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Abstract: The development of non-fullerene small molecule as electron acceptors is critical for
overcoming the shortcomings of fullerene and its derivatives (such as limited absorption of light,
poor morphological stability and high cost). We investigated the electronic and optical properties of
the two selected promising non-fullerene acceptors (NFAs), IDIC and IDTBR, and five conjugated
donor polymers using quantum-chemical method (QM). Based on the optimized structures of the
studied NFAs and the polymers, the ten donor/acceptor (D/A) interfaces were constructed and
investigated using QM and Marcus semi-classical model. Firstly, for the two NFAs, IDTBR displays
better electron transport capability, better optical absorption ability, and much greater electron
mobility than IDIC. Secondly, the configurations of D/A yield the more bathochromic-shifted and
broader sunlight absorption spectra than the single moiety. Surprisingly, although IDTBR has better
optical properties than IDIC, the IDIC-based interfaces possess better electron injection abilities,
optical absorption properties, smaller exciton binding energies and more effective electronic
separation than the IDTBR-based interfaces. Finally, all the polymer/IDIC interfaces exhibit large
charge separation rate (KCS) (up to 1012–1014 s−1) and low charge recombination rate (KCR) (<106 s−1),
which are more likely to result in high power conversion efficiencies (PCEs). From above analysis,
it was found that the polymer/IDIC interfaces should display better performance in the utility of
bulk-heterojunction solar cells (BHJ OSC) than polymer/IDTBR interfaces.

Keywords: non-fullerene acceptors (NFAs); polymers; mobility; charge separation and transport;
solar cells

1. Introduction

With the exhaustion of fossil fuel and the sustained environmental pollution, seeking new
sustainable and clean energy is imminent. Solar energy is an ideal candidate because solar energy
is clean and has tremendous reserve. Organic solar cell (OSC) is the core device for converting solar
energy into electric energy, and bulk-heterojunction (BHJ) polymer solar cells play an important role
in many solar cell devices [1–3]. In recent decades, polymer solar cells (PSCs) have attracted much
attention because of their own advantages such as being a low-cost, flexible, and lightweight material,
and having a large-area fabrication [4–7]. The active layer is a key part of the heterojunction solar cell,
which typically consists of the electronic donor and electronic acceptor materials, installing into a
bilayer structure or in the form of a blend [8], and the volume density of organic active layer has direct
influence on organic photovoltaics (OPV) performance [8]. Many efforts for a more sustainable
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photovoltaic technology have been performed from green chemistry strategies to synthesizing
conjugated organic semiconductors [9]. Meanwhile, click chemistry reaction provides an effective
way to prepare and synthesize the diverse conjugated polymer and oligomer in solar cells [10].
To date, most BHJ solar cells use fullerene derivatives as the electron acceptor, the PCEs of which have
exceeded 10% [7,11], because of fullerene’s high electron affinity and isotropic charge transport [12,13].
Nevertheless, fullerene’s derivatives have defects, such as weak absorption in the visible region, and
high cost in their preparation and purification process [14–16]. These disadvantages led to a rapid
development of non-fullerene solar systems [9,10,17–19], such as the all-polymer organic solar cells
(all-PSCs) and the BHJ solar cell substituting fullerene acceptors with small molecular acceptors.
Bumjoon J. Kim and coworkers have demonstrated that the system based on PBDTTTPD polymer
donor and P(NDI2HD-T) polymer acceptor displayed power conversion efficiencies (PCE) of 6.64% [18],
which was higher than that of polymer-fullerene system. A PCE of 10.1% for all-PSCs containing
PTzBI-Si copolymer has been achieved [19]. The merit of the tunable structural design and the
improvement of stabilities make all-polymer organic solar cells become favorable candidates in the
real application. The non-fullerene small molecule acceptors (NFAs) have attracted many researchers’
attentions by the light of readily tunable electronic energy levels, high absorption coefficients and
easy synthesis [20]. Several kinds of small-molecule acceptors have been reported (such as perylene
diimide (PDI), naphthalene diimide (NDI) anddiketopyrrolopyrrole (DPP) and so on [21–28]), and the
performance of some NF-based OSCs have exceeding their fullerene-based system.

Recently, the small molecule NFAs called IDTBR (which was based on an indacenodithiophene
core with benzothiadiazole and rhodanine flanking groups), was synthesized, and the solar cell device
based on the P3HT:IDTBR blend achieved a high PCE up to 6.4% [29]. Another new planar fused-ring
NFA (IDIC) based on indacenodithiophene was designed and synthesized [30]. Based on IDIC,
two systems, PDBT-T1/IDIC and P-BZS/IDIC, were optimized using 1,8-diiodooctane (DIO) as solvent
additive to tune the morphology and nanoscale phase separation; use of 0.25% DIO boosts the PCE of
OSCs based on the PDBT-T1:IDIC and the P-BZS:IDIC up to 10.37% and 11.03%, respectively [31].

Stimulated by these recent reports, we used quantum chemistry methods to study the structure,
absorption, and charge transport, charge transfer in interface of PDBT-T1/IDIC and P-BZS/IDIC
from the view point of theory. Further, the new interface configurations were constructed using
three polymers as donor (QX-M-PO, QX-PO, and QX-PS) and NFAs (IDTBR and IDIC) to explore
the potential utility in solar cell. Those polymers from tetrafluoridequidequinoxaline (ffQX) and
three distinctive phenyl substituted benzodithiophene (BDT) named PffQX-m-fPO, PffQX-PO,
and PffQX-PS (abbreviated as QX-M-PO, QX-PO, and QX-PS, respectively) were designed and
synthesized [32]. All the polymer solar cells with these three polymers as donor exhibited higher
VOC value than 0.9 V, and PCEs over 7% (7.0% for QX-M-PO, 7.4% for QX-PO and 8.0% for QX-PS).
The chemical structures of IDTBR, IDIC and the five polymers (P-BZS, PDBT-T1, QX-M-PO, QX-PO,
and QX-PS) are shown in Figure 1. Based on the optimized geometry structures, we constructed
ten donor/acceptor (D/A) interfaces, which include the two manufactured D/A interfaces
(P-BZS/IDIC and PDBT-T1/IDIC) and eight newly designed D/A interfaces (QX-M-PO/IDIC,
QX-PO/IDIC, QX-PS/IDIC, P-BZS/IDTBR, PDBT-T1/IDTBR, QX-M-PO/IDTBR, QX-PO/IDTBR,
and QX-PS/IDTBR). The aim of the current work is to identify the performance of interface by means
of the same polymers coupled with the NFAs. From calculation, we obtained the diverse properties,
such as the ground state structures, the highest occupied molecular orbitals (HOMOs), the lowest
unoccupied molecular orbitals (LUMOs), ionization potentials (IPs), electron affinities (EAs), spectra,
electron and hole reorganization energies, and electron and hole mobilities. For ten D/A interfaces,
some important parameters affecting the PCE of OSC were evaluated and analyzed, such as the energy
levels related to the open-circuit voltage (VOC) [33,34], the absorption spectra related to light-absorbing
efficiency [35], the charge separation/recombination rates related to short-circuit current density
(JSC) [36], etc.
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Figure 1. The chemical structures of Non-fullerene acceptors (NFAs) (IDTBR and IDIC) and the five
kinds of polymers (P-BZS, PDBT-T1, QX-M-PO, QX-PO, and QX-PS).

2. Computational Methods

First, the ground-state geometry structures of the NFAs (IDTBR and IDIC) and the five polymers
(P-BZS, PDBT-T1, QX-M-PO, QX-PO, and QX-PS) have been optimized by using density functional
theory (DFT) method [37] with B3LYP functional [38] at the 6-31G(d) basis set. All the side alkyl
chains of molecules were replaced by the methyl for saving the computational resources and time,
since it was confirmed that the side alkyl chain has little influence on the electronic structures
and optical properties of the materials [39]. Afterwards, based on the optimized ground-state
geometry structures, the absorption spectra were calculated by time-dependent density functional
theory (TD-DFT) method [40] at CAM-B3LYP functional [41] at the 6-31G(d) level. To study the
reorganization energies, the cationic/anionic geometries of IDTBR and IDIC and the five polymers
were also optimized with DFT/B3LYP/6-31G(d).

