Supplementary Materials: Exploring the Limits of the Geometric Copolymerization Model

Martin S. Engler, Kerstin Scheubert, Ulrich S. Schubert and Sebastian Böcker

1. Monte-Carlo simulation parameters

Table S1. Initial concentrations (in mol $\cdot \mathrm{L}^{-1}$) and reaction rates of the Monte-Carlo simulations of living polymerizations.

Dataset	Initial concentration				Reaction rates				
	$[\mathrm{II}]_{0}$	$[\mathrm{~A}]_{0}$	$[\mathrm{~B}]_{0}$	k_{AA}	k_{AB}	k_{BA}	k_{BB}		
$D P_{n}=3, r_{\mathrm{A}}=0.01$	1	1	2	0.01	1	0.01	1		
$D P_{n}=3, r_{\mathrm{A}}=1$	1	1	1	1	1	1	1		
$D P_{n}=3, r_{\mathrm{A}}=2$	1	1	2	2	1	2	1		
$D P_{n}=25, r_{\mathrm{A}}=2$	1	10	15	2	1	2	1		
$D P_{n}=45, r_{\mathrm{A}}=2$	1	20	25	2	1	2	1		

2. Independence of the parameter order

In the following, let the matrix M of size $n \times m$ be a copolymer fingerprint, in which entry $M_{a, b}$ gives the relative abundance of a copolymer with a monomers of type A and b monomers of type B. Let T be the number of synthesis steps. Let p_{M} be the probability of encountering a monomer, and let p_{A} be a vector of size T with the probabilities that the encountered monomer is an A for each synthesis step $1 \leq t \leq T$. Let $p_{\mathrm{B}}(t)$, the probability of encountering a monomer B be defined as $p_{\mathrm{B}}(t)=1-p_{\mathrm{A}}(t)$.

Let $\pi(x)$ be a permutation of some vector x. Let M^{π} be the resulting fingerprint of our model with input $\pi\left(p_{\mathrm{A}}\right)$. We define a model to be order-independent if the resulting fingerprints are the same for any permutation of p_{A}, that is $M=M^{\pi}$ for any π.

In our previous paper, we introduced a copolymerization model with several variants similar to a discrete Markov-chain, that append monomers in each synthesis (time) step with Bernoulli or geometrically distributed probability [1]. Here, we will investigate if they are order-independent.

We do a simple experiment to investigate the order-independence of our models. For both models, we compute a fingerprint with parameters $p_{\mathrm{A}}=[0,0.1,0.2,0.4,0.5], p_{M}=0.5$ and varying reactivity ratios. Subsequently, for all permutations $\pi\left(p_{\mathrm{A}}\right)$ we compute a fingerprint and calculate the normalized root mean square error (NRMSE) in comparison to the first fingerprint (Fig. S1).

The distance between two fingerprints increases with the distance between p_{A} and $\pi\left(p_{\mathrm{A}}\right)$. However, as the reactivity ratios approach one, the distance between the fingerprints decreases. In this experimental instance, we see that the models are order-independent if the reactivity ratios are one.

To verify that the models are order-independent for reactivity ratios of one, we investigate the model variants without reactivity parameters. As previously described by Engler et al. [1], for the Bernoulli model without reactivity parameters, an entry $M_{a, b}$ in the fingerprint M at synthesis step t for $a>0, b>0$, and $1 \leq t \leq T$ is given by:

$$
\begin{array}{rrr}
M_{a, b}(t) & =p_{M} \cdot p_{\mathrm{A}}(t) \cdot M_{a-1, b}(t-1) \\
& +\quad p_{M} \cdot p_{\mathrm{B}}(t) \cdot M_{a, b-1}(t-1) \tag{1}\\
& + & \left(1-p_{M}\right) \cdot M_{a, b}(t-1)
\end{array}
$$

For the Geometric model without reactivity parameters, we first have to derive a closed form for $M_{a, b}$. Let $p_{G}(k)$ be the geometrically distributed probability of adding k monomers in one synthesis

