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Abstract: A multi-scale phase-field approach, which couples the mesoscopic crystallization with
the microscopic orientation of chain segments and macroscopic viscoelastic melt flow, is proposed
to study how the crystal growth of semi-crystalline polymers is affected by flows. To make the
simulation feasible, we divide the problem into three parts. In the first part, a finitely extensible
nonlinear elastic (FENE) dumbbell model is used to simulate the flow induced molecular structure.
In the second part, formulas for estimating the density, orientation and aspect ratio of nuclei upon
the oriented molecular structure are derived. Finally, in the third part, a massive mathematical model
that couples the phase-field, temperature field, flow field and orientation field is established to model
the crystal growth with melt flow. Two-dimensional simulations are carried out for predicting the
flow effect on the crystal growth of isotactic polystyrene under a plane Poiseuille flow. In solving the
model, a semi-analytical method is adopted to avoid the numerical difficult of a “high Weissenberg
number problem” in the first part, and an efficient fractional step method is used to reduce the
computing complexity in the third part. The simulation results demonstrate that flow strongly affects
the morphology of single crystal but does not bring a significant influence on the holistic morphology
of bulk crystallization.

Keywords: crystal growth; crystallization; orientation; semi-crystalline polymer; flow effect;
phase-field; multi-scale

1. Introduction

As is well known, crystallization of polymers is very different from that of the small molecular
materials. Generally, the crystallization of polymers is more complex, and no polymer can be fully
crystallized. The final morphology and crystallinity of polymers strongly depend on both their interior
structures (molecular configuration and chain conformation) and exterior conditions. Because the
resulting crystalline structures have significant impacts on material properties and further determine
the performance of products in end uses, the research of polymer crystallization has great significance.

After extensive study over a long period in the past, the research findings and theories about
polymer crystallization in quiescent conditions are on the way to perfection. However, under real
processing conditions (such as injection molding, extrusion molding, fiber spinning, and etc.), polymers
always undergo the force (shearing, stretching or extrusion) of external fields. In this case, the
crystallization behavior of polymers will be greatly changed. It has been known that flow shortens the
nucleation time, enhances the nucleation density and accelerates the crystal growth of polymers [1,2].
Moreover, flow also changes the crystallization morphology and produces more plentiful crystal
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patterns than quiescent conditions, such as columnar crystals, shish-kebab crystals, fibrillar crystals,
etc. [3–6]. In view of the importance of morphology to performance, the effects of flow on morphology
during the crystal growth period will be investigated in this paper.

These years, numerical simulation has been necessary, complementary to the experimental
study of polymer crystallization. Plenty of simulations using approaches ranging from simple
expressions to multi-scale models have been performed to predict the flow effect on crystal growth of
semi-crystalline polymers. Rong et al. [7] presented a multi-scale model for simulating the isothermal
flow-induced crystallization of polymer melt in a simple shear flow. A finitely extensible nonlinear
elastic (FENE) dumbbell model and a rigid dumbbell model are used to describe the amorphous
phase and semi-crystalline phase, respectively. The model takes into account the rheological behavior
of polymer melt and limits to the spherulitic growth. Mu et al. [8] studied the crystallization and
orientation of polymer melts with amorphous and semi-crystalline phases undergoing processing
conditions by using a two-phase model. The rheological behavior of polymer melt in this model is
involved by an approach similarly with the one used in [7]. Based on the proposed mathematical
model and numerical algorithm, the crystallization and orientation of polymer melts in the hollow
profile extrusion process were predicted. Spina et al. [9] implemented a robust framework for
the computation of the crystallization kinetics of thermoplastic polymer by using a multi-scale
approach. The multi-scale modeling assesses parameters influencing microstructure formation though
experiments rather than time-consuming analysis. The research shows that the framework is able
to reproduce the crystallization kinetics under non-isothermal and temperature-gradient conditions.
Although plenty of studies have been carried out, the consideration about flow effect on the crystal
morphology is still insufficient. Because the present multi-scale models are mainly built based on the
fundamental theories of crystallization kinetics and rheology of semi-crystalline polymers, they are
incapable of predicting flow effect on crystallization morphology together with microstructure of the
crystals. Accurate prediction of flow effect on crystal growth of semi-crystalline polymers still requires
not only appropriate mathematical models that consider the characteristics of polymer melt but also
robust numerical methods for solving the models.

In morphological research, there have been many simulation approaches available, which include
molecular dynamics methods [10–13], coarse-grained Monte Carlo methods [14–19], mesoscopic
methods [20–25] and phenomenological methods [26–29]. Among these methods, the molecular dynamics
methods are at the highest level of detail. They can provide a rigorous approach to crystallization by
resolving the motion of individual monomers with very few modeling assumptions. However, these
methods suffer from strong lengthscale and timescale limitations. The coarse-grained Monte Carlo
methods significantly reduce the computational cost and hugely increase the simulation time step.
This allows larger chains to be simulated for longer timescales compared to the first class of methods.
Although these methods have made significant progress, they are still limited by their computational
cost and require coarse-graining assumptions. The mesoscopic methods can be regarded as a trade-off
between microscopic methods and macroscopic methods. Despite many assumptions, these kinds
of methods can obtain simulation results agreeing well with the experimental observations and thus
give qualitative descriptions for the crystal growth of polymer melt. They have the ability to reveal
the formation mechanisms of crystallization morphology by moderate computational cost. One of the
most prevalent approaches in this kind is the phase-field method [22–25]. Finally, phenomenological
methods have their advantage in getting rid of the restriction of computational expenses on the
accessible lengthscales and timescales. These methods can also give qualitative predictions, but their
fatal shortcoming is the lack of physical basis compared to the mesoscopic methods. In view of the
excellent performance of the phase-field method, it is adopted in this work to simulate the crystal
growth of semi-crystalline polymers under flow.