For the D/A interfaces, the ground-state geometry structures were optimized
using DFT/B3LYP/6-31G(d), and the absorption spectra were calculated using
TD-DFT/CAM-B3LYP/6-31G(d) based on the optimized ground-state geometry structures of
D/A interfaces. Partial density of states (PDOS) were visualized with GaussSum software
(Cambridge, UK) [42]. The charge density difference (CDD) plots of D/A interfaces were visualized
with Multiwfn 3.3.9 package [43]. For the dimer system, the difference configurations should produce
the different couple strength, and the direction of stacking has a certain influence on the estimation of
charge mobility. Experimentally, PDBT-T1:IDIC and PTFBDT-BZS:IDIC blended films processed with
0.25% DIO exhibit higher JSC and FF, finally higher PCE, showing that the vertical π-π stacking is
favorable to charge transport between anode and cathode of solar cells [31]. Meanwhile, stacking
mode of π-π stacking for the polymers was reported in Refs. [31,32]. Considering the above mention,
the face-to-face stacking was used to optimize the dimer configurations and to further estimate the
electron transfer and charge transport. To evaluate electronic coupling matrix of D/A interfaces,
the Generalized Mulliken-Hush (GMH) model [44] and the finite field method [45,46] on the excitation
energy of the D/A interfaces were employed. All calculations were performed with Gaussian
09 program package [47].

The TD-DFT calculations provide the singlet excited states |Sn〉 (n defined as number n state)
represented by vectors CCI

n,ai based on configurations of unoccupied and occupied molecular orbital’s a
and i, respectively. The molecular orbitals are given by linear combinations of atomic orbitals (LCAO)
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µ and with coefficients cLCAO
aµ and cLCAO

iν . For characterizing the observations of excited states, we use
the two matrixes: [48]

Q(n)
µν =

1√
2

∑
a ∈ unocc

i ∈ occ

CCI
n,ai

(
cLCAO

aµ cLCAO
iν + cLCAO

iµ cLCAO
aν

)
(1)

P(n)
µν =

i√
2

∑
a ∈ unocc

i ∈ occ

CCI
n,ai

(
cLCAO

aµ cLCAO
iν − cLCAO

iµ cLCAO
aν

)
(2)

which are (anti) symmetric for exchange of the atomic orbitals and normalized as:

∑
µ,ν
|Q(n)

µν |2 = ∑
µ,ν
|P(n)

µν |2 = 1 (3)

Within the framework of the collective electron oscillator (CEO) model, the excited state |Sn〉
is described by a coordinate Q(n)

µν cos(ωnt) and a momentum P(n)
µν sin(ωnt), both oscillating with the

transition frequency ωn. The matrixes Q(n)
µν and P(n)

µν can be employed to visual characterization of the
excited states.

In real space, the oscillating CEO coordinate and momentum are expressed by the spatial
correlation functions: [48]

Qn(r, r′; t) = ∑
µν

φAO
µ (r)Q(n)

µν φAO
ν (r′) cos(ωn) (4)

Pn(r, r′; t) = ∑
µν

φAO
µ (r)P(n)

µν φAO
ν (r′) sin(ωn) (5)

The diagonal slice for r = r′ results in:

Qn(r, r; t) =
√

2ρn0(r
)

cos(ωt) (6)

Pn(r, r; t) = 0 (7)

Thereby, the charge density difference (CDD) can be given by: [49]

∆ρnn(r) = 2i ∑
µ,ν,κ

φAO
µ (r)Q(n)

κν P(n)
κν φAO

ν (r) (8)

It represents the difference of electron distribution between the excited state |Sn〉 and the ground
state |S0〉. Therefore, the charge density difference can tell the difference of electron density of the
excited state |Sn〉 and the ground state |S0〉.

3. Results and Discussion

3.1. Geometric Structures and Electronic Properties of IDIC, IDTBR And Polymers

The energy levels in frontier molecular orbitals (FMOs) and the energy gaps for the polymer
are directly related to the open circuit voltage, optical properties and charge dissociations of solar
cells [50,51]. By using DFT/B3LYP/6-31G(d), simulated results include the obtained levels of HOMO
and LUMO and the energy gaps (∆H-L) of the five kinds of the polymers (n = 1, 2, 3), as displayed in
Table 1. Besides, the FMOs levels of the NFAs (IDIC and IDTBR) are listed in Table 2. The optimized
ground-state geometry structures, important dihedral angels and definitions of molecular fragments



Polymers 2017, 9, 692 5 of 30

of IDIC, IDTBR and the five kinds of polymers are presented in Figure 2. Energy levels of all oligomers
(n = 1–3 and n = ∞) are displayed in Figure 3. Figure 4 depicts the relationship between the HOMO
energy levels, LUMO energy levels and energy gap (∆H-L) of polymers and the reciprocal of conjugated
unit (1/n).

Table 1. Energy levels of the highest occupied molecular orbital (HOMO (H)), the lowest unoccupied
molecular orbital (LUMO (L)) (eV) and the energy gap ∆H-L (eV) for all oligomers.

P-BZS PDBT-T1 QX-M-PO QX-PO QX-PS

n = 1 H −5.08 −5.04 −5.06 −4.93 −5.01
L −1.94 −2.34 −2.39 −2.32 −2.37

∆H-L 3.14 2.70 2.67 2.61 2.64

n = 2 H −4.94 −4.91 −4.86 −4.78 −4.85
L −2.21 −2.47 −2.55 −2.42 −2.49

∆H-L 2.73 2.44 2.31 2.36 2.36

n = 3 H −4.92 −4.86 −4.84 −4.73 −4.82
L −2.26 −2.54 −2.55 −2.47 −2.52

∆H-L 2.66 2.32 2.29 2.26 2.30

n = ∞ H −4.83 −4.77 −4.71 −4.63 −4.72
L −2.44 −2.63 −2.65 −2.54 −2.60

∆H-L 2.39 2.14 2.06 2.09 2.12

Table 2. Energy levels of HOMO (eV), LUMO (eV) and energy gap ∆H-L (eV) for Non-fullerene
acceptors (NFAs) IDIC, IDTBR.

IDIC IDTBR

H −5.76 −5.21
L −3.51 −3.31

∆H-L 2.25 1.90

As shown in Figure 2, the two NFAs (IDIC and IDTBR) exhibit a good flatness. From the data
about the main dihedral angles that influence the planar of two molecules, it can be found that
these dihedral angles are very small, almost close to zero, which can be considered as the excellent
co-planarity for the two molecules. While for the five types of the polymers, the important dihedral
angles of main chain are relatively large, displaying an obvious distortion under the backbones of the
five polymers.

In Table 1 and Figure 3, it was found that, with the increase of conjugated chains, the HOMOs
levels of polymers are all increased, and LUMOs levels are all decreased. Therefore, the
energy gaps of the five polymers have a certain decreasing trend. When the conjugated unit
n = 3, the HOMO levels of the five polymers are in the following order: P-BZS < PDBT-T1 <
QX-M-PO < QX-PS < QX-PO; and the LUMO levels are in the order: P-BZS > QX-PO > QX-PS
> PDBT-T1 > QX-M-PO. For the three polymers (QX-PO, QX-PS, and QX-M-PO, with the same
unit 5,8-Bis(5-thiophen-2-yl)-6,7-difluoro-2,3-bis(4-ethylhexyloxy-1-meta-fluorophenyl)quinoxaline
(ffQx)), the introduction of F group in 2,6-bis(trimethyltin)-4,8-bis(4-ethylhexyloxy-1-phenyl)-benzo
(1,2-b:4,5-b0)-dithiophene for QX-M-PO make the LUMO lower than the QX-PS with the substitution
of S atom in QX-PO. The LUMO levels of above polymers are all higher than those of NFAs, which is
helpful for the charge transfer in the interface.
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Figure 3. Energy levels of all oligomers (n = 1–3 and n = ∞), where the black line and red line stand
HOMO and LUMO, respectively.

