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Abstract: Fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/alkyl-modified cellulose
(AM-Cellu) nanocomposites [RF-(CH2-CHSiO2)n-RF/AM-Cellu; n = 2, 3; RF = CF(CF3)OC3F7] were
prepared by the sol-gel reactions of the corresponding oligomer [RF-(CH2-CHSi(OMe)3)n-RF] in the
presence of AM-Cellu. The nanocomposites thus obtained were applied to the surface modification
of glass to exhibit a highly oleophobic/superhydrophilic characteristic on the modified surface at
20 ◦C. Interestingly, a temperature dependence of contact angle values of dodecane and water was
observed on the modified surface at 20~70 ◦C, and the dodecane contact angle values were found
to decrease with increasing the temperatures from 20 to 70 ◦C to provide from highly oleophobic to
superoleophilic characteristics on the surface. On the other hand, the increase of the water contact
angle values was observed with the increase in the temperatures under similar conditions to supply
superhydrophilic to superhydrophobic characteristics on the modified surface. The corresponding
nanocomposites were also applied to the surface modification of the filter paper under similar
conditions to afford a superoleophilic/superhydrophobic characteristic on the surface. It was
demonstrated that the modified filter paper is effective for the separation membrane for W/O
emulsion to isolate the transparent colorless oil.

Keywords: fluoroalkyl end-capped oligomer; theromoresponsive surface; alkyl-modified
cellulose; surface modification; LCST behavior; highly oleophobic/superhydrophilic characteristic;
superoleophilic/superhydrophobic characteristic; separation of W/O emulsion

1. Introduction

Cellulose-based materials, such as paper, cloth, and cotton fabrics, play an important role
in a variety of fields, such as the textile industry, packaging, printing, and coating areas [1–3].
However, cellulose presents a great sensitivity to moisture, quite differently from the traditional
plastics, such as polystyrene, poly(vinyl chloride), polypropylene, polyethylene, and poly(methyl
methacrylate). Therefore, the transformation of such hydrophilic materials into hydrophobic, especially
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superhydrophobic derivatives, has been hitherto strongly desirable in order to open a new route to
the development of novel cellulose-based materials. In fact, there have been numerous reports on the
fabrication of superhydrophobic cellulose materials by using titania/longer alkylated silane coupling
agents [4], calcium carbonate/alkyl ketene dimer [5], polydiallyldimethylammonium chloride/silica
particles/longer perfluoroalkylated silane coupling agents [6], longer alkylated silane coupling
agent/silica nanoparticles [7], polystyrene/PTFE (polytetrafluoroethylene) [8], polymethysiloxane [9,10],
graft-copolymerization via atom transfer radical polymerization (ATRP) technique [11,12], and gold
nanoparticle immobilization [13]. In the cellulose-based materials, filter paper is widely used for
adsorption of liquid, and separation of solids and liquids due to the porous structure constructed by
microfibers. Therefore, the exploration of the cellulose derivatives including filter paper possessing a
superoleophilic/superhydrophobic characteristic has been of particular interest from the applicable
viewpoint of oil/water separation membrane. Hitherto, we have been comprehensively studying the
development of the fabrication of superamphiphobic [14,15], superoleophobic/superhydrophilic [16,17],
and superoleophilic/superhydrophobic [16,18,19] surfaces by using fluoroalkyl end-capped
vinyltrimethoxysilane oligomeric silica composites as a key intermediate. From this point of view, it is
very important to apply the corresponding fluorinated oligomeric silica composites to the development
of novel cellulose-based materials possessing a unique surface characteristic. Here we report that
fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/alkyl-modified cellulose (AM-Cellu)
nanocomposites can be easily prepared by the sol-gel reaction of the corresponding oligomer in the
presence of AM-Cellu. The modified glass surface treated with these fluorinated nanocomposites was
found to exhibit a highly oleophobic/superhydrophilic characteristic at 20 ◦C. However, interestingly,
the modified surface treated with the fluorinated nanocomposites was found to provide the
switching behavior from highly oleophobic/superhydrophilic to superoleophilic/superhydrophobic
characteristics on the surface by increasing the temperatures from 20 to 70 ◦C. The nanocomposites
were also applied to the surface modification of filter paper under similar conditions to supply
a superoleophilic/superhydrophobic characteristic on the modified surface. The modified filter
paper thus obtained has been applied to the separation membrane for W/O emulsion to isolate the
transparent colorless oil. These results will be described in this article.

