEM (scanning electron microscopy) and semi-quantitative EDX (energy-dispersive X-ray spectroscopy). The occlusion of the dentin cracks by the microparticles turned out to be stable and resistant against short-time high power sonication. Our results demonstrate that the novel toothpaste prepared here, containing amorphous polyP microparticles enriched with retinyl acetate, is particularly suitable for prevention/repair of (cariogenic) damages of tooth enamel/dentin and for treatment of dental hypersensitivity. While the polyP microparticles function as a sealant for dentinal damages and inducer of remineralization processes, the retinyl acetate acts as a regenerative stimulus for collagen gene expression in cells of the surrounding tissue, the periodontium. View Full-Text
Keywords: amorphous polyphosphate microparticles; retinyl acetate; enamel cracks/fissures; Streptococcus mutans; human mesenchymal stem cells; collagen type I; alkaline phosphatase amorphous polyphosphate microparticles; retinyl acetate; enamel cracks/fissures; Streptococcus mutans; human mesenchymal stem cells; collagen type I; alkaline phosphatase
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Müller, W.E.; Ackermann, M.; Neufurth, M.; Tolba, E.; Wang, S.; Feng, Q.; Schröder, H.C.; Wang, X. A Novel Biomimetic Approach to Repair Enamel Cracks/Carious Damages and to Reseal Dentinal Tubules by Amorphous Polyphosphate. Polymers 2017, 9, 120.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top