As shown in Figure 4, the HOMO energy levels, LUMO energy levels, and the energy gaps of the
five polymers have good linear relationships with the reciprocal of conjugated chain (1/n) (all adjusted
R-square (R2) are close or equal to 1, as shown in Figure 4). Due to the good linear relationship, we can
predict the HOMO level, LUMO level and ∆H-L when the conjugated unit n→ ∞ by using linear
fitting method theoretically. As shown in Table 1, when the n→ ∞ , the HOMO energy levels of P-BZS,
PDBT-T1, QX-M-PO, QX-PO, and QX-PS are −4.83, −4.77, −4.71, −4.63, and −4.72 eV, respectively.
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The LUMO energy levels are −2.44, −2.63, −2.65, −2.54, and −2.60 eV, respectively. The energy gaps
are 2.39, 2.14, 2.06, 2.09, and 2.12 eV, respectively. Among the five polymers, P-BZS have the deepest
HOMO level and the highest LUMO level. In calculation, the energy gaps of five polymers have
following order (n = ∞): P-BZS > PDBT-T1 > QX-PS > QX-PO > QX-M-PO. The HOMO levels of IDIC
and IDTBR are (see Table 2) −5.76 and −5.21 eV, respectively, while their LUMO levels are −3.51 and
−3.31 eV, which are all higher than that of PCMB (−3.85 eV [18]). Bumjoon J. Kim et al. found that
the higher performance was mainly attributed to the enhanced VOC value owing to the higher-lying
unoccupied molecular orbital compared with fullerene derivative [18].
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Figure 5 shows the FMOs of IDIC, IDTBR and the five kinds of polymers (n = 1). For IDIC,
the electronic clouds HOMO and LUMO are evenly distributed over the molecular backbone.
Compared to HOMO, LUMO has more distribution on the benzene ring at both ends of the molecule,
indicating that the benzene ring at both ends has better electron withdrawing power than the rest part
of the molecule. For IDTBR and P-BZS, HOMO and LUMO electron clouds are uniformly distributed
on the molecular backbone, indicating that there are no visible electron donor moieties and electron
acceptor moieties on IDTBR and the P-BZS. For the sake of clear understanding the distribution
of electron, we define fragments for PDBT-T1, QX-M-PO, QX-PO, and QX-PS, and the definitions of
the fragment are shown in Figure 2. It can be seen in Figure 5, for these four polymers, the HOMO
has more distribution in their “A” fragments, and LUMO in fragment “B” is more obvious. Note that
for these four kinds of polymers, their “A” fragments are the electron donor moieties of molecules,
while their “B” fragments are the electron acceptor portions of molecules.
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Open circuit voltage (VOC) is one of the key factors governing the performance of a photovoltaic
cell [35]. For the D/A interfaces, the VOC can be estimated by following equation theoretically [52]:

VOC =
1
e
(|EHOMO(D)− ELUMO(A)|)− ∆V (9)

where e represents the element electron; EHOMO(D) and ELUMO(A) represent the HOMO level of donor
and the LUMO level of acceptor, respectively; and ∆V is an empirical factor, which can be assumed
to be a value of 0.5 V [51]. The VOC of the polymer/IDTBR devices and the polymer/IDIC devices
are listed in Table 3. For the polymers/IDIC devices, the VOC values are in this order: P-BZS/IDIC >
QX-M-PO/IDIC > PDBT-T1/IDIC > QX-PS/IDIC > QX-PO/IDIC. For the polymers/IDTBR devices,
the VOC are in order of: P-BZS/IDTBR > QX-M-PO/IDTBR > PDBT-T1/IDTBR > QX-PS/IDTBR
> QX-PO/IDTBR. Because P-BZS has the deepest HOMO energy level among the five polymers,
the P-BZS-based device has the largest VOC value for the polymers/IDIC devices and polymers/IDTBR,
i.e., their VOC reach 1.07 and 1.27 eV, respectively. Note that, for each kind of polymer, the VOC value of
the polymer/IDTBR device is higher than that of the polymers/IDIC device due to the higher LUMO
levels of IDTBR, which means that, for the same donor, the higher LUMO level of acceptor can produce
a larger VOC.
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Table 3. The open voltage VOC (eV) of polymer/IDIC and polymer/IDTBR devices; where the
conjugated unit of polymer n = 1.

Polymers

Acceptors
IDIC IDTBR

P-BZS 1.07 1.27
PDBT-T1 1.03 1.23
QX-M-PO 1.05 1.25

QX-PO 0.92 1.22
QX-PS 1.00 1.30

3.2. IP and EA of the Nfas And The Five Polymers

Ionization potentials (IPs) and electron affinities (EAs) can be used to estimate the transport
barrier of holes and electrons in the organic solar cells. In general, the lower IP means a lower barrier of
the holes injection, and the higher EA indicates the electrons injection become easier [53,54]. The results
of IPs and EAs of IDIC, IDTBR and five polymers are listed in Table 4. Figure 6 shows the relationship
between the IPs (EAs) of the polymers with the reciprocal of the conjugated chain (1/n), which displays
a good linear relationship.

Table 4. The ionization potentials IP (eV) and electron affinities EA (eV) of the five polymers and of the
NFAs IDIC, IDTBR.

Molecules IP EA

n = 1 n = 2 n = 3 n = ∞ n = 1 n = 2 n = 3 n = ∞
P-BZS 5.99 5.55 5.39 5.10 0.82 1.60 1.78 2.30

PDBT-T1 5.85 5.48 5.31 5.06 1.54 1.93 2.09 2.35
QX-M-PO 5.78 5.40 5.18 4.92 1.63 1.98 2.16 2.40
QX-PO 5.68 5.20 5.04 4.72 1.56 1.86 2.08 2.28
QX-PS 5.74 5.27 5.26 4.95 1.61 1.92 2.08 2.29

IDIC 6.59 2.73
IDTBR 5.94 2.60

It can found in Table 4 that, for the five polymers, when the conjugated chain of polymers increases,
the IPs decreases and the EAs increases gradually, which means the fact that both hole and electron
injection of polymers are facilitated along with the increase of molecular conjugated chains. As shown
in Figure 6, we can predict the theoretical IPs and EAs when the n→∞ through the linear fitting
method due to the good linear relationships between the IPs (EAs) of the polymers with the reciprocal
of the conjugated chain (1/n) (All Adjusted R-square (R2) are close even equal to 1, as shown in
Figure 6). When the n→∞, the IPs of P-BZS, PDBT-T1, QX-M-PO, QX-PO, and QX-PS are calculated
to be 5.10, 5.06, 4.92, 4.72, and 4.95 eV, respectively, while their EAs are 2.30, 2.35, 2.40, 2.28,
and 2.29 eV, respectively. The IPs and EAs of the five kinds of polymers are very close. This shows
that the five polymers should have similar electron injection and hole injection capabilities. For IDIC
and IDTBR, their IPs are 6.59 and 5.94 eV, and their EAs are 2.73 and 2.60 eV, respectively. Apparently,
IDIC has higher EA than IDTBR, meaning that IDIC has better electron injection ability. The IDIC and
IDTBR have higher IP and higher EA than the five polymers, which manifests that IDIC and IDTBR
have better electron injection abilities than those of polymers, and the five polymers have better hole
injection abilities than those of the NFAs.
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3.3. The Reorganization Energies of Polymers and NFAs

The reorganization energy can be used to estimate the charge transfer characteristic of
organic material, and the lower reorganization energy proclaims the faster charge transport [54].
The internal reorganization energies λh (hole reorganization energy) and λe (electron reorganization
energy) can be expressed by following formulas [55]:

λh = (E+
0 − E+) + (E0

+ − E0) (10)

λe = (E−0 − E−) + (E0
− − E0) (11)

where E+
0 (E−0 ) represents the energies of the cation (anion) calculated with the optimized structure of

the neutral molecular; E+ (E−) is the energy of the cation (anion) calculated with the optimized cation
(anion) structure; E+

0 (E−0 ) is the energy of the neutral molecular calculated at the cationic (anionic) state;
and E0 is the energy of the neutral molecule at the ground state. The calculated reorganization energies
of IDIC, IDTBR and all the oligomers (n = 1–3) are shown in Table 5. In Table 5, we can discover that,
along with the increase of conjugated chains, both λh and λe of the five polymers are reduced gradually,
which manifests that, with the increasing conjugated chains of polymers, the electrons transport and
holes transport are both enhanced. When the conjugated chain n = 3, it can be seen that the differences
in holes reorganization energies of the five polymers is very small, which can predict the closed level
of electron transport rate and hole transport rate for the five polymers. For IDIC and IDTBR, their λh
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are 0.15 and 0.16 eV, respectively, while their λe are 0.21 and 0.17 eV, respectively. As can be seen,
IDTBR has better electron transport capability than IDIC.

Table 5. The reorganization energies of oligomers (n = 1–3) and the NFAs.