2. Experimental Section

2.1. Measurements

Dynamic light scattering (DLS) measurements were measured by using Otsuka Electronics
DLS-7000 HL (Tokyo, Japan). Contact angles were measured using a Kyowa Interface Science Drop
Master 300 (Saitama, Japan). Field emission scanning electron micrographs (FE-SEM) were obtained
by using JEOL JSM-7000F (Tokyo, Japan). Dynamic force microscope (DFM) was recorded by using SII
Nano Technology Inc. E-sweep (Chiba, Japan). Optical and fluorescence microscopies were measured
by using OLYMPUS Corporation BX51 (Tokyo, Japan).

2.2. Materials

Alky-modified cellulose (Metolose-90SH-100®) was obtained from Shin-Etsu Chemical Co., Ltd.
(Tokyo, Japan) and used as received. Span 80 (sorbitan monooleate) was purchased from Tokyo
Chemical Industrial Co., Ltd. (Tokyo, Japan). Fluoroalkyl end-capped vinyltrimethoxysilane oligomer
was prepared according to our previously-reported method [20]. Glass plate (borosilicate glass) (micro
cover glass: 18 mm × 18 mm) was purchased from Matunami glass Ind. Ltd. (Osaka, Japan) and
was used after washing well with 1,2-dichloroethane. Filter paper (Advantec 131) was received from
Advantec Toyo Kaisha, Ltd. (Tokyo, Japan).
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2.3. Preparation of Fluoroalkylated Vinyltrimethoxysilane Oligomeric Silica/AM-Cellu Nanocomposites
[RF-(VM-SiO2)n-RF/AM-Cellu]

A typical procedure for the preparation of RF-(VM-SiO2)n-RF/AM-Cellu nanocomposites is as
follows: To a methanol solution (3.5 mL) containing fluoroalkyl end-capped vinyltrimethoxysilane
oligomers [100 mg; RF-[CH2CHSi(OMe)3]n-RF; RF = CF(CF3)OC3F7; Mn = 730 (RF-(VM)n-RF)] was
added aqueous AM-Cellu (10 mg) solution (1.5 mL). The mixture was stirred with a magnetic stirring
bar at room temperature for 5 h. Water was added to the obtained crude products after the solvent was
evaporated off. The aqueous suspension was stirred with magnetic stirring bar at room temperature for
one day. The fluorinated oligomeric silica/AM-Cellu nanocomposites were isolated after centrifugal
separation for 30 min. The nanocomposite product was washed well with water several times, and then
was dried under vacuum at 50 ◦C for two days to afford the expected composites as white powders
(28 mg) (see Scheme 1).
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Scheme 1. Preparation of RF-(VM-SiO2)n-RF/AM-Cellu nanocomposites.

2.4. Surface Modification of Glass Treated with the RF-(VM-SiO2)n-RF/AM-Cellu Nanocomposites

The methanol solution (3.5 mL) containing RF-(VM)n-RF oligomer (100 mg) and aqueous
AM-Cellu (100 mg) solution (1.5 mL) was stirred with a magnetic stirring bar at room temperature for
5 h at room temperature. The glass plate (18 × 18 mm2 pieces) was dipped into this solution at room
temperature and left for 1 min. These glass plates were lifted from the solutions at a constant rate of
0.5 mm/min and were left to dry at room temperature for one day; finally, these were dried under
vacuum for one day at room temperature to afford the modified glass. The modified filter papers
(25 × 25 mm2 pieces) were prepared under similar conditions. The contact angles of dodecane and
water were measured by the deposit of each droplet (2 µL) on these modified glasses and filter papers,
which were left in the box (55 mm × 98 mm × 26 mm) and equipped with a temperature controller
after the pre-incubation of these modified ones left in the box at each temperature (20~70 ◦C) for 1 h.

2.5. Preparation of the Surfactant-Stabilized Water in Oil (1,2-Dichloroethane) Emulsion

The surfactant (span 80: 20 mg) was added into the mixture of water (0.05 mL) and
1,2-dichloroethane (5.0 mL). The expected white-colored W/O emulsion was easily prepared through
the ultrasonic irradiation of the obtained mixture for 5 min at room temperature.
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3. Results and Discussion

3.1. Preparation of the RF-(VM-SiO2)n-RF/AM-Cellu Nanocomposites

It is well-known that the original cellulose has no solubility toward not only water, but also the
traditional organic media. However, alkyl-modified cellulose [AM-Cellu] has a good solubility in water
and methanol. Thus, we tried to use the AM-Cellu for the nanocomposite reaction with fluoroalkyl
end-capped vinyltrimethoxysilane oligomer [RF-(VM)n-RF]. In fact, the RF-(VM)n-RF oligomer was
found to undergo the sol-gel reaction in the presence of AM-Cellu to afford the corresponding
fluorinated oligomeric silica/AM-Cellu composites [RF-(VM-SiO2)n-RF/AM-Cellu] in 25% isolated
yield (see Scheme 1).