Figure S1. Normalized root mean square errors of the fingerprints for all permutations $\pi\left(p_{\mathrm{A}}\right)$ compared to the fingerprint of the original p_{A} computed with the Bernoulli (left) and Geometric model (right). The Kendall Tau distance is the number of pairwise disagreements between two permutations.
step. As previously described by Engler et al. [1], the probability of adding i monomers A and j monomers B to a copolymer chain is given for $a>0, b>0$, and $1 \leq t \leq T$ as:

$$
\begin{equation*}
P\left(M_{a, b} \rightarrow M_{a+i, b+j} \mid t\right)=\binom{i+j}{j} \cdot P_{G}(i+j) \cdot p_{\mathrm{A}}(t)^{i} \cdot p_{\mathrm{B}}(t)^{j} \tag{2}
\end{equation*}
$$

We define $f_{i, j}^{a, b}$ as:

$$
\begin{equation*}
f_{i, j}^{a, b}=\binom{a+b-i-j}{b-j} \cdot P_{G}(a+b-i-j) \tag{3}
\end{equation*}
$$

Now we apply Eq. 2 and Eq. 3 to find a closed form expression for a fingerprint entry $M_{a, b}$:

$$
\begin{equation*}
M_{a, b}(t)=\sum_{i=0}^{a} \sum_{j=0}^{b} f_{i, j}^{a, b} \cdot p_{\mathrm{A}}(t)^{a-i} \cdot p_{\mathrm{B}}(t)^{b-j} \cdot M_{i, j}(t-1) \tag{4}
\end{equation*}
$$

Now that we are given the equations for computing an entry in the fingerprint at a specific synthesis step for both models without reactivity parameters, we can show that an inversion of neighboring values in p_{A} does not change the resulting fingerprint.

Lemma 1. Given the Bernoulli model without reactivity parameters and a permutation $\pi\left(p_{A}\right)$ that swaps $p_{A}(t)$ with $p_{A}(t-1)$, then $M_{a, b}(t)=M_{a, b}^{\pi}(t)$ holds for all $a>0, b>0$, and $2 \leq t \leq T$.

Proof. Inserting $M_{a, b}(t-1)$ into the recursive equation 1 yields:

$$
\begin{array}{rrr}
M_{a, b}(t) & = & p_{M}^{2} \cdot p_{\mathrm{A}}(t) \cdot p_{\mathrm{A}}(t-1) \cdot M_{a-2, b}(t-2) \\
& + & p_{M}^{2} \cdot p_{\mathrm{B}}(t) \cdot p_{\mathrm{B}}(t-1) \cdot M_{a, b-2}(t-2) \\
& + & p_{M}^{2} \cdot p_{\mathrm{A}}(t) \cdot p_{\mathrm{B}}(t-1) \cdot M_{a-1, b-1}(t-2) \\
& + & p_{M}^{2} \cdot p_{\mathrm{B}}(t) \cdot p_{\mathrm{A}}(t-1) \cdot M_{a-1, b-1}(t-2) \\
+ & p_{M} \cdot\left(1-p_{M}\right) \cdot p_{\mathrm{A}}(t) \cdot M_{a-1, b}(t-2) \tag{5}\\
+ & p_{M} \cdot\left(1-p_{M}\right) \cdot p_{\mathrm{A}}(t-1) \cdot M_{a-1, b}(t-2) \\
+ & p_{M} \cdot\left(1-p_{M}\right) \cdot p_{\mathrm{B}}(t) \cdot M_{a, b-1}(t-2) \\
+ & p_{M} \cdot\left(1-p_{M}\right) \cdot p_{\mathrm{B}}(t-1) \cdot M_{a, b-1}(t-2) \\
+ & \left(1-p_{M}\right)^{2} \cdot M_{a, b}(t-2)
\end{array}
$$