Molecules λh (eV) λe (eV)

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3
P-BZS 0.60 0.19 0.15 0.36 0.22 0.17

PDBT-T1 0.24 0.15 0.10 0.33 0.21 0.14
QX-M-PO 0.31 0.22 0.19 0.36 0.18 0.15

QX-PO 0.29 0.24 0.19 0.39 0.18 0.13
QX-PS 0.27 0.23 0.16 0.42 0.18 0.13

IDIC 0.15 0.21
IDTBR 0.16 0.17

3.4. Absorption Spectra of the Five Polymers and of IDIC, IDTBR

The polymers, as an electron donor in the solar cell devices, should have a strong and wide optical
absorption range, which will match with the solar spectrum well [35]. Based on the optimized
ground state structures of IDIC, IDTBR and the five kinds of polymers, their simulated optical
absorption spectra were calculated with the TD-DFT/CAM-B3LYP/6-31G (d). The absorption peaks
and corresponding oscillator strengths of oligomers (n = 1–3) are listed in Table 6, and the transition
energies and oscillators strength for IDIC and IDTBR are listed in Table 7. The absorption spectra of
the five polymers for n = 1–3 and absorption spectra of IDIC and IDTBR are presented in Figure 7.
Besides, the transition energies and oscillator strengths of the six excited states for the polymers (n = 1)
are listed in Table S1 in Supplementary Materials.

Table 6. The absorption peaks and corresponding oscillator strengths oligomers (n = 1–3).

Molecule State E (eV) Absorption peak λ (nm) Contribution MOs Strength f

P-BZS

n = 1 S1 3.27 379.02 H→L (0.66639) 1.4863
n = 2 S1 2.93 423.18 H→L (0.58778) 3.4568
n = 3 S1 2.87 432.67 H→L (0.51443) 4.3297

PDBT-T1

n = 1 S1 2.87 432.22 H→L (0.64008) 1.5626
n = 2 S1 2.64 469.57 H→L (0.54709) 2.2491
n = 3 S1 2.52 492.90 H→L (0.49314) 5.1319

QX-M-PO

n = 1 S1 2.98 416.23 H→L (0.59187) 1.1835
n = 2 S1 2.61 474.92 H→L (0.56328) 2.7947
n = 3 S1 2.61 474.19 H→L (0.51806) 4.1361

QX-PO

n = 1 S1 2.96 419.25 H→L (0.57410) 1.1665
n = 2 S1 2.69 461.33 H→L (0.55638) 2.9821
n = 3 S1 2.59 478.58 H→L (0.51439) 4.0453

QX-PS

n = 1 S1 2.97 417.79 H→L (0.57592) 1.1747
n = 2 S1 2.68 462.33 H→L (0.56559) 3.0549
n = 3 S1 2.61 473.32 H→L (0.51369) 4.2384
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Table 7. Transition energies and oscillators strengths for the NFAs (IDIC, IDTBR).

Molecule State E (eV) Absorption peak λ (nm) Contribution MOs Strength f

IDIC

S1 2.40 516.84 H→L (0.65169) 2.7244
S2 3.01 411.41 H→L + 1 (0.57513) 0.0000
S3 3.46 358.86 H→L + 2 (0.57087) 0.0939
S4 3.52 352.25 H→L + 3 (0.50408) 0.0000
S5 3.56 348.57 H-7→L + 2 (0.38485) 0.0000
S6 3.56 348.54 H-8→L + 2 (0.38494) 0.0000

IDTBR

S1 2.18 569.58 H→L (0.62354) 2.9442
S2 2.52 491.55 H→L + 1 (0.56766) 0.0280
S3 3.08 402.52 H-4→L + 2 (0.56766) 0.0001
S4 3.08 402.11 H-3→L + 3 (0.37743) 0.0001
S5 3.27 378.78 H-1→L (0.46724) 0.0129
S6 3.30 375.64 H-2→L (0.46724) 0.0104
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In Table 6, it was found that for, each kind of polymer, with the increase of the conjugated
chain, the absorption peak of each polymer is increased, and the corresponding oscillator strength is
the same. Moreover, for all oligomers (n = 1–3), the excited state S1 is originated from the electron
transition from HOMO to LUMO. We obtained the first absorption peaks of tripolymers (P-BZS,
PDBT-T1, QX-M-PO, QX-PO, and QX-PS) are 432.67, 492.90, 474.19, 478.58, and 473.32 nm, respectively,
while their corresponding oscillator strengths are 4.3297, 5.1319, 4.1316, 4.0453, and 4.2384, respectively.
The absorption peaks of tripolymers are in following sequence: PDBT-T1 > QX-PO > QX-M-PO >
QX-PS > P-BZS; and their corresponding oscillator strengths are in this order: PDBT-T1 > P-BZS >
QX-PS > QX-M-PO > QX-PO. In Figure 7, we can confirm that for each kind of polymer, the absorption
peak is increased with the increase of the conjugated chain. As shown in Figure 7, the PDBT-T1
have better optical absorption than the P-BZS, for n = 1–3; the three polymers QX-M-PO, QX-PO and
QX-PS have similar optical absorption. In addition, with the increase of conjugated chain of polymer,
absorption ranges of the five polymers have obviously bathochromic-shifted and broadened range,
which shows that, with the increase of conjugated chain of polymers, the optical absorptions of five
polymers all become better. When the conjugated unit n = 3, for P-BZS, the absorption range is about
from 275 to 650 nm; for PDBT-T1, the absorption range is about 325 to 750 nm; and, for QX-M-PO,
QX-PO and QX-PS, the absorption ranges are about 300 to 700 nm. Among the five polymers for n = 1–3,
it was found that the PDBT-T1 have the widest optical absorption range, the maximum absorption
peak and the maximum oscillator strength in the five polymers, meaning that PDBT-T1 has the best
optical absorption properties in the five polymers. Comparison of the polymers QX-M-PO, QX-PO,
and QX-PS indicates that these three polymers have similar absorption peaks, oscillator strengths
and absorption ranges, meaning that the molecular design by the introduction of F group or the
substitution of S atom has no obvious influence on the absorption peaks.

The transition energies and oscillators of IDIC and IDTBR are listed in Table 7, including the
transition information of the first six excited states for IDIC and IDTBR, and their absorption spectra
are presented in Figure 7. As shown, for IDIC and IDTBR, the absorption peaks of S1 are at 516.84 and
569.58 nm, respectively; the corresponding oscillator strengths are 2.7244 and 2.9442, respectively; and
the transition orbitals are both from HOMO to LUMO. Comparing with IDIC, the absorption peak of
IDTBR is red-shifted about 52.74 nm, and the transition energy of IDTBR is reduced by 0.22 eV. As can
be seen in Figure 7, the absorption range of IDIC is about from 250 to 800 nm, and that of TDTBR is
about from 250 to 950 nm. The absorption spectra of IDTBR are significantly red-shifted compared
with that of IDIC, and the absorption range of IDTBR is wider than that of IDIC. It is clearly seen that
IDTBR have better optical absorption capability than that of IDIC. Comparing with the five polymers,
both two NFAs has the greater first absorption peaks and bigger oscillator strengths in comparison
with the five polymers.

3.5. The Hole/Electron Mobility Rate and Hole/Electron Mobility of the Five Polymers and of IDIC and IDTBR

There exist the two models to describe the mechanism of charge transport: the coherent band
model and the thermally activated hopping model [56,57]. At the very low temperature, a band-like
model describes the transport mechanisms in the well-ordered organic materials. In this case, it is found
that both electron and hole transports fall into the coherent band-like regime [58]. At room temperature,
the charge transfer in organic semiconductor with weak intermolecular interactions is generally
regarded to happen through the thermally activated hopping model [59,60]. In this case, the charge
carriers are localized on a single molecule, jumping from one molecule to the adjacent molecule,
and the Marcus theory is a widely used method to estimate the charge hoping rate, which can be
expressed as [61–63]:

K =
V2

}

(
π

λkBT

) 1
2

exp
(
− λ

4kBT

)
(12)

In this equation, K is the rate of charge transfer for electrons and holes (Ke and Kh, respectively),
V is the charge transfer integral, h̄ is Planck’s constant, kB is the Boltzmann constant, T is room
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temperature (setting T = 300 K in our work), and λ is the reorganization energy of charge transfer
process. Here, it is found that the charge transfer rate depends on two key parameters (V and λ).

For the electrons and holes, the charge transfer integrals are written as Ve and Vh, respectively.
We use following equations to measure Ve and Vh [64,65]:

Ve =
EL+1 − EL

2
(13)

Vh =
EH − EH−1

2
(14)

where EL+1, EL, EH and EH−1 represent the energy levels of LUMO + 1, LUMO, HOMO and
HOMO-1, respectively. Analogously, for the electrons and holes, the reorganization energies are
λe and λh, given in Formulas (10) and (11).