The phase-field method uses a crystal order parameter to describe phase transition. Evolution of
the crystal order parameter can be governed by a group of nonlinear partial differential equations
derived from the Ginzburg–Landau theory. So far, this method has gained great success in



Polymers 2017, 9, 634 3 of 22

understanding the dendritic growth of small molecular materials [30–34], spherulitic growth of
polymers [22–25,35–37] and shish-kebab growth of polymers [38]. However, as to the coexistent
system of viscoelastic flow and polymer crystallization, the phase-field method is still in the blank
stage. Thus, the present paper aims at generalizing the phase-field method to the flow induced crystal
growth of polymers and revealing the corresponding mechanism.

In fact, much effort has been made on simulating the coexistent system of flow and dendritic
growth of metals by the phase-field method [39,40]. However, polymer crystallization is rather different
and more complex due to the long chain structure. Directly extending the existing studies for metal to
polymer is infeasible. The specific reasons for this may be summarized as follows. Firstly, there is no
need to consider the shape of each nucleus in these studies, and point-like nuclei are generally adopted
in simulations. In contrast, under flow conditions, polymer chain segments in melt would be extended
from random coil conformation into microfibrillar structure along flow direction [41]. The oriented
molecular structure can survive a long time after the weakening or cessation of flow [42–44], and
helps to form oriented nuclei during the subsequent solidification. Because the oriented nuclei can
remarkably change the crystal growth of semi-crystalline polymers [45], the shapes of nuclei must
be considered in modeling the flow induced crystal growth of polymers. Secondly, the existing
studies for metal do not need to consider elasticity of the melt. However, polymer melt is a typical
viscoelastic fluid and elasticity of the melt may have a potential effect on the crystal growth [46].
Thirdly, these studies do not consider the change of fluid property during solidification. However,
research on crystallization rheology elucidates that crystallization has a remarkable influence on the
rheological property of polymer melt [47]. Thus, the change of fluid property cannot be ignored in
modeling the flow induced crystal growth of polymers. In this paper, for solving these problems, a
multi-scale phase-field model, which links the mesoscopic crystal growth with the macroscopic flow
and microscopic molecular structure, is established to predict the flow effect on crystal growth of
semi-crystalline polymers.

The rest of this paper is arranged as follows. In Section 2, theoretical description of our multi-scale
phase-field approach for modeling the flow induced crystal growth is given. The numerical method
for solving the proposed model is given in Appendixs A–D. In Section 3, the proposed model and
numerical method are used to predict flow effect on crystal growth of isotactic polystyrene in a plane
Poiseuille flow. Finally, some concluding remarks are given in Section 4.

2. Mathematical Formulation

The physical problem considered is first putting the hot polymer melt into a fast simple flow for
a period of time, and then decreasing the flow to a large extent and cooling the melt to a scheduled
crystallization temperature quite rapidly. This process may be divided into three stages, which are
molecular stretch and orientation by fast flow, nucleation upon the flow induced structure and crystal
growth with slow melt flow. For this reason, our mathematical model includes three parts accordingly.
Details for this are showing below.

2.1. Modeling Flow Induced Molecular Structure

When polymer solution or melt is undergoing the shear or elongation of fast flow, the whole chain
or chain segments of a molecule will have the opportunity to be stretched and oriented. The stretched
and oriented structures would be completely or partly retained after the weakening or cessation
of flow, and then have important effect on the subsequently crystallization. Several computational
models have been available for predicting the molecular orientation of polymer undergoing flow, such
as the Leonov model [48], the FENE dumbbell model [49], etc. In view of the widely and maturely
application of the FENE dumbbell model with a Peterlin closure approximation (FENE-P model), it is
adopted in this work.

The FENE-P model is developed from the dumbbell model of polymer molecules. A dumbbell,
which consists of two rigid beads connected by a massless spring, is an abstract representation of a
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polymer molecule. At any given time, the beads are subjected to friction force, Brownian force and
spring force. According to Newton’s second law and neglecting the acceleration, the equation for the
relative motion of the beads would be obtained as

dQ
dt

= (∇u)T ·Q− 2kBT
ζ

∂

∂Q
ln φ− 2

ζ
F (1)

where Q is the end–to–end vector of the dumbbell, u is the velocity, kB the Boltzmann constant, T the
thermodynamic temperature, ζ the friction coefficient, φ the distribution function and F the spring
force. On the other hand, φ should satisfy the condition of continuity in the conformation space.
That is,

∂φ

∂t
+

∂

∂Q
·
(

dQ
dt

φ

)
= 0 (2)

The substitution of dQ/dt from the equation of motion (1) into the equation of continuity (2) gives
the following diffusion equation:

∂φ

∂t
+

∂

∂Q
·
(
(∇u)T ·Qφ

)
− 2kBT

ζ

∂2φ

∂Q2 −
2
ζ

∂

∂Q
· (φF) = 0 (3)

Once the flow velocity u and spring force F are given, then the diffusion equation can, in principle,
be solved to get the conformation distribution of dumbbells. For the FENE dumbbell model, the spring
force in Equation (3) is given by