The obtained composites in Scheme 1 were found to provide a good dispersibility and stability
in methanol. Thus, we have measured the size of these fluorinated composites in methanol by
dynamic light-scattering (DLS) measurements at 25 ◦C. The fluorinated composites are nanometer
size-controlled fine particles of 41 nm (number-average diameter), as shown in Scheme 1.

3.2. Surface Modification of Glass by Using the RF-(VM-SiO2)n-RF/AM-Cellu Nanocomposites

RF-(VM-SiO2)n-RF oligomeric nanoparticles, which are prepared by the sol-gel reaction of the
corresponding oligomer [RF-(VM)n-RF] under alkaline conditions, have already been applied to
the surface modification of glass to exhibit an oleophobic/superhydrophobic characteristic on the
surface [21]. Thus, we have prepared the modified glasses by using the RF-(VM-SiO2)n-RF/AM-Cellu
nanocomposites illustrated in Scheme 1, and dodecane and water contact angle values on the modified
glass surface were measured at 20 ◦C (the dodecane and water contact angle values on the original
glass surface are 0◦ and 50◦, respectively). The results are shown in Table 1.

Table 1. Temperature dependence for the contact angles of dodecane and water on the modified glass
surface treated with the RF-(VM-SiO2)-RF/AM-Cellu nanocomposites.

Temperature (◦C)

Contact angel (◦)

Dodecane a

Water

Time (min)

0 5 10 15 20 25 30

20 69 113 95 88 63 38 0 0
30 35 124 96 86 75 51 17 0
40 23 180 - b - b - b - b - b - b

50 17 180 - c - c - c - c - c - c

60 18 180 - c - c - c - c - c - c

70 0 180 - c - c - c - c - c - c

a A time dependence for the dodecane contact angle measurements was not observed; b water contact angle was
180◦ in each time; c water contact angle measurement was not completed due to the vaporization of water droplet.

As shown in Table 1, the fluorinated nanocomposites were found to afford a highly oleophobic
characteristic on the modified surface, because the dodecane contact angle value is 69◦, and a time
dependence was not observed in the dodecane contact angle measurements.

On the other hand, the effective decrease of water contact angle values from 113◦ to 0◦ over 25
or 30 min was observed on the modified surface. The smooth flip-flop motion between hydrophobic
fluoroalkyl groups and the hydrophilic AM-Cellu moieties in the composites would provide the
superhydrophilic surface at the interface with water, and it takes 25 or 30 min to replace the fluoroalkyl
groups by the AM-Cellu moieties, adapting itself to an environmental change from air to water on the
modified surface. It was previously reported that such smooth flip-flop motion between oleophobic
and hydrophilic surfaces can be observed on the modified glass surface treated with the fluoroalkyl
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end-capped vinyltrimethoxysilane–acryloylmorpholine cooligomer [22] and fluoroalkyl end-capped
vinyltrimethoxysilane oligomeric silica/calcium silicide nanocomposites [17].

It is well known that nonionic polysoaps such as poly(N-isopropylacrylamide) (PNIPAM) undergo
a thermally-induced phase separation in their aqueous solutions when heated above the lower critical
solution temperature (LCST) [23]. In our present RF-(VM-SiO2)n-RF/AM-Cellu nanocomposites,
interestingly, the AM-Cellu is also a temperature-sensitive polymers, and can exhibit the LCST around
70 ◦C in aqueous solutions as shown in Figure S1 in Supplementary Materials, indicating that it
gives the transparent aqueous solution below the LCST and occurs the phase separation through
the oleophilic-olophilic interaction in the AM-Cellu above the LCST. From this point of view, it is
expected that the oleophilic–oleophilic interaction between the oleophilic moieties in the AM-Cellu in
the composites and oleophilic compounds such as dodecane should accelerate the flip-flop motion
between the fluoroalkyl groups and oleophilic moieties in the composites on the surface at around
70 ◦C (the LCST of the AM-Cellu) to provide the LCST-like behavior in air through the dodecane
contact angle measurements. Thus, we have studied the temperature dependency for the dodecane
and water contact angle measurements at 20~70 ◦C on the modified glass surface treated with the
RF-(VM-SiO2)n-RF/AM-Cellu nanocomposites illustrated in Scheme 1, and the results are also shown
in Table 1.