According to the Einstein relation, the drift mobility of hopping µ is usually evaluated from the
Einstein–Smoluchowski equation: [58,66]

µ =
e

kBT
D (15)

where e is the electron charge, kB is the Boltzmann constant, T is room temperature, and D is the
diffusion coefficient. The diffusion coefficient D can be evaluated from the hopping rates as: [56,60]

D = lim
t→∞

1
2d

〈
x(t)2

〉
t

≈ 1
2d∑

m
r2

mkm pm (16)

where km is the hopping rate due to the charge carrier to the mth neighbor, and rm is the distant to
neighbor m, and pm is the relative probability for charge carrier to a particular mth neighbor. In addition,
when considering only one neighbor, the diffusion constant along a single molecular dimer is simply
defined as: [67]

D =
1
2

Kr2 (17)

where K and r are the rate of charge mobility and intermolecular distance for the dimer, respectively.
At room temperature, the drift mobility of hopping µ can be expressed as [65,68]:

µ =
er2

2kBT
K (18)

The important parameters linked with the drift mobility of the NFAs (IDIC and IDTBR) and
the five polymers are listed in Table 8, and in calculations the dimer structures of IDIC, IDTBR and
the five polymers are face-to-face dimer structure, which can be seen in Figure S1 in Supplementary
Materials. As shown in Table 8, for IDIC and IDTBR, the electron transfer rates Ke are 1.27 × 1010 and
1.25× 1014 s−1, respectively. Obviously, IDTBR has much faster electron transfer rate than IDIC. For the
five polymers, P-BZS, PDBT-T1, QX-M-PO, QX-PO, and QX-PS, their Kh are 1.44 × 1013, 4.17 × 1012,
3.37 × 1012, 3.97 × 1011 and 2.34 × 1012 s−1 respectively. By employing Equation (18), we can obtain
that the electron mobilities µe of IDIC and IDTBR are 7.36 × 10−4 and 6.3043 cm2/(V·s), respectively;
for the five polymers, their µh are 0.6080, 0.1460, 0.1420, 0.1730, and 0.1020 cm2/(V·s), respectively.
IDITBR has much greater electron mobility than IDIC, which because IDTBR has much larger Ke

than IDIC.
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Table 8. The key parameters related to drift mobility of NFAs (IDIC and IDTBR) and the five polymers:
Ve/Vh (eV), λe/λh (eV), r (Å), Ke/Kh (s−1) and µe/µh (cm2/(V·s)).

Ve λe ke r µe

IDIC 0.00163 0.21 1.27 × 1010 5.47 7.36 × 10−4

IDTBR 0.12626 0.17 1.25 × 1014 5.11 6.3043

Vh λh kh r µh

P-BZS 0.04875 0.19 1.44 × 1013 4.67 0.6080
PDBT-T1 0.02027 0.15 4.17 × 1012 4.26 0.1460
QX-M-PO 0.02816 0.22 3.37 × 1012 4.67 0.1420

QX-PO 0.01088 0.24 3.97 × 1011 4.75 0.1730
QX-PS 0.02490 0.23 2.34 × 1012 4.75 0.1020

3.6. The Ground-State Properties of D/A Interfaces

The ground-state geometry structures of the ten D/A interfaces have been optimized by using
DFT/B3LYP/6-31G(d). The energy levels and energy gaps for the ten D/A interfaces were shown
in Table S2 in Supplementary Materials. Based on the optimized ground state geometries of
D/A interfaces, the partial density of states (PDOS) were calculated. The FMOs energy level of
the five polymer/IDIC interfaces and the five polymer/IDTBR interfaces are depicted in Figure 8.
Besides, Figure 9 presents the PDOS plots, FMOs plots and FMO levels of the ten D/A interfaces.
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In Table S2 and Figure 8, we can find that for the polymers/IDIC interfaces and
polymers/IDTBR interface; their HOMO energy levels are not very different; and the energy
levels of LUMO vary greatly. The LUMO energy levels of the D/A interfaces show a trend
of: polymer/IDTBR > polymer/IDIC. Compared with polymer/IDIC interfaces, the LUMO of
P-BZS/IDTBR, PDBT-T1/IDTBR, QX-M-PO/IDTBR, QX-PO/IDTBR, and QX-PS/IDTBR interfaces
are increased about 0.79, 0.81, 0.76, 0.77 and 0.88 eV, respectively.

In Figure 9, with the PDOS, we can find the percentage contribution of some groups to each
molecular orbital [5]. As shown in Figure 9, for the five polymer/IDIC interfaces, the contribution
of HOMO mainly comes from the polymers, and the LUMO is mainly contributed by IDIC.
The corresponding FMOs plots can prove this point. For the five classes of polymer/IDIC interfaces,
one can see that the electronic clouds of HOMO are located on the polymer, and LUMO’s electronic
cloud are located on IDIC, which proves that in polymer/IDIC, the polymers dominate HOMO levels,
and IDIC dominates LUMO levels. For the five kinds of polymer/IDTBR interfaces, the HOMOs of the
other four types of IDITBR-based interfaces are mainly contributed by IDTBR except for QX-PO; the
contribution of LUMO are all from IDTBR. For the QX-PO/IDTBR, its HOMO is located at the QX-PO,
and LUMO is from IDTBR, which is supported by the FMOs plots. Except for the QX-PO/IDIC,
the HOMO and LUMO of the remaining four kinds of IDTBR-based interfaces are localized on
the IDTBR, while QX-PO/IDTBR’s HOMO is localized on QX-PO, and LUMO distributes on IDTBR.

3.7. Ips and Eas for Ten D/A Interfaces

The calculated Ips and Eas of the ten D/A interfaces are listed in Table 9. The Ips/EA of
the five Polymer/IDIC interfaces and the five Polymer/IDTBR interfaces are shown in Figure 10.
Analyzing Table 9 and Figure 10, we can find that for the IDIC-based Interfaces and the
IDTBR-based interfaces, the differences of IP are very small; however, the differences of EA are obvious.
Eas are showing trends of Polymer/IDIC > Polymer/IDTBR. It is obvious that the electron injection
abilities of IDIC-based interfaces are better than those of IDTBR-based interfaces. compared with
IDTBR-based interfaces, the Eas of IDIC-based interfaces are increased about 0.72, 0.78, 0.70, 0.72 and
0.87 eV, respectively.

Table 9. The IPs, EAs, optical band gap energies (Eopt) and exciton binding energies (Eb) of
D/A interfaces.

D/A Interfaces IP (eV) EA (eV) Eopt (eV) Eb (eV)

P-BZS/IDIC 5.85 2.80 2.32 0.73
PDBT-T1/IDIC 5.82 2.76 2.35 0.80
QX-M-PO/IDIC 5.76 2.72 2.33 0.71

QX-PO/IDIC 5.68 2.76 2.32 0.60
QX-PS/IDIC 5.73 2.88 2.23 0.62

P-BZS/IDTBR 5.84 2.08 2.78 0.98
PDBT-T1/IDTBR 5.70 1.98 2.74 0.98
QX-M-PO/IDTBR 5.77 2.02 2.77 0.98

QX-PO/IDTBR 5.65 2.04 2.74 0.87
QX-PS/IDTBR 5.65 2.01 2.73 0.91
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3.8. Optical Absorption for Ten D/A Interfaces

Light is absorbed by the organic layer, and electron–hole pairs are generated; as mentioned,
the absorption characteristics of the organic layer should match the solar spectrum as closely
as possible. Based on the optimized ground-state geometries of the ten D/A interfaces, the electronic
transitions in optical absorption were calculated with TD-DFT/CAM-B3LYP/6-31G (d). The electronic
transitions of the first six excited state for the polymer/IDIC interfaces are listed in Table 10, and the
electronic transitions of the first six excited state for polymer/IDTBR interfaces are listed in Table 11.
The absorption spectra of polymer/IDIC interfaces and polymer/IDTBR interfaces are presented in
Figure 7.

Table 10. Transition energies and oscillator strengths for D/A interfaces polymer/IDIC.