F =
HQ

1− (Q2/Q2
0)

(4)

where H is the elastic coefficient, Q =|Q| is the length of spring, and Q0 is the maximum extensibility.
Generally, directly solving Equation (3) is rather difficult, so the moment-closure approach is very

popular and adopted in this work. The equation for the second moments reads

D〈QQ〉
Dt

− (∇u)T · 〈QQ〉 − 〈QQ〉 · (∇u) =
4kBT

ζ
I− 4

ζ
〈QF〉 (5)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, I is the unit tensor, and the second moments
〈QQ〉 represents the conformation tensor. For the FENE-P model, the spring force in Equation (5) is
approximated as

F =
HQ

1−
〈

Q2/Q2
0
〉 (6)

By inserting Equation (6) into Equation (5) and defining the dimensionless conformation tensor
C = H〈QQ〉/kBT, we get the following evolution equation:

λ

(
DC
Dt
− (∇u)T ·C−C · (∇u)

)
= − C

1− tr(C)/b
+ I (7)

where b = HQ2
0/kBT is the dimensionless maximum extensibility and λ = ζ/4H is the molecular

relaxation time.
By employing the dimensionless conformation tensor C, the information of molecular orientation

and stretch would be obtained [50]. From the definition, it is obvious that C is a symmetric positive
definite second-rank tensor. This ensures that we can always get the positive eigenvalues and real
eigenvectors of the conformation tensor. If we regard the directions of the eigenvectors as the major
and minor axes and the eigenvalues as the corresponding lengths, then an orientation ellipse for 2D or
an orientation ellipsoid for 3D will be obtained. Specifically, when the polymer is in its equilibrium
state (without flow), we have C = b/(b + ds)I, where ds = 2, 3 is the dimension of space. In this
situation, the orientation ellipse or ellipsoid degenerates to orientation circle or sphere, which means
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that the orientation probability along any direction is the same. Otherwise, the orientation along the
major axis will be dominant. In this work, we simply deem that the molecule is always oriented along
the major axis of the orientation ellipse or ellipsoid when it is undergoing flow.

In addition, the conformation tensor may also be used to quantify the molecular stretch.
Generally, the first invariant tr(C) is treated as a measure of molecular stretch. In an equilibrium
state, we have tr(C) = 2b/(b + 2) for 2D. In a non-equilibrium state, the deformation of the molecular
chain will be increasing as the shear or elongation is intensified, and accordingly tr(C) will trend to
the maximum extensibility b. The amount of the molecular stretch tr(C) plays an important role in
polymer crystallization. It is an intermediate cause of the anisotropic nucleation, and hence the cause
of the anisotropic crystallization morphology.

Based on the above, once C is solved from Equation (7), then the flow induced molecular structure
would be quantitatively described. For some simple flow fields, the velocity u can be analytically
solved in the equilibrium states. In these cases, Equation (7) is immediately closured when substituting
the steady expression of u. However, for general flow fields, the velocity u must be solved from the
Navier–Stokes equations. In these cases, the transient interaction between macroscopic flow field and
microscopic molecular motions cannot be ignored. From Equation (7), we know that the effect of flow
on molecular motions has been considered. In turn, the molecular motions affect flow mainly through
changing the rheological behavior of the polymer fluids, and this can be embodied by the extra stress
tensor. In the “Giesekus form”, the extra stress tensor of polymer fluid is given as

τp =
ηp

λ

(
C

1− tr(C)/b
− I
)

(8)

where ηp is the viscosity of polymer fluid. By this time, the velocity u can be solved through coupling
Equations (7) and (8) with the incompressible Navier–Stokes equations:

∇ · u = 0 (9)

ρ(
∂u
∂t

+ u · ∇u) = −∇p + ηs∆u +∇ · τp (10)

where ρ, p and ηs are the density, pressure and viscosity of solvent, respectively. In physics, Equation (9)
represents the conservation of mass and Equation (10) represents the conservation of momentum.
Because the stage considered in this subsection is under isothermal conditions, the energy equation is
not included in the Navier–Stokes equations.

2.2. Modeling Nucleation upon Oriented Molecular Structure

It has been well known that flow has great influence on the crystallization of polymer, especially
on the nucleation stage. Stable nuclei or precursors with some degree of order can often be generated
from polymer melt that has just experienced flow history. Generally, flow affects the nucleation
stage of polymer crystallization by providing both extra nucleation sites and oriented templates.
The former accelerates kinetics of the crystallization and the latter induces anisotropic crystal growth.
The following content in this subsection will focus on seeking mathematical descriptions for the
two aspects.

Much evidence has shown that the number of activated nuclei formed during solidification from
the melt with flow history is usually greater than that without flow history. Based on the experimental
observations, the total nuclei may be divided into two parts, which are the general nuclei observed
in quiescent condition Nq and the additional nuclei appearing after flow N f . Thus, the density of
activated nuclei N may be written as the sum of Nq and N f , viz.,

N = Nq + N f (11)
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In quiescent conditions, the following equation, which describes the nucleation density as a
function of temperature, is generally used in literature to evaluate Nq. That is,

Nq(T) = N0 exp(ϕ · (Tm − T)) (12)

where Tm is the melting temperature, and N0 and ϕ are empirical parameters. On the other hand,
according to the work of Koscher and Fulchiron [51], the number of additional nuclei appearing
after flow treatment was linked to the first normal stress difference N1. The simplest mathematical
relationship between N f and N1 is

.
N f = CN1 (13)

where C is a scale factor determined from experiments.
For two-dimensional problems, the 3D nucleation density giving in Equation (11) should be

converted to a 2D nucleation density. Referring to the work done by Charbon and Swaminarayan [52],
the stereological relationship

N2D = 1.458(N3D)
2/3 (14)

is adopted in this study. Because the influence of flow on the crystal growth rate is less relevant than
on the nucleation process [47], the explicit consideration of flow effect on the kinetics of polymer
crystallization is limited to the above.

