Supporting Materials

Non-Fullerene Acceptor-Based Solar Cells: From structural design to Interface Charge Separation and Charge Transport

Qungui Wang^a, Yuanzuo Li^{a,*}, Peng Song^b, Runzhou Shu^a, Fengcai Ma^b, Yanhui Yang^{c,*}

^aCollege of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China, Email: yzli@nefu.edu.cn;

^bDepartment of Physics, Liaoning University, Shenyang 110036, Liaoning, China;

^cSchool of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore; Email: YHYang@ntu.edu.sg.

molecule	state	E (eV)	Absorption peak	Contribution MOs	Strength f	
			λ(nm)			
P-BZS	S1	3.27	379.02	$H \rightarrow L \qquad (0.66639)$	1.4863	
	S2	3.89	319.15	H-1→L (0.58321)	0.3679	
	S3	3.99	310.98	H-2→L (0.55825)	0.0352	
	S4	4.14	299.37	$H \rightarrow L+1 (0.29482)$	0.0379	
	S5	4.18	296.12	$H \rightarrow L+1$ (0.38820)	0.1495	
	S6	4.45	278.19	$H \rightarrow L+2 (0.42496)$	0.0399	
PDBT-T1	S1	2.87	432.22	$H \rightarrow L \qquad (0.64008)$	1.5626	
	S2	3.36	368.95	$H \rightarrow L+1$ (0.40539)	0.1691	
	S3	3.54	349.90	$H \rightarrow L+2$ (0.31763)	0.1216	
	S4	3.67	336.43	$H-1 \rightarrow L$ (0.27323)	0.0087	
	S5	3.76	329.13	$H-1 \rightarrow L$ (0.28423)	0.1897	
	S6	3.87	320.20	$H - 2 \rightarrow L (0.35574)$	0.1479	
QX-M-PO	S1	2.98	416.23	$H \rightarrow L (0.59187)$	1.1835	
	S2	3.55	349.24	$H-2 \rightarrow L$ (0.55776)	0.5059	
	S3	3.62	342.05	$H \rightarrow L + 1 (0.43208)$	0.1296	
	S4	3.86	320.90	$H-1 \rightarrow L+1 (0.44586)$	0.3408	
	S5	3.87	320.01	$H - 8 \rightarrow L (0.24759)$	0.0060	
	S6	4.03	307.12	$H-3 \rightarrow L$ (0.36064)	0.0402	
QX-PO	S1	2.95	419.25	$H \rightarrow L (0.57410)$	1.1665	
	S2	3.55	348.96	$H - 2 \rightarrow L (0.50658)$	0.5498	
	S3	3.60	343.81	$H \rightarrow L + 1 (0.36701)$	0.0475	
	S4	3.84	322.66	$H-1 \rightarrow L+1 (0.44080)$	0.3852	
	S5	3.87	319.80	$H-14 \rightarrow L (0.24393)$	0.0084	
	S6	4.01	308.99	$H-3 \rightarrow L$ (0.36862)	0.0487	
QX-PS	S1	2.96	417.79	$H \rightarrow L$ (0.57592)	1.1747	
-	S2	3.55	349.23	$H - 2 \rightarrow L (0.53626)$	0.5458	
	S3	3.61	343.45	$H \rightarrow L + 1 (0.40308)$	0.0877	
	S4	3.84	322.16	$H-1 \rightarrow L+1 (0.44722)$	0.3727	
	S5	3.87	320.11	$H - 8 \rightarrow L (0.25663)$	0.0075	
	S6	4.02	308.23	$H \rightarrow L + 2 (0.30622)$	0.0255	

 Table S1.Transition energies and oscillators for polymers for n=1.

Interfaces	Н	L	Δ H-L
P-BZS/IDIC	-5.09	-3.51	1.58
PDBT-T1/IDIC	-5.08	-3.43	1.65
QX-M-PO/IDIC	-5.05	-3.42	1.63
QX-PO/IDIC	-4.95	-3.46	1.49
QX-PS/IDIC	-5.27	-3.54	1.73
P-BZS/IDTBR	-5.16	-2.72	2.44
PDBT-T1/IDTBR	-5.00	-2.62	2.38
QX-M-PO/IDTBR	-5.07	-2.66	2.41
QX-PO/IDTBR	-4.96	-2.69	2.27
QX-PS/IDTBR	-5.02	-2.66	2.36

Table S2. Energy levels of HOMO (H) (eV), LUMO (L) (eV) and energy gap Δ H-L (eV) for ten D/A interfaces.

Fig S1. The optimized face-to-face dimer structures of IDIC, IDTBR and five kind ofpolymers.

Fig S2. Charge density difference (CDD) plots of polymer/IDIC (S4-S6); where red represents electrons and green represents holes.

Fig S3. Charge difference densities (CDD) plots of D/A interfaces polymer/IDTBR (S4-S6); where red represents electrons and green represents holes.