Interfaces E (eV) λ (nm) Contribution MOs Strength f

P-BZS/IDIC

S1 2.32 535.23 H-1→L (0.64571) 1.9897
S2 2.49 497.32 H→L (0.68663) 0.0059
S3 2.86 433.45 H→L + 1 (0.50061) 0.0007
S4 2.94 422.04 H-1→L + 1 (0.56022) 0.0223
S5 3.19 388.35 H-3→L (0.60443) 0.0089
S6 3.23 383.57 H→L + 3 (0.58721) 1.3310

PDBT-T1/IDIC

S1 2.35 527.60 H-1→L (0.64572) 1.9649
S2 2.67 464.94 H→L (0.67118) 0.0142
S3 2.85 434.89 H→L + 3 (0.59640) 1.7541
S4 2.96 418.71 H-1→L + 1 (0.54964) 0.1524
S5 3.10 399.40 H→L + 1 (0.56169) 0.0030
S6 3.36 369.24 H→L + 5 (0.36596) 0.1091

QX-M-PO/IDIC

S1 2.33 532.08 H-1→L (0.58892) 1.8682
S2 2.45 505.90 H→L (0.58745) 0.1400
S3 2.90 426.36 H→L + 3 (0.42461) 0.8127
S4 2.93 423.46 H-2→L (0.47518) 0.0052
S5 2.96 418.36 H-1→L + 2 (0.39677) 0.4739
S6 3.16 392.25 H→L + 1 (0.38327) 0.0012
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Table 10. Cont.

Interfaces E (eV) λ (nm) Contribution MOs Strength f

QX-PO/IDIC

S1 2.32 534.00 H-2→L (0.63872) 1.8247
S2 2.34 527.66 H→L (0.60302) 0.0004
S3 2.78 446.38 H-1→L (0.52415) 0.0002
S4 2.89 428.49 H→L + 3 (0.52044) 1.0973
S5 2.95 420.88 H-2→L + 1 (0.52727) 0.2355
S6 3.10 399.94 H→L + 1 (0.42268) 0.0008

QX-PS/IDIC

S1 2.23 555.21 H-1→L (0.63726) 1.6883
S2 2.48 500.40 H→L (0.65873) 0.0233
S3 2.77 447.31 H→L + 2 (0.56768) 1.6181
S4 2.88 430.67 H-2→L (0.40210) 0.0287
S5 2.90 427.38 H-1→L + 1 (0.47503) 0.0114
S6 3.19 388.04 H→L + 1 (0.43135) 0.0004

Table 11. Transition energies and oscillator strengths for D/A interfaces polymer/IDTBR.

Interfaces E (eV) λ (nm) Contribution MOs Strength f

P-BZS/IDTBR

S1 2.76 446.80 H→L (0.56871) 2.4542
S2 3.12 396.71 H-2→L (0.29578) 0.0864
S3 3.14 393.98 H-9→L (0.33442) 0.0164
S4 3.18 389.59 H-10→L (0.31034) 0.0599
S5 3.27 378.70 H-1→L + 2 (0.56327) 1.2629
S6 3.32 373.10 H-1→L + 2 (0.30340) 0.6293

PDBT-T1/IDTBR

S1 2.73 452.85 H→L (0.53040) 1.1034
S2 2.87 430.94 H-1→L + 2 (0.55550) 3.2597
S3 3.10 399.81 H-2→L (0.39061) 0.0078
S4 3.14 394.40 H-8→L + 6 (0.22903) 0.0082
S5 3.16 391.27 H-3→L (0.25714) 0.0070
S6 3.25 381.18 H-3→L (0.31279) 0.0033

QX-M-PO/IDTBR

S1 2.76 448.32 H→L (0.56150) 2.5731
S2 3.10 398.82 H-1→L + 2 (0.49594) 1.1560
S3 3.12 396.56 H-2→L + 2 (0.30762) 0.0270
S4 3.15 392.71 H-4→L (0.24075) 0.0052
S5 3.20 387.09 H→L + 1 (0.27965) 0.0153
S6 3.29 376.77 H-4→L (0.45729) 0.0345

QX-PO/IDTBR

S1 2.74 452.44 H-1→L (0.56657) 2.3682
S2 2.96 418.23 H→L + 2 (0.51852) 1.6954
S3 3.12 397.29 H-3→L (0.32364) 0.0056
S4 3.15 392.60 H-4→L (0.32696) 0.0025
S5 3.21 385.85 H-1→L + 1 (0.29098) 0.0122
S6 3.28 377.86 H-4→L (0.31635) 0.0156

QX-PS/IDTBR

S1 2.73 453.96 H→L (0.55344) 2.2361
S2 3.06 405.17 H-1→L + 1 (0.47892) 1.5389
S3 3.10 399.61 H-3→L (0.36520) 0.0589
S4 3.15 392.68 H-9→L + 6 (0.25236) 0.0040
S5 3.20 387.43 H-5→L (0.24538) 0.0154
S6 3.29 376.08 H-5→L (0.28417) 0.0650
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In Table 10, we can see that the first absorption peaks of P-BZS/IDIC, PDBT-T1/IDIC,
QX-M-PO/IDIC, QX-PO/IDIC, and QX-PS/IDIC are at 535.23, 527.60, 532.08, 534.00,
and 555.21 nm, respectively; and their corresponding oscillator strengths are 1.9897, 1.9649, 1.8682,
1.8247, and 1.6883, respectively. In addition to the QX-PO/IDIC, the transition orbitals of S1 for the
polymer/IDIC are from HOMO-1 to LUMO, and the transition orbitals of S1 for QX-PO/IDIC is
from HOMO-2 to LUMO. The transition orbitals of S2 for the five polymer/IDIC interfaces are from
HOMO to LUMO. The maximum absorption peaks are in the order: QX-PS/IDIC > P-BZS/IDIC >
QX-PO/IDIC ≈ QX-M-PO/IDIC > PDBT-T1/IDIC; and the corresponding oscillator strengths are in
the order: P-BZS/IDIC > PDBT-T1/IDIC > QX-M-PO/IDIC > QX-PO/IDIC > QX-PS/IDIC. For the
two manufactured D/A interfaces, it is obvious that P-BZS/IDIC have a better optical absorption
property than that of PDBT-T1/IDIC, which coincides with the experimental results [31]. Among the
five polymer/IDIC interfaces, P-BZS/IDIC has the second largest absorption peak and the greatest
oscillator strength, and QX-PS/IDIC has the largest absorption peak, meaning that these two D/A
interfaces have the best optical absorption properties among the five D/A interfaces. Two new
designed D/A interfaces: QX-M-PO/IDIC and QX-PO/IDIC show the optical performance close to
the synthesized D/A interface P-BZS/IDIC; and the newly designed QX-PS/IDIC even shows a better
optical absorption performance than P-BZS/IDIC. It shows that the five IDIC-based interfaces exhibit
excellent optical absorption properties. Comparing with the polymers (n = 1), it is noted that for, P-BZS,
PDBT-T1, QX-M-PO, QX-PO, and QX-PS, when the D/A interfaces with IDIC was constructed, the first
absorption peaks of them have bathochromic shifted about 156.21, 92.38, 115.85, 114.75, and 137.42 nm,
respectively; and their corresponding oscillator strengths have increased about 0.5034, 0.4023, 0.6847,
0.6582, and 0.5136, respectively. Furthermore, as shown in Figure 7, the five kinds of IDIC-based
interfaces have strong and wide absorption ranges. For P-BZS/IDIC, PDBT-T1/IDIC, QX-M-PO/IDIC,
and QX-PO/IDIC, the absorption ranges are all about from 300 to 850 nm, while, for QX-PS/IDIC,
the absorption range is about from 300 to 900 nm. Comparing with the five polymers, we can find
that their corresponding polymer/IDIC interfaces have wider and more red-shifted absorption ranges.
When the polymers were matched with IDIC to form D/A interfaces, the absorption peaks of them
have obviously red shifted, and their corresponding oscillator strengths have obvert increases.