As to the oriented templates, the flow induced molecular structure plays a very important
role. It is generally accepted that the ordered (stretched and oriented) structures generated by flow
is responsible for the oriented nucleus formation and hence the subsequently anisotropic crystal
growth. Different crystalline patterns or morphologies may be produced depending on the molecular
orientation and stretch prior to the start of crystallization. Because our attention in this work is mainly
paid to the crystalline morphology, it is necessary to establish the relationships between the ordered
structures and oriented nuclei.

In theoretical modeling, the oriented nucleus is usually regarded as possessing a cylindrical
appearance for simplicity’s sake [41]. This way, any oriented nucleus can be described by two
characters, which are orientation and aspect ratio. In the next content, our task will be quantitatively
giving descriptions of these characters. To keep it simple in this paper, we assume that the ordered
structures induced by flow would be completely retained after the weakening or cessation of flow
until the nucleation takes place. Based on this assumption, the orientation of one nucleus may be
directly set as the molecular orientation at the place where it is located. Accordingly, the aspect ratio
of the nucleus, which is associated with the amount of molecular stretch tr(C), is determined by the
following equation:

lw = 1 + M

√
1− ds

ds det
(

C
tr(C)

)
tr(C) (15)

where the coefficient M depends on the crystallization property of the polymer. For 2D case, the
eigenvalues and eigenvectors of C can be calculated by

λ1,2 =
tr(C)±

√
(tr(C))2 − 4det(C)

2
(16)

ξ1,2 =

(
1,

λ1,2 − c11

c12

)T
(17)

for c12 6= 0 and
λ1 = c11, λ2 = c22 (18)

ξ1 = (1, 0)T , ξ2 = (0, 1)T (19)



Polymers 2017, 9, 634 7 of 22

for c12 = 0. Thus, Equation (15) in 2D can be rewritten as

lw = 1 + M

√
1− 4det(C)

(tr(C))2 tr(C) = 1 + M|λ1 − λ2| (20)

Compared to Equations (15) and (20) provides a more intuitive expression. It actually uses the
“aspect ratio” of the orientation ellipse to describe the aspect ratio of the nucleus. Moreover, this
equation also means that ∆ = λmax − λmin can be treated as another measure of molecular stretch.
Recently, this measure is adopted by Pantani et al. in modeling morphology evolution during polymer
crystallization under processing conditions [53].

In this work, we will model the crystal growth of semi-crystalline polymer upon oriented nuclei
by using phase-field approach. At present, the studies of crystal growth based on phase-field methods
mainly consider the point-like nuclei. However, it is lucky that we have successfully developed the
oriented nuclei into phase-field modeling in our recent work [38]. For this study, the nuclei used in
simulation will be more complicated. Their shapes are dependent on the flow history prior to nucleation
events. Point-like and oriented nuclei may appear together in one simulation. For generating a nucleus,
we should first evaluate its orientation and aspect ratio according to the flow history at the position
where the nucleus is located, and then “create” it on the lattice by using the method given in our
previous work [38].

2.3. Modeling Crystal Growth with Melt Flow

The formation of morphological features in solidification of semi-crystalline polymers under flow
conditions has been investigated over many years. Through experimental observations, many flow
induced crystallization patterns that are very different from those obtained from quiescent conditions
have been found. However, little has been known about the influence of flow on microstructure
development. Generally, when crystal growth is accompanied by slow melt flow, not only does flow
influence the crystallization pattern, but the evolving microstructure can also trigger unexpected and
complicated flow phenomena. Therefore, it is necessary to develop a flow and crystal growth coupled
model to study the complex interaction between melt flow and morphology evolution of polymers.

For modeling the coexistent system of crystal growth and melt flow of polymers, the existing
relevant studies on small molecule materials may be used as a reference. At present, there are
mainly two kinds of methodologies mostly used, which are developed by Anderson et al. [54–56]
and Beckermann et al. [39,57], respectively. The former kind treats not only the liquid phase but also
the solid phase as Newtonian fluids, and specifies the viscosity of the solid phase to be much larger
than that of the liquid phase. While the latter kind assumes the solid phase to be rigid and stationary,
and does not rely on specifying a variable viscosity across the diffuse interface region that tends to a
large value in the rigid solid. Because the latter kind can be used with any diffuse interface technique
without much particular modification, it is partly referenced in this work.