As shown in Table 1, the dodecane contact angle values were found to decrease with the increase
of the temperatures from 20 to 70 ◦C, providing the switching behavior from higher oleophobic to
superoleophilic characteristics on the modified surfaces. On the other hand, the wetting behavior
for water on the modified surface has been changed from superhydrophilic to superhydrophobic
characteristics by increasing the temperatures from 20 ◦C to over 40 ◦C, since the water contact
angle values increased from 0◦ to 180◦ on the surface under such conditions. In this way, it was
verified that the present fluorinated nanocomposites can provide the switching behavior from
highly oleophobic/superhydrophilic to superoleophilic/superhydrophobic characteristics on the
modified surface by increasing the temperature on the modified surface from 20 to 70 ◦C. This unique
temperature dependence for water and dodecane contact angle values is also illustrated in Figure 1.Polymers 2017, 9, 92 6 of 14 
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We can observe the time dependence for the water contact angle measurements on the modified
surface at 20 ◦C, and the effective decrease of water contact angle value from 113◦ to 0◦ over 25 min
was observed to exhibit a superhydrophilic characteristic on the surface (see Figure 1I(A)). On the
other hand, interestingly, water contact angle value was found to increase dramatically from 0◦ to 180◦

with increasing the temperatures from 20 ◦C to over 40 ◦C (see Figure 1I(B),(C)). Additionally, we can
observe the water droplet that adhered to the needle tip (see Figure 1I(B)(c)) even after the pull-up
process of the needle from the modified surface (Figure 1I(B)(b)), indicating that the water contact
angle value is 180◦. A similar result was observed in the Figure 1I(C).

Figure 1II shows the smooth decrease of the dodecane contact angle value from 69◦ to 23◦,
and finally 0◦, with the increase of the temperatures from 20 to 40 ◦C and, successively, 70 ◦C.
Such superoleophilic characteristic on the modified surface at 70 ◦C would be due to the effective
oleophilic-oleophilic interaction between the oleophilic moieties in the AM-Cellu units in the
nanocomposites and dodecane; because the AM-Cellu can give the LCST at around 70 ◦C as shown in
Figure S1 in Supplementary Materials.

The recyclability of the dodecane contact angle values on the modified glass surface from 20 to
70 ◦C was evaluated, and the results are shown in Figure 2.

As shown in first cycle in Figure 2(A), dodecane contact angle values were found to decrease from
69◦ to 0◦ with increasing the temperatures from 20 to 70 ◦C. In contrast, interestingly, the dodecane
contact angle values were found to increase from 0◦ to 42◦ with the decrease of the temperatures
from 70◦ to 20◦ (see first cycle in Figure 2(B)). The process was additionally repeated two cycles, and
the results are shown in second and third cycles in Figure 2, respectively. A similar tendency for the
decrease and increase of dodecane contact angle values with the temperature changes was obtained
in second and third cycles. However, the similar dodecane contact angle values during 20~70 ◦C
were not observed in each cycle, suggesting that these modified films consist of the cross-linked silica
composite networks.Polymers 2017, 9, 92 7 of 14 
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Similarly, the recyclability of the water contact angle values on the modified glass surface was
evaluated, and the results are shown in Figure 3.
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treated with the RF-(VM-SiO2)n-RF/AM-Cellu nanocomposites.

Water contact angle values were found to increase from 113◦ to 180◦ with increasing the
temperatures from 20 ◦C to over 40 ◦C (see first cycle in Figure 3(A)). In fact, as shown in Figure 4,
the higher roughness architecture was observed on the modified glass surface after heating at 70 ◦C,
compared with that before heating. In addition, Figure 5 shows that the topographical image of the
modified glass surface after heating at 70 ◦C can provide a higher roughness property (the roughness
average: Ra = 159 nm) than that (Ra = 23 nm) before heating. These findings also suggest that such
higher Ra value would be derived into the superhydrophobic surface toward the modified glass
surface after heating.
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Figure 5. DFM (dynamic force microscopy) topographic images of the modified glass surface treated
with the RF-(VM-SiO2)n-RF/AM-Cellu nanocomposites at 20 ◦C (before heating) and after heating
at 70 ◦C*. * The modified glass was used for the measurements after the decrease of the temperature
from 70 to 20 ◦C.