For polymer/IDTBR interfaces, the maximum absorption peaks of P-BZS/IDTBR,
PDBT-T1/IDTBR, QX-M-PO/IDTBR, QX-PO/IDTBR, and QX-PS/IDTBR are 446.80, 452.85,
448.32, 452.44, and 453.96 nm; and their oscillators strengths are 2.4542, 1.1034, 2.5731, 2.3682,
and 2.2361, respectively. In addition to the QX-PO/IDTBR, the transition orbitals of S1 for
polymer/IDTBR are from HOMO to LUMO, and the transition orbitals of QX-PO/IDTBR are from
HOMO-1 to LUMO. As presented in Figure 7, the absorption ranges of the five polymer/IDTBR
interfaces are all about from 300 to 650 nm. Comparing with five polymers (n = 1), the maximum
absorption peaks of their corresponding polymer/IDTBR interfaces make red-shifted about
67.78, 20.63, 32.09, 33.19, and 36.17 nm, respectively; and the maximum oscillator strengths of
their corresponding polymer/IDTBR interfaces were raised by 0.9679, 1.6971, 1.3896, 1.2071,
and 1.0614, respectively. Moreover, compared with the five kinds of polymers, the optical absorption
ranges of the five systems (polymer/IDTBR) are obviously bathochromic shifted. Furthermore,
when comparing IDIC-based interfaces with IDTBR-based interfaces, it is found that for the five kinds
of polymers, their corresponding IDIC-based interfaces have larger absorption peaks than that of
IDTBR-based interfaces, except for the smaller oscillator strengths. It is clearly demonstrated that the
sunlight absorption ranges of IDIC-based interfaces is much wider and more bathochromic-shifted than
those of IDTBR-based interfaces. Therefore, comparing the original five polymers, their corresponding
polymer/non-fullerene interfaces have better sunlight absorption properties; comparing IDIC-based
interfaces with IDTBR-based interfaces, the IDIC-based interfaces have much better optical absorption
performances than the IDTBR-based interfaces.

The quantum chemistry methods coupled with CDD methods have been used to study the
structure and charge transfer character of organic molecules under photo-excitation [69–71]. It is
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hoped that effective charge separation can be occurred under the heterojunction. Therefore, we did
the calculation about CDD plots for the first six excited states of the ten D/A interfaces. The CDD
plots of the polymer/IDIC interfaces are presented in Figure 11 (excited states S1–S3) and Figure S2 in
Supplementary Materials (S4–S6), and the CDD plots of polymer/IDTBR are drawn in Figure 12 (S1–S3)
and Figure S3 in Supplementary Materials (S4–S6). In Figure 11, for the S1 of the five polymer/IDIC
interfaces, the electrons and holes are both located at IDIC. It is worth noting that charge transfer can
be found in the second and third state. For example, for the S2 of the five polymer/IDIC interfaces,
the electrons are only located at IDIC, and the holes are only located at polymers, which means the
electrons is transferred from the polymers to the acceptor IDIC. The electron transfer type is view
as an intermolecular charge transfer [45,72]. Under the excited state S2, the electrons are separated
effectively for the five polymer/IDIC interfaces. In the first six excited states of the IDIC-based
interfaces, the efficient electronic separation states are S2, S3, and S5 for P-BZS/IDIC; S2 and S5 for the
PDBT-T1/IDIC; S2, S4, and S6 for the QX-M-PO/IDIC; S2, S3, and S6 for QX-PO/IDIC; and S2, S4, S5,
and S6 for QX-PS/IDIC. As shown in Figure 11, the effective charge separation can take place at each
D/A interface. Obviously, in the first six excited states of the five IDIC-based interfaces, QX-PS/IDIC
has more effective charge separated state than the other four interfaces; PDBT-T1/IDIC compared
to other interfaces has the least effective charge separated state; and P-BZS/IDIC, QX-M-PO/IDIC,
and QX-PO/IDIC are the same as the charge separation state.
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For the S1 of the five polymer/IDTBR interfaces, the electrons and holes are both distribute on the
acceptor IDTBR, which is similar to that IDIC-based interfaces, indicating that the S1 of IDTBR-based
interfaces are all occur at IDTBR. For both IDIC-based interfaces and IDTBR-based interfaces,
the S1 of them respectively occur at two NFAs. Except for P-BZS/IDTBR, for S2 of four
polymer/IDTBR interfaces, the electrons and holes are both located in the polymers, suggesting
that the electrons transfer takes place on the polymer. For S2 of P-BZS/IDTBR, the electrons and
holes are both distribute on IDTBR, indicating that the electron transfer happen at IDTBR. In the first
six excited states, there are no efficient electronic separation happened in the five polymer/IDTBR
interfaces. That explains why, for each kind of polymer, the absorption peaks of their corresponding
IDTBR-based interfaces are blue-shifted compared to those of their corresponding IDIC-based
polymers. From the CDD plots of D/A interfaces, we can observe the electron transfer processes and
characteristics of each excited state, and to observe the roles of the polymers and the NFAs in each
excited state.

3.9. Exciton Binding Energies of Ten D/A Interfaces

When the organic layer absorbs sunlight, the dominant species produced is an exciton, which is
an electron/hole pair bound by Coulombic attraction rather than the free charge carriers [73]. After the
exciton is formed, it will transport to the D/A interface, and then the exciton will be separated under
interface [74]. The main steps are [75]: (i) charge transfer from the excited singlet state S1 to the CT
state; and (ii) escape of the electron–hole pair forming the CT state from their mutual Coulombic
potential well. To dissociate exciton to charges successfully, large exciton binding energy has to
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be overcame. The exciton binding energy is one of the key parameters of organic solar cell devices,
and it is directly related to the charge separation in organic solar cells. A system with small Eb often
possesses high charge separation efficiency, which is beneficial for photovoltaic applications [75].
Theoretically, exciton binding energy is estimated by the following expression [48,76–78]:

Eb = IP− EA− Eopt (19)

where IP and EA are the ionization potential and electron affinity, respectively; and Eopt is the optical
band gap D/A interface. The exciton binding energy of D/A interfaces should be in the range of 0 to
1.5 eV [79–82]. Optical band gap energy (Eopt) and exciton binding energy (Eb) of the ten D/A interfaces
are listed in Table 9. As shown, for P-BZS/IDIC, PDBT-T1/IDIC, QX-M-PO/IDIC, QX-PO/IDIC,
and QX-PS/IDIC, the Eb are 0.73, 0.80, 0.71, 0.60, 0.62 eV, respectively; and for P-BZS/IDTBR,
PDBT-T1/IDTBR, QX-M-PO/IDTBR, QX-PO/IDTBR, and QX-PS/IDTBR, the Eb are 0.98, 0.98, 0.98,
0.87, and 0.91 eV, respectively. For each kind of polymer, the IDIC-based interfaces have the less Eb
than that the IDTBR-based interfaces (that is to say: P-BZS/IDIC < P-BZS/IDTBR, PDBT-T1/IDIC
< PDBT-T1/IDTBR and so on). It suggests that the IDIC-based interfaces need to overcome smaller
exciton binding energies in comparison with the IDTBR-based interfaces; that is, the exciton is easier
to be dissociated into free charge in the IDIC-based interfaces.

3.10. The Rates of Charge Separation and the Rates of Charge Recombination of Polymer/IDIC Interfaces

The IDIC-based interfaces have better electron injection abilities, better optical absorption
properties and smaller exciton binding energies than IDTBR-based interfaces; besides, efficient charge
separation have occurred in IDIC-based interfaces; we calculated the charge separation rates and
charge recombination rates of polymer/IDIC interfaces. In the semi-classical limit of Marcus theory,
the charge-transfer rate can be expressed as [80,83]:

K =

√
4π3

h2λkBT
|VDA|2 exp

(
− (∆G + λ)

4λkBT

)
(20)

where VDA is the charge transfer integrals between the initial and final states, λ is the reorganization
energy of D/A interface, which usually can be expressed as the sum of the intramolecular
reorganization energy and the outer reorganization energy. ∆G is the vibration of the Gibbs free
energy during the reaction, which can be expressed as ∆GCS and ∆GCR in the charge separation
process and charge recombination processes, respectively. kB is the Boltzmann’s constant, h is the
Planck’s constant, and T is the temperature; usually, we use room temperature T = 300 K.

The charge transfer integrals VDA is to be evaluated in a diabatic description where the initial
and final states do not interact. In this case, VDA can be estimated from the quantities given by CI
(configuration interaction) calculations performed on the interacting donor/acceptor pair by using
the generalized Mulliken-Hush (GMH) formalism, which refers to an optical process between the
two states. VDA is then expressed as: [84]

VDA =
µtr∆E√

(∆µ)2 + 4(µtr)
2

(21)

where ∆E, ∆µ, and µtr correspond to the energy difference, the dipole moment difference, and the
transition dipole moment between the initial and final states, respectively. This formalism is particularly
attractive since it covers the photo-induced CT processes and allows the inclusion of electron correlation
in the description of the relevant states [85]. The dipole moment difference in Equation (21) can be
calculated by using Hellmann–Feynman theorem. The dipole moments difference of excited states is
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estimated by using finite field method. The transition energy dependent on the static electric field F
can be expressed as: [46,86,87]

Eext(F) = Eext(0)− ∆µF− 1
2

∆αF2 (22)

where Eext(0) = ∆E is the excitation energy of the lowest intermolecular charge transfer excited
state at zero field, and ∆α is the change in polarizability. Calculated charge transfer integrals for
the polymer/IDIC interfaces are listed in Table 12. The charge transfer integrals VDA of IDIC-based
interfaces are 0.2177, 0.2721, 0.8816, 0.1061, and 1.034 eV, respectively. The VDA of the IDIC-based
interfaces are following this sequence: QX-PS/IDIC > QX-M-PO/IDIC > PDBT-T1/IDIC > P-BZS/IDIC
> QX-PO/IDIC.