Let ψ denote the phase-field variable, where ψ = 0 and ψ = 1 refer to the bulk liquid phase and
solid phase at equilibrium state, respectively. During solidification, the phase-field variable varies
smoothly from zero in the liquid to unity in the solid in a narrow but numerically resolvable diffuse
interface region. Since polymers are hardly to be fully crystallized, the value of ψ is impossible to reach
unity for ordinary studied cases. According to the Ginzburg–Landau theory, the temporal evolution of
ψ can be governed by

∂ψ(x, t)
∂t

= −Γ
δF(ψ, T)
δψ(x, t)

(21)
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where Γ is the interface mobility of the system, T is the temperature and F(ψ, T) is the total free energy
of the system. In the phase-field modeling for the solidification, F(ψ, T) often consists of two parts,
which are a local free energy density flocal(ψ, T) and a gradient free energy density fgrad(ψ), viz.,

F(ψ, T) =
∫

[ flocal(ψ, T) + fgrad(ψ)]dΩ (22)

where Ω is the region occupied by the system. The local free energy density is given in the form of an
asymmetric double well as follows [22]:

flocal(ψ, T) = W
∫ ψ

0
φ(φ− ζ0)[φ− ζ(T)]dφ (23)

where W describes the height of energy barrier for surface nucleation, ζ(T) is the unstable energy
barrier and ζ0 is the value of ψ relevant to the stable solidification potential. Following the work done
by Kyu et al. [22], ζ0 may be simply estimated as ζ0 = Tm/T0

m, where Tm and T0
m are, respectively, the

experimental melting temperature and equilibrium melting temperature of polymers. The gradient
free energy density describing the symmetric or asymmetric growth process can be written as

fgrad(ψ) =
1
2

κ2
0β2(θ)(∇ψ)2 (24)

where κ0 is the coefficient of interface gradient, θ is the orientation angle and β(θ) describes the
anisotropic growth rate of the interface. In literature, β(θ) is often given as

β(θ) = 1 + ε cos(jθ) (25)

with ε the strength of anisotropy and j the number of modes.
By substituting Equations (22)–(25) into Equation (21), one obtains the following phase-field

equation for planar crystallizations:

∂ψ(x,t)
∂t = −Γ

(
Wψ(ψ− ζ(T))(ψ− ζ0)− κ2

0∇ ·
(

β2(θ)∇ψ
)

+κ2
0

∂
∂x

(
β(θ)β′(θ) ∂ψ

∂y

)
− κ2

0
∂

∂y

(
β(θ)β′(θ) ∂ψ

∂x

)) (26)

Because the melt flow during solidification is usually very slow, migration of crystallized structure
by flow may be neglected. Accordingly, we assume that the phase-field variable is not advected by
flow, thus the phase-field Equation (26) is unchanged from the stationary diffusive case.

To determine the temperature at the growing crystal fronts, a heat conduction equation may be
deduced from the conservation law of enthalpy. For simplicity, the liquid and solid are assumed to
have the same density ρ, thermal conductivity kT , specific heat capacity Cp, and latent heat of fusion
∆H. Under flow conditions, the phase-transition temperature is advected by flow and dependents
on stress. Since the solid phase is assumed to be rigid and stationary, flow in the diffuse interface
region will weaken with the phase-field variable. According to the work of Beckermann et al. [39,57],
the “residual” flow in the diffuse interface region for polymers may be expressed as [1− ψ/ζ0]u
phenomenologically. It is obvious that this expression does not only hold in the diffuse interface region
but also in other region. Therefore, the energy equation, including phase-field variable dependent
advective flux term, can be written as

ρCp

(
∂T
∂t

+ [1− ψ/ζ0]u · ∇T
)
= kT∇2T + ρ∆H

∂ψ

∂t
+ τ : ∇([1− ψ/ζ0]u) (27)

where τ = ηs(∇u +∇uT)/2 + τp is the total flow induced stress.
For crystal growth and melt flow coexistent system, conservation equations for mass and

momentum need to be valid not only in the solid and liquid phases, but also in the diffuse interface
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region where the solid and liquid phases coexist. During solidification, the phase-field variable ψ for
polymers varies smoothly from zero in the bulk liquid to ζ0 in the solid, so ψ/ζ0 can be viewed as
a volume fraction of solid and used to derive the averaged solid and liquid conservation equations.
Under the incompressible assumption, the averaged continuity equation gives

∇ · ([1− ψ/ζ0]u) = 0 (28)

where [1−ψ/ζ0] represents the volume fraction of liquid and u is the intrinsic liquid velocity. Similarly, the
averaged momentum equation for polymers that are viscoelastic fluids takes the following form:

ρ
(

∂([1−ψ/ζ0]u)
∂t + [1− ψ/ζ0]u · ∇u

)
= −[1− ψ/ζ0]∇p + ηs∆([1− ψ/ζ0]u) +∇ · ([1− ψ/ζ0]τp)

(29)

Note that Equation (29) is indeed absent in the solid phase. Recall that the solid is assumed to
be stationary and rigid, such that a momentum equation for the solid phase is not needed. In order
to solve Equation (29), a constitutive equation for calculating the extra stress tensor τp still must be
involved. For doing this, we continue using the FENE-P model introduced in Section 2.1, which is
often regarded as a molecular typing constitutive equation for describing the viscoelastic behavior of
polymer fluids. By employing the above idea again, the averaged form of Equation (7) gives

λ

(
DC
Dt
− (∇[1− ψ/ζ0]u)

T ·C−C · (∇[1− ψ/ζ0]u)
)
= − C

1− tr(C)/b
+ I (30)

where the material derivative is modified to D/Dt = ∂/∂t + [1− ψ/ζ0]u · ∇ accordingly. The extra
stress tensor τp can now be calculated by using Equation (8) once C is solved out from Equation (30).