40 We replace $p_{\mathrm{A}}(t-1)$ with $\pi\left(p_{\mathrm{A}}\right)(t), p_{\mathrm{A}}(t)$ with $\pi\left(p_{\mathrm{A}}\right)(t-1), p_{\mathrm{B}}(t-1)$ with $\pi\left(p_{\mathrm{B}}\right)(t)$, and $p_{\mathrm{B}}(t)$ ${ }_{41}$ with $\pi\left(p_{\mathrm{B}}\right)(t-1)$:

$$
\begin{array}{rrr}
M_{a, b}(t) & = & p_{M}^{2} \cdot \pi\left(p_{\mathrm{A}}\right)(t) \cdot \pi\left(p_{\mathrm{A}}\right)(t-1) \cdot M_{a-2, b}(t-2) \\
& + & p_{M}^{2} \cdot \pi\left(p_{\mathrm{B}}\right)(t) \cdot \pi\left(p_{\mathrm{B}}\right)(t-1) \cdot M_{a, b-2}(t-2) \\
& + & p_{M}^{2} \cdot \pi\left(p_{\mathrm{A}}\right)(t) \cdot \pi\left(p_{\mathrm{B}}\right)(t-1) \cdot M_{a-1, b-1}(t-2) \\
& + & p_{M}^{2} \cdot \pi\left(p_{\mathrm{B}}\right)(t) \cdot \pi\left(p_{\mathrm{A}}\right)(t-1) \cdot M_{a-1, b-1}(t-2) \\
& + & p_{M} \cdot\left(1-p_{M}\right) \cdot \pi\left(p_{\mathrm{A}}\right)(t) \cdot M_{a-1, b}(t-2) \tag{6}\\
+ & p_{M} \cdot\left(1-p_{M}\right) \cdot \pi\left(p_{\mathrm{A}}\right)(t-1) \cdot M_{a-1, b}(t-2) \\
+ & p_{M} \cdot\left(1-p_{M}\right) \cdot \pi\left(p_{\mathrm{B}}\right)(t) \cdot M_{a, b-1}(t-2) \\
+ & p_{M} \cdot\left(1-p_{M}\right) \cdot \pi\left(p_{\mathrm{B}}\right)(t-1) \cdot M_{a, b-1}(t-2) \\
+ & \left(1-p_{M}\right)^{2} \cdot M_{a, b}(t-2)
\end{array}
$$

42 We simplify the equation to:

$$
\begin{array}{rrr}
M_{a, b}(t) & =p_{M} \cdot \pi\left(p_{\mathrm{A}}\right)(t) \cdot M_{a-1, b}(t-1) \\
+ & p_{M} \cdot \pi\left(p_{\mathrm{B}}\right)(t) \cdot M_{a, b-1}(t-1) \tag{7}\\
+ & \left(1-p_{M}\right) \cdot M_{a, b}(t-1)
\end{array}
$$

Which can be further simplified to:

$$
\begin{equation*}
M_{a, b}(t)=M_{a, b}^{\pi}(t) \tag{8}
\end{equation*}
$$

45 Lemma 2. Given the Geometric model without reactivity parameters and a permutation $\pi\left(p_{A}\right)$ that swaps
${ }_{46} \quad p_{A}(t)$ with $p_{A}(t-1)$, then $M_{a, b}(t)=M_{a, b}^{\pi}(t)$ holds for all $a>0, b>0$, and $2 \leq t \leq T$.
${ }_{47}$ Proof Sketch. Inserting $M_{i, j}(t-1)$ into the recursive equation 4 yields:

$$
\begin{align*}
M_{a, b}(t)= & \sum_{i=0}^{a} \sum_{j=0}^{b} f_{i, j}^{a, b} \cdot p_{\mathrm{A}}(t)^{a-i} \cdot p_{\mathrm{B}}(t)^{b-j} \\
& \cdot \sum_{k=0}^{i} \sum_{l=0}^{j} f_{k, l}^{i, j} p_{\mathrm{A}}(t-1)^{i-k} \cdot p_{\mathrm{B}}(t-1)^{j-l} \cdot M_{k, l}(t-2) \tag{9}
\end{align*}
$$