Table 12. Calculated charge transfer integrals for the polymer/IDIC interfaces.

D/A Interfaces States ∆µ (a.u) µtr (a.u) ∆E (eV) VDA (eV)

P-BZS/IDIC S2 −3.511 0.3117 2.4931 0.2177
PDBT-T1/IDIC S2 4.457 0.4659 2.6667 0.2721
QX-M-PO/IDIC S2 2.945 1.5271 2.4507 0.8816
QX-PO/IDIC S2 −1.927 0.0883 2.3497 0.1061
QX-PS/IDIC S2 −0.817 0.6197 2.4777 1.034

The reorganization energy is a key parameter to calculate charge transfer rate, and the
intramolecular reorganization energy refers to the change in the energy of the system due to the
relaxation of the geometric structure when the electron gain/loss, or the electronic state changes [79];
the outer reorganization energy is due to the electronic and nuclear polarization/relaxation of the
surrounding medium [55,88]. The overall intramolecular reorganization energy consists of two
terms [85]:

λin = λin(A) + λin(D) (23)

λin(D) = E(D)− E(D+) (24)

λin(A) = E(A−)− E(A) (25)

where E(D) and E(D+) are the energies of the radical cation D+ at the neutral geometry and optimal
cation geometry, respectively; and E(A−) and E(A), accordingly, represent the energies of the neutral
acceptor A at the anionic geometry and the energies of neutral acceptor at optimal ground-state
geometry, respectively. By employing quantum chemical theory, it is a hard work to accurately calculate
outer reorganization energy λs in the D/A interface, especially for our new designed D/A interfaces.
In our work, the value of λs is viewed as a constant equal to 0.3 eV [28,89].

For charge recombination process, the ∆GCR can be estimated with [90]:

∆GCR = EIP(D)− EEA(A) (26)

where EIP(D) represents the ionization potential of the donor, and EEA(A) is the electron affinity of
the acceptor. As an approximation, the Gibbs free energy change of charge separation process is
estimated from the Rehm-Weller equation: [91]

∆GCS = −∆GCR − ES1 − Eb (27)

where ES1 and Eb are the energy of lowest excited state of free-base donor and exciton binding energy
of D/A interface, respectively.

The important parameters associated with the charge-transfer rate of D/A interfaces are listed in
Table 13. As shown, all the D/A interfaces have close reorganization energies. For P-BZS/IDIC,
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PDBT-T1/IDIC, QX-M-PO/IDIC, QX-PO/IDIC, and QX-PS/IDIC, their ∆GCS are −0.74, −0.55,
−0.64, −0.60, and −0.58 eV, respectively; and their ∆GCR are −3.26, −3.12, −3.05, −2.95,
and −3.01 eV, respectively. The charge separation rates KCS of P-BZS/IDIC, PDBT-T1/IDIC,
QX-M-PO/IDIC, QX-PO/IDIC, and QX-PS/IDIC are 2.29 × 1013, 3.20 × 1013, 6.54 × 1014, 2.87 × 1012,
and 3.60 × 1014 s−1, respectively. We cannot figure out the KCR of QX-PO/IDIC, while the KCR

of P-BZS/IDIC, PDBT-T1/IDIC, QX-M-PO/IDIC, and QX-PS/IDIC are 2.14 × 105, 4.20 × 102,
1.51 × 105, and 3.68 × 106, respectively. The results show that, among the five kinds of D/A interfaces,
QX-M-PO/IDIC and QX-PS/IDIC have the best charge separation rates, which are larger than the
KCS of the two synthesized D/A interfaces (P-BZS/IDIC and PDBT-T1/IDIC). QX-PO/IDIC has the
smallest charge separation rate. This indicates that in the five kinds of the polymer, polymers QX-M-PO
and QX-PS combined with IDIC to form the corresponding D/A interfaces are most favorable for the
charges separation. In addition to the QX-PO/IDIC, the KCS/KCR for P-BZS/IDIC, PDBT-T1/IDIC,
QX-M-PO/IDIC, QX-PS/IDIC are 1.07 × 108, 7.69 × 109, 4.33 × 109, 9.78 × 108, respectively. As the
KCS/KCR is shown, for the four D/A interfaces, their charge separation rates are much larger than their
charge recombination rates, which indicates that the electronic separation can be achieved effectively
in these four polymer/IDIC interfaces. As for QX-PS, because it has a very large charge separation rate,
we can assume that the charge separation is also effective at this D/A interface. In terms of the
D/A interfaces, the greater charge separation rate and the smaller charge recombination rate can
promote the JSC of the solar cell device [37]. For polymer/IDIC interfaces, they all have larger KCS and
smaller KCR; thus, we can think that such IDIC-based interfaces will have appreciable JSC, furthermore,
producing an appreciable PCEs.

Table 13. Dynamic parameters of the polymers/IDIC interfaces: inner reorganization energy λin (eV),
outer reorganization energy λs (eV), free enthalpy of the reaction ∆G (eV), the rates of exciton-separation
kCS (s−1), and charge-recombination kCR (s−1).

P-BZS/IDIC PDBT-T1/IDIC QX-M-PO/IDIC QX-PO/IDIC QX-PS/IDIC

λin 1.15 0.92 0.95 1.05 0.99
λs 0.30 0.30 0.30 0.30 0.30
λ 1.45 1.22 1.25 1.35 1.29

∆GCS −0.74 −0.55 −0.64 −0.60 −0.58
∆GCR −3.26 −3.12 −3.05 −2.95 −3.01

V 0.2177 0.2721 0.8816 0.1061 1.034
kCS 2.29 × 1013 3.20 × 1013 6.54 × 1014 2.87 × 1012 3.60 × 1014

kCR 2.14 × 105 4.20 × 102 1.51 × 105 – 3.68 × 106

4. Conclusions

In this work, two non-Fullerene Acceptors (NFAs: IDIC and IDTBR) and five polymers
were selected and investigated by DFT and TD-DFT. Based on the optimized ground-sated
structures of NFAs and the five polymers, we studied the ten D/A interfaces, which include
the two synthesized D/A interfaces (P-BZS/IDIC and PDBT-T1/IDIC) and eight newly designed
D/A interfaces, by employing quantum-chemical method and Marcus semi-classical model. The results
demonstrated that: (a) As the substitution of fullerene derivatives, the LUMO of the two
NFAS are all higher than that of PCMB, which can enhance the value of VOC > (b) Among
the five polymers, PDBT-T1 has largest absorption peak in the visible region, and polymers
QX-M-PO and QX-PO have similar optical response, indicating that the introduction of F group in
2,6-bis(trimethyltin)-4,8-bis(4-ethylhexyloxy-1-phenyl)-benzo[1,2-b:4,5-b0]-dithiophene for QX-M-PO
has not influence on the absorption spectra. For the construction of D/A interfaces, the absorption
peak of D/A make the red-shifted compared with the single polymer, which promote the sufficient
utilization of sunlight for the dimer system. (c) Using the same polymers coupled with IDTBR or
IDIC to compare the performance of the two NFAs, the smaller exciton binding of the IDIC-based
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system indicates the charge separation should take place more easily, and charge different density
provides the visualized evidence (where the electron (red color) was moved from the polymer to IDIC
for the S2). Meanwhile, the Marcus semi-classical model demonstrated that the charge separation rate
polymer/IDIC interfaces is about six orders of magnitude higher than the charge recombination rate.
Finally, we infer that IDIC-based interfaces have better performance in the utility of BHJ solar cell than
IDTBR-based interfaces. We hope that our investigations in this work can further provide theoretical
guidance for optimizing OSCs acceptor materials and achieve a breakthrough on the dilemmas of
existing polymer solar cells.
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