If the problem considered is a sharp interface one instead of the diffuse interface one, there would
be no volume flow at the interface. That is to say, the flow has a no-slip condition between the melt
and the solid. The work done by Beckermann et al. realizes this condition via a drag resistivity in the
diffuse interface region [57]. In this study, another way, which relies on specifying a variable viscosity
across the diffuse interface region, is adopted. Since the momentum equation has been averaged, the
variation of viscosity would not bring much numerical difficulty, even though the viscosity would
tend to a large value in the rigid solid.

So far, plenty of researches have demonstrated that the crystallization has a dramatic influence
on polymer viscosity and this phenomenon must obviously be taken into account [58]. Despite of
the importance of the subject, the relevant literature on the effect of crystallinity on viscosity is rather
scarce. This might be due to the difficulties in measuring simultaneously rheological properties and
crystallinity evolution during the same tests. Even so, most of the researchers essentially agree that
melt viscosity experiences an abrupt increase with crystallinity degree. Based on the work of Katayama
and Yoon [59], the following phase-field variable dependent viscosities may be obtained

ηs = (1 + a0ψ)ηs0 and ηp = (1 + a0ψ)ηp0 (31)

where a0 is an empirical parameter setting as 100 in this study. ηs0 and ηp0 are the original viscosities.
At last, we assume that the viscosity is not dependent on temperature, for the reason that the
temperature will not be changed much.

3. Results and Discussion

As we have stated at the beginning of Section 2, the physical problem we considered may be
divided into three stages. Therefore, simulations are accordingly including three steps. The first step
is to obtain the fast flow induced structure by solving the partial differential equation (PDE) system
(7)–(10), the second step calculates the density, orientation and aspect ratio of the nuclei by the algebraic
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Equations (11)–(20) and generates the nuclei upon the simulation lattice, and the third step simulates
the crystal growth with slow melt flow by solving the PDE system (26)–(31). Among the three steps,
numerical difficulties often arise in the first and last steps. In Appendixs A–D, we present our methods
for these two steps and summarize the whole simulation process in detail.

Simulations are carried out in 2D for the models presented above using rectangular computation
domains. The inlet velocity boundary conditions are imposed on the left side boundary and their values
are u = u0 and v = 0. The model parameters used in simulations are Tc = 200 ◦C, T0

m = 242 ◦C,
ζ0 = 0.953, ζ = 0.167, W = 15.43, κ2

0 = 0.916, α = 0.658 and K = 1.578. These parameters
are calculated from a set of experimentally accessible physical parameters of isotactic polystyrene
(iPS) at a crystallization temperature of Tc = 200◦C [50]. In addition, the dimensionless maximum
extensibility of the molecular and empirical parameters for nucleation are assigned values b = 200,
N0 = 1.74 × 1012/m3 and ϕ = 0.155 [58]. We have used ∆t = 0.1, ∆x = ∆y = 1.0, ε = 0.03
(unless otherwise stated), β = 1/9 and Re = 100 for all of the simulations.

First, the growth of single crystals with viscoelastic fluid flow is investigated. At this situation, the
fast melt flow prior to crystallization is not considered and all the crystals grow from point-like nuclei.
Figure 1 shows the growth of a dendrite with u0 = 1.0 and We = 1.0. During the crystallization, the
latent heat is transported from the upstream position to the downstream position by fluid flow. At this
time, the crystal is surrounded by cool melt on the upstream side and warm melt on the downstream
side. Therefore, the morphology of the crystal is quite different from the one obtained without flow.
As we can see, the vertical branches tilt towards the upstream direction. On the upstream side, the
growth of branches is rapid and all of the branches are growing nearly in the horizontal preferred
direction. Conversely, on the downstream side the growth of sidebranches are completely prevented
and the main branch grows at a relatively slow rate. This result is very similar with those obtained
for metals [55]. Moreover, from the streamlines, the flow follows the interface at the early stage, but
shortly strong vortexes are separated behind the vertical branches. Later on, small vortexes are even
separated from the upstream main branch. It is not clear whether the contribution of those vortexes
on the crystal morphology can be ignored, but at least they are unlikely the major contributors to the
upstream preferred morphology.

Figure 2 shows a quantitative study of the flow effect on the growth of the two main branches in
the horizontal direction. It is clear that faster flow results in a greater promoting rate on the growth of
upstream tip and preventing rate on the growth of the downstream tip. At the flow condition u0 = 1.0,
the growth of upstream tip is promoted by nearly 16% and of the downstream tip is prevented by
nearly 40%. Thus, by comparison, the crystal growth on the downstream side is more susceptible to
fluid flow. From the crystal morphology arranged along the green line, we find that the side branches
on the upstream side obtained with stronger flow are always more abundant.

In literature, the dendritic growth of metal crystals in shear flows has been studied for a long time.
Newtonian fluid flows were considered in these studies. However, for polymers, the melt usually
exhibits elasticity. Thus, it is reasonable to consider viscoelastic fluid flows in simulating the polymer
crystallization under flow condition. At present, it is not clear to what extent the viscoelasticity
affects the crystallization. Figure 3 shows the simulated crystal morphology at a different level of
viscoelasticity. From the figure, the influence of viscoelasticity on the morphology can be distinguished,
although it is not significant. It seems that the growth of the branch on the downstream side is
more likely to be affected. Specifically, on the upstream side, it is unexpected that the growth of the
main branch is not affected and only growth of the sidebranches is promoted. On the downstream
side, the growth is prevented in a greater extent with stronger viscoelasticity. On the whole, these
results indicate that the flow field and temperature distribution are changed little by viscoelastic stress
during crystallization. For this reason, the Weissenberg number is fixed at We = 1.0 for the following
simulations. Note that the flow we considered is somewhat weak. Under stronger flows, the situation
may be changed.
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direction. The ratio between the averaged tip velocities with and without fluid flow is chosen as the
measure. The two lines are the relative growth rates of the two branches at different inlet flow velocity.
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Figure 3. Crystal morphology at t = 600 for different level of viscoelasticity. The Weissenberg number
is changed from We = 0 to We = 5.0 and the inlet velocity is set as u0 = 1.0. The different contours
represent the solid/liquid interface position at different We.