The decrease of the water contact angle values was not observed at all with the decrease of the
temperatures from 70 to 20 ◦C as shown in first cycle in Figure 3(B). The temperature dependency
of the water contact angle values was not observed at all in second cycle (or third cycle: data not
shown) under similar conditions, keeping the constant value: 180◦ for the increase or the decrease
process of the temperatures (see the second cycles in Figure 3(A),(B)). This finding would be due to the
fluorinated oligomeric silica network structures on the modified surfaces.

3.3. Surface Modification of Filter Paper by Using the RF-(VM-SiO2)n-RF/AM-Cellu Nanocomposites

Next, we tried to have the surface modification of filter paper by using the RF-(VM-SiO2)n-RF/
AM-Cellu nanocomposites illustrated in Scheme 1. As shown in Figure 6, we have succeeded
in preparing the uniformly modified filter paper by using the RF-(VM-SiO2)n-RF/AM-Cellu
nanocomposites, quite similar to that of the original filter paper. Moreover, it was clarified that
the adhesion ability of the modified filter paper surface is strong enough, and we can keep the
appearance of the modified surface even after rubbing the modified surface with the finger, due to
the presence of the AM-Cellu units in the nanocomposites. In contrast, the adhesion ability of the
modified filter paper treated with the original RF-(VM-SiO2)n-RF oligomeric nanoparticles is poor,
and the corresponding particles were easily released from the modified filter paper after rubbing the
surface with a finger.

The modified filter paper treated with the RF-(VM-SiO2)n-RF/AM-Cellu nanocomposites was
found to exhibit a superoleophilic/superhydrophobic characteristic on the modified filter paper
surface, because the dodecane and water contact angle values at 25 or 70 ◦C are 0◦ and 180◦ (Table 2),
respectively; although both of the dodecane and water contact angle values on the original filter paper
are 0◦ under similar conditions.
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nanocomposites and the original filter paper.

Table 2. Dodecane and water contact angle values on the modified filter paper treated with the
RF-(VM-SiO2)n-RF/AM-Cellu nanocomposites at 25 and 70 ◦C.

Temperature 25 ◦C 70 ◦C

Dodecane contact angle: 0◦ 0◦

Water contact angle: 180◦ 180◦

Unexpectedly, we cannot observe the temperature dependency for these contact angles at all with
the increase or decrease of the temperatures during 20 to 70 ◦C, and the same contact angle values
were observed in each case.

Creation of superhydrophobic surface is, in general, realized by enhancing the surface
roughness [24–26]. Thus, we have studied on the surface roughness of the modified filter papers
treated with the RF-(VM-SiO2)n-RF/AM-Cellu nanocomposites illustrated in Scheme 1 by using
FE-SEM measurements. The original filter paper was also studied under similar conditions, for
comparison. These results are shown in Figures 7 and 8.Polymers 2017, 9, 92 10 of 14 
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As shown in Figure 7, we can observe the similar roughness on the modified filter paper surface
to that of the original filter paper, and the surface appearance is quite similar to that of the original one.
In addition, the similar FEM-SEM image of the cross-section of the modified filter paper to that of the
original one was observed (see Figure 8).

We have also studied the DFM (dynamic force microscopy) measurements of the modified filter
paper, including the original filter paper, and the results are shown in Figure 9.Polymers 2017, 9, 92 11 of 14 
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As shown in Figure 9, unexpectedly, the modified filter paper surface was found to exhibit the
similar topographical image of that of the original filter paper, and the roughness average values
(Ra: 69 nm) of the modified filter paper was also the same as that (Ra: 67 nm) of the original one.

We can observe the formation of the clear void moieties on the modified filter paper surface
(see Figure 7), and such void moieties should interact smoothly with oil droplets to afford the
superoleophilic characteristic on the modified surface due to the lower surface tension of oils than
that of water. On the other hand, the architecture of the similar roughness surface for the modified
filter paper to that of the original filter paper suggests that the surface modification of the filter
paper would be due to the two-dimensional modification, providing the thin coating fluorinated
nanocomposite surface; because the RF-(VM)n-RF oligomer should undergo the smooth sol-gel reaction
in the presence of the AM-Cellu under non-catalytic conditions to supply the two-dimensional
cross-linked silica network structures on the surface. Thus, such smooth roughness surface would
provide the superhydrophobic characteristic on the modified surface related to the presence of the
longer fluoroalkyl groups in the nanocomposites.