48 Writing the terms of the sums explicitly yields a large equation of the following form:

$$
\begin{align*}
M_{a, b}(t)= & f_{0,0}^{a, b} p_{\mathrm{A}}(t)^{a} p_{\mathrm{B}}(t)^{b} \\
& +f_{0,1}^{a, b} p_{\mathrm{A}}(t)^{a} p_{\mathrm{B}}(t)^{b-1}\left(f_{0,0}^{0,1} M_{0,0}(t-2)+f_{0,1}^{0,1} p_{\mathrm{B}}(t) M_{0,1}(t-2)\right) \\
& +f_{1,0}^{a, b} p_{\mathrm{A}}(t)^{a-1} p_{\mathrm{B}}(t)^{b}\left(f_{0,0}^{1,0} M_{0,0}(t-2)+f_{1,0}^{1,0} p_{\mathrm{A}}(t) M_{1,0}(t-2)\right) \\
& +f_{1,1}^{a, b} p_{\mathrm{A}}(t)^{a-1} p_{\mathrm{B}}(t)^{b-1}\left(f_{0,0}^{1,1} M_{0,0}(t-2)+f_{1,0}^{1,1} p_{\mathrm{A}}(t) M_{1,0}(t-2)\right. \tag{10}\\
& \left.\quad+f_{0,1}^{1,1} p_{\mathrm{B}}(t) M_{0,1}(t-2)+f_{1,1}^{1,1} p_{\mathrm{A}}(t) p_{\mathrm{B}}(t) M_{1,1}(t-2)\right) \\
& +\ldots \\
& +f_{a, b}^{a, b}\left(f_{0,0}^{a, b} M_{0,0}(t-2)+\cdots+f_{a, b}^{a, b} p_{\mathrm{A}}(t-1)^{a} p_{\mathrm{B}}(t-1)^{b} M_{a, b}(t-2)\right)
\end{align*}
$$

$49 \quad$ If we now expand this equation, we see that for every term of the form $p_{\mathrm{A}}(t)^{\alpha} p_{\mathrm{B}}(t)^{\beta} p_{\mathrm{A}}(t-$ $\left.{ }_{\text {so }} \quad 1\right)^{\gamma} p_{\mathrm{B}}(t-1)^{\delta}$ there is a corresponding term $p_{\mathrm{A}}(t)^{\gamma} p_{\mathrm{B}}(t)^{\delta} p_{\mathrm{A}}(t-1)^{\alpha} p_{\mathrm{B}}(t)^{\beta}$ and we change equation 9 51 to:

$$
\begin{align*}
M_{a, b}(t)= & \sum_{i=0}^{a} \sum_{j=0}^{b} f_{i, j}^{a, b} \cdot p_{\mathrm{A}}(t-1)^{a-i} \cdot p_{\mathrm{B}}(t-1)^{b-j} \\
& \cdot \sum_{k=0}^{i} \sum_{l=0}^{j} f_{k, l}^{i, j} p_{\mathrm{A}}(t)^{i-k} \cdot p_{\mathrm{B}}(t)^{j-l} \cdot M_{k, l}(t-2) \tag{11}
\end{align*}
$$

We replace $p_{\mathrm{A}}(t-1)$ with $\pi\left(p_{\mathrm{A}}\right)(t), p_{\mathrm{A}}(t)$ with $\pi\left(p_{\mathrm{A}}\right)(t-1), p_{\mathrm{B}}(t-1)$ with $\pi\left(p_{\mathrm{B}}\right)(t)$, and $p_{\mathrm{B}}(t)$ with $\pi\left(p_{\mathrm{B}}\right)(t-1)$:

$$
\begin{align*}
M_{a, b}(t)= & \sum_{i=0}^{a} \sum_{j=0}^{b} f_{i, j}^{a, b} \cdot \pi\left(p_{\mathrm{A}}\right)(t)^{a-i} \cdot \pi\left(p_{\mathrm{B}}\right)(t)^{b-j} \tag{12}\\
& \cdot \sum_{k=0}^{i} \sum_{l=0}^{j} f_{k, l}^{i, j} \pi\left(p_{\mathrm{A}}\right)(t-1)^{i-k} \cdot \pi\left(p_{\mathrm{B}}\right)(t-1)^{j-l} \cdot M_{k, l}(t-2)
\end{align*}
$$