Except for the dendritic growth pattern, polymer crystals often exhibit many other growth
patterns. Figure 4 shows the morphology variation of snowflake growth pattern and seaweed growth
pattern under flow conditions. The simulated morphology is obviously affected by fluid flow. Similar
to that observed for the dendritic growth pattern, the crystals possess nearly symmetric morphology
in the absence of fluid flow and asymmetric morphology with fluid flow. Because of the flow effect,
the crystal growth on the upstream side is still promoted and, on the downstream side, it is prevented.
The vertical branches tilt towards the upstream direction so that the mass center of the whole crystal
has a shift to the upstream side. Different growth patterns are affected by flow in a similar way but in
different degrees. Generally, the growth pattern having more branching structure seems influenced
less. For instance, the seaweed growth pattern that has a dense lamellar branching structure is the
least influenced. The obtained crystal still has seaweed morphology. These results agree well with
the experimental observations in literature [60]. Moreover, from the size of the crystals, one may find
that the holistic growth rate of the crystals seems not affected much by flow. Therefore, it can be
concluded that the flow effect on the kinetics of polymer crystallization mainly occurs in the nucleation
stage. So far, plenty of experimental studies have ascertained the role of pre-shear in the kinetics of
polymer crystallization [60–62]. It is clear that our conclusion from simulation is in accordance with
the observations from experiments.
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Figure 4. Simulated morphology of snowflake and seaweed crystals at t = 600. The inlet velocity is
changed from u0 = 0 to u0 = 1.0 and the viscoelastic parameter is set as We = 1.0. The snowflake
crystals and seaweed crystals are arranged in the top row and bottom row, respectively. In simulations,
the snowflake morphology is triggered by the anisotropy with the number of mode j = 6 and the
seaweed morphology is triggered by a uniformly distributed noise added on the growing interface
with the amplitude A = 0.1 [50]. (a) u0 = 0; (b) u0 = 0.2; (c) u0 = 0.5; (d) u0 = 0.8; (e) u0 = 1.0.
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Researches about the growth of single crystals have important scientific values in predicting the
growth mechanism of grains. However, in fact, there are almost no such single crystal morphologies in
real materials. The knowledge getting from the study of single crystals only has guiding significance
to the local crystallization behavior. In order to predict the flow effect on the holistic crystallization
behavior of semi-crystalline polymers, the simulations should contain all of the three steps, which
are: fast flow induced molecular structure, nucleation upon oriented molecular structure, and crystal
growth with slow melt flow. Figure 5 shows the simulated crystal growth under viscoelastic fluid
flow. It is clear that the crystals near the skin layer have greater aspect ratios and their orientations
are nearly parallel to the flow direction. In addition, the nucleus density near the skin layer is greater
than the core layer. Similar results have been obtained by experimental observations [51,61]. In our
previous study [50], it has been found out that the fast flow prior to the crystallization is the primary
cause of these phenomena. It is like we have observed from the results of single crystals the vertical
branches tilting towards the upstream direction. In particular, because the melt in the skin layer
flows slower than that in the core layer, the tilting degree of the crystals near the skin layer is not so
obvious. The flow surrounding the crystals is in turn changed by crystallization. At the initial stage,
the fluid flow is continuous so that all the streamlines are smooth. However, as the region occupied
by crystals grows bigger, some streamlines begin to be interrupted by the sizeable crystals. The flow
field gradually becomes very complex and unstable. In some places, the flow is stopped, and, in other
places, vortexes are separated. Even so, the flow accompanying the crystal growth does not have a
significant influence on the holistic crystallization behavior of semi-crystalline polymers. This can be
clearly seen from the comparisons given in Figure 6.
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Figure 5. Simulated crystal growth under viscoelastic fluid flow. The simulation contains all the three
steps. The strength of the fast flow prior to crystallization is set as γ̂ = 20. The number and shape of
the nuclei are calculated from the nucleation model given in Section 2.2. The viscoelastic fluid flow
accompanying the crystal growth has parameters U = 1.0 and We = 1.0. The branching structure is
triggered by the anisotropy with the number of mode j = 6 for point-like nuclei and j = 4 for oriented
nuclei. (a) t = 100; (b) t = 200; (c) t = 300; (d) t = 400.

Figure 6 shows some comparisons between the crystal morphology obtained with and without
fluid flow. The results tell us that the holistic crystal morphology is not obviously changed by the
viscoelastic fluid flow accompanying the crystal growth. Changes can only be observed in detail.
By contrast, the simulation results for single crystals have exhibited great changes under the fluid flow
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with the same inlet velocity. That is to say, the flow effect on the morphology of single crystals is more
prominent than on the morphology of bulk crystallizations. In real materials, bulk crystallizations
are always the situations encountered. The simulations containing all the three steps are very close
to the real crystallization procedure of semi-crystalline polymers [62]. From the simulation results,
we conclude that the flow accompanying the crystal growth does not have a significant influence
on the holistic crystal morphology, and the flow effect on the morphology also mainly occurs in the
nucleation stage. Similar conclusions may also be drawn from the experimental observations [62].
As regards the influence of prior fluid flow on the crystal morphology, the readers are referred to our
previous work [50] and some experimental observations [62].