Heretofore, there have been numerous reports on the creation of the superhydrophobic/
superoleophilic filter paper through the architecture of the roughness surface by using a variety
of methods, such as a porous film formation composed of poly(tetrafluoroethylene) nanoparticles [8],
spray coating with hydrophobic silica nanoparticles suspension [7], the treatment with a mixture of
hydrophobic silica nanoparticles and polystyrene solution in toluene [27], and two-step dip coating,
which consists of the first dip coating of calcium carbonate and, subsequently, the coating with alkyl
ketene dimer [5]. These superhydrophobic surfaces are in general realized by enhancing the surface
roughness. However, FE-SEM and DFM measurements illustrated in Figures 7 and 9 show that
the surface morphology of our present superoleophilic/superhydrophobic surface is quite similar
to that of the parent filter paper, and the enhancement of the surface roughness was not observed
during the surface modification process. We believe that this surface modification method, without
the enhancement of the surface roughness for affording the superhydrophobic characteristic, is the
first example.

3.4. Separation of W/O Emulsion by Using the Modified Filter Paper Treated with the
RF-(VM-SiO2)n-RF/AM-Cellu Nanocomposites as the Separation Membrane

The superoleophilic surface has, in general, a strong affinity toward oils. Thus, the surfaces possessing
the superoleophilic/superhydrophobic characteristic can simultaneously repel water and strongly
absorbs oils. Such behavior should be applicable to the oil/water separating materials [5,7,28,29].
Thus, we tried to separate the water-in-oil (W/O) emulsion by using the modified filter paper treated
with the RF-(VM-SiO2)n-RF/AM-Cellu nanocomposites as the separation membrane. The surfactant
(span 80: 20.0 mg)-stabilized water (0.05 mL)-in-oil (1,2-dichloroethane: 5.00 mL) (W/O) emulsion was
prepared under ultrasonic conditions for 5 min at room temperature. The original non-treated filter
paper was also used as the separation membrane under similar conditions, for comparison. These
results are shown in Figure 10.

The original filter paper was not effective for the membrane to separate the W/O emulsion under
reduced pressure conditions. However, interestingly, it was demonstrated that the present modified
filter paper is effective for the separation of the W/O emulsion, and only transparent colorless oil has
been isolated under reduced pressure. In fact, as shown in Figure 10B, the optical micrograph shows
that the water droplet cannot be detected at all in the isolated colorless oil, although we can easily
detect the water droplet in the case of the use of the original filter paper (see Figure 10A).

We tried to study the reusability of the modified filter paper as the separation membrane, and the
colorless oil was quantitatively isolated under similar conditions even after the use of the W/O
emulsion three times as the following recovered ratios: first time, 95%; second time, 94%; and third
time, 95%.
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In this way, the present RF-(VM-SiO2)n-RF/AM-Cellu nanocomposites may be developed in the
new separation membrane for the mixture of oil and water in a wide variety of fields.
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by using the parent filter paper and the modified filter paper treated with the RF-(VM-SiO2)n-RF/
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4. Conclusions

In summary, we have developed a simple strategy for the creation of a novel thermoresponsive
surface by using fluoroalkyl end-capped vinyltrimthoxysilane oligomeric silica/AM-Cellu
nanocomposites [RF-(VM-SiO2)n-RF/AM-Cellu]. The resulting surfaces are sensitive to temperature
changes. Especially, it was demonstrated that the modified surface treated with the
RF-(VM-SiO2)n-RF/AM-Cellu nanocomposites can afford from highly oleophobic/superhydrophilic
to superoleophilic/superhydrophobic characteristics on the modified glass surface corresponding
to the temperature changes from 20 to 70 ◦C. Interestingly, such fluorinated nanocomposites were
applied to the surface modification of filter paper to provide a superoleophilic/superhydrophobic
characteristic on the modified surface. More interestingly, the modified filter paper possessing a
superoleophilic/superhydrophobic characteristic was also applied to the membrane for the separation
of the W/O emulsion to isolate the colorless oil. Therefore, our present fluorinated nanocomposites
have high potential for the novel separation membrane of the mixtures of oil and water in a wide
variety of fields, including the area of organic synthesis.

Supplementary Materials: The supplementary materials are available online at www.mdpi.com/2073-4360/9/
3/92/s1. Figure S1: Temperature dependence of transmittance at 500 nm of aqueous solutions of the AM-Cellu
(40 g/dm3).
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