We simplify the equation to:

$$
\begin{equation*}
M_{a, b}(t)=M_{a, b}^{\pi}(t) \tag{13}
\end{equation*}
$$

\square
For the models without reactivity parameters, we know from Lemma 1 and 2 that no inversion of neighboring values in p_{A} changes the resulting fingerprint. Any permutation of a vector can be constructed by a sequence of inversions of neighboring elements. Therefore, for the Bernoulli and Geometric model without reactivity parameters, all permutations of a probability vector p_{A} have the same resulting fingerprint.

3. Parameter optimization

Figure S2. Left: Log likelihood ratio of all optimization algorithms using the direct method on the $D P_{n}=3, r_{\mathrm{A}}=2.0$ instance without noise. The top three algorithms are marked in red. Right: Running times of the algorithms.

Figure S3. Left: Log likelihood ratio of all optimization algorithms using the spline method on the $D P_{n}=3, r_{\mathrm{A}}=2.0$ instance without noise. The top three algorithms are marked in red. Right: Running times of the algorithms.

Figure S4. Left: Log likelihood ratio of all optimization algorithms using the ODE method on the $D P_{n}=3, r_{\mathrm{A}}=2.0$ instance without noise. The top three algorithms are marked in red. Right: Running times of the algorithms.

Figure S5. Filled contours: Fingerprints of the datasets $D P_{n}=3, r_{\mathrm{A}}=0.01, D P_{n}=3, r_{\mathrm{A}}=1.0$, $D P_{n}=25, r_{\mathrm{A}}=2.0$, and $D P_{n}=45, r_{\mathrm{A}}=2.0$, (top to bottom) with increasing noise (left to right). Contours: Fingerprints computed by the model using the direct method.

Figure S6. Filled contours: Fingerprints of the datasets $D P_{n}=3, r_{\mathrm{A}}=0.01, D P_{n}=3, r_{\mathrm{A}}=1.0$, $D P_{n}=25, r_{\mathrm{A}}=2.0$, and $D P_{n}=45, r_{\mathrm{A}}=2.0$, (top to bottom) with increasing noise (left to right). Contours: Fingerprints computed by the model using the spline method.

Figure S7. Filled contours: Fingerprints of the datasets $D P_{n}=3, r_{\mathrm{A}}=0.01, D P_{n}=3, r_{\mathrm{A}}=1.0$, $D P_{n}=25, r_{\mathrm{A}}=2.0$, and $D P_{n}=45, r_{\mathrm{A}}=2.0$, (top to bottom) with increasing noise (left to right). Contours: Fingerprints computed by the model using the ODE method.

Figure S8. Filled contours: Fingerprints of the controlled radical copolymerizations with increasing recombination k^{r} and disproportionation rates $k^{d p}$. Contours: Fingerprints computed by the model using the ODE method.

Figure S9. Filled contours: Fingerprints of the free radical copolymerizations with increasing recombination k^{r} and disproportionation rates $k^{d p}$. Contours: Fingerprints computed by the model using the ODE method.

Figure S10. Filled contours: Fingerprints of the reversible living copolymerizations with increasing depropagation rates k^{d}. Contours: Fingerprints computed by the model using the ODE method.

62 Bibliography

${ }_{63}$ 1. Engler, M.S.; Scheubert, K.; Schubert, U.S.; Böcker, S. New Statistical Models for Copolymerization. Polymers 2016, 8, 240.