Because of the numerical difficult of “high Weissenberg number problem”, the above simulations
are limited to the crystal growth under a plane Poiseuille flow of FENE-P fluids. The possible
improvements of our tool include extending the simulations to other type of flow, different
polymer melt, 3D, etc. For these improvements, the main challenges are the numerical stability and
computational cost. To ensure the stability, we can develop a more stable numerical method or use
another polymer model. To settle the problem of high computational cost, we can propose a more
efficient numerical method and use a faster computing platform. If these improvements are realized,
more phenomena would be predicted by our model.Polymers 2017, 9, 634  15 of 23 
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Figure 6. The comparisons between the simulated crystal morphology with and without fluid flow.
The left and right columns are the results without and with flow, respectively. The results shown in
the top row are triggered by noise and in the bottom row are triggered by the artificial anisotropy.
(a) u0 = 0; (b) u0 = 1.0.

4. Conclusions

In this work, a multi-scale phase-field method has been presented for predicting the viscoelastic
flow effect on the crystal growth of semi-crystalline polymers. To simplify the problem, the crystallization
is divided into three parts. Firstly, in modeling the flow induced molecular structure, the FENE-P
dumbbell model in microscale is coupled with the viscoelastic Navier–Stokes equations in macroscale
to calculate the molecular orientation and stretch. Secondly, in modeling the nucleation upon oriented
molecular structure, the influences of flow on nucleus shape and nucleus number are both taken into
consideration. Concretely, the nucleus shape is related to the flow induced structures and nucleus
number is linked to the flow induced stress. Thirdly, in modeling the crystal growth with melt flow,
a massive mathematical model is established by coupling the phase-field with the temperature field,
flow field and orientation field. The three parts together couple the mesoscopic crystallization with the
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microscopic orientation of chain segments and macroscopic viscoelastic melt flow. In solving the model,
a semi-analytical method is adopted to avoid the numerical difficulty of “high Weissenberg number
problem” in the first part, and an efficient fractional step method is used to reduce the computing
complexity in the third part. Simulations are carried out for the crystallization of isotactic polystyrene
under a plane Poiseuille flow. Results show that the flow effect on the morphology of single crystals is
more prominent than on the morphology of bulk crystallizations. Specifically, the growth of single
crystals including dendritic pattern, snowflake pattern and seaweed pattern all tilt toward the upstream
direction. Meanwhile the growth of side branches gets promoted and inhibited on the upstream and
downstream side, respectively. By comparison, the growth on the downstream side is more susceptible
to fluid flow. For different growth patterns, the morphology having more branching structure seems
less influenced by flow. Importantly, it is ascertained that the influence of viscoelasticity on the crystal
morphology is not significant. As to the bulk crystallization in real materials, we find that flow does
not have a significant influence on the holistic crystal morphology during the crystal growth stage and
flow affects the morphology mainly through affecting the nucleation.
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Appendix A. Nondimensionalization of the Models

In order to reduce the model parameters and facilitate the analysis, dimensionless forms of
the PDE systems are presented. By introducing the parameters of the characteristic length for
single crystals d, the mass diffusivity D and total viscosity of polymer η0 = ηs0 + ηp0, and defining
dimensionless variables

t∗ =
D
d2 t, x∗ =

x
d

, u∗ =
d
D

u, p∗ =
d2

η0D
p, τ∗p =

d2

η0D
τp

and dimensionless parameters

β =
ηs0

ηs0 + ηp0
, Re =

ρD
η0

, We = λD/d2

The dimensionless form of the PDE system (7)–(10) can be given by (the superscript is omitted):

∇ · u = 0 (A1)

Re(
∂u
∂t

+ u · ∇u) = −∇p + β∆u +∇ · τp (A2)

We
(

DC
Dt
− (∇u)T ·C−C · (∇u)

)
= − C

1− tr(C)/b
+ I (A3)

τp =
1− β

We

(
C

1− tr(C)/b
− I
)

(A4)

Here, the dimensionless parameter β represents the contribution rate of solvent viscosity to the
total viscosity, the Reynolds number Re is the ratio of momentum forces to viscous forces quantifying
the relative importance of these two types of forces for given flow conditions, and the Weissenberg
number We compares the viscous forces to the elastic forces.
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Moreover, if we further introduce the dimensionless temperature

T∗ =
T − Tc

Tm − Tc

with Tc being the experimental temperature of crystallization, and dimensionless parameters

κ̃0 =
κ0

d
, α =

kT
ρCpD

, K =
∆H

(Tm − Tc)Cp
, Cp =

Cp(Tm − Tc)d2

D2

and estimate the mobility Γ from d and D as Γ = D/d2. Then, the dimensionless form of the PDE
system (26)–(31) is obtained as (the superscript is omitted):

∂ψ
∂t = −

(
Wψ(ψ− ζ)(ψ− ζ0)− κ2

0∇ ·
(

β2(θ)∇ψ
)

+κ2
0

∂
∂x

(
β(θ)β′(θ) ∂ψ

∂y

)
− κ2

0
∂

∂y

(
β(θ)β′(θ) ∂ψ

∂x

)) (A5)

∂T
∂t

+ [1− ψ/ζ0]u · ∇T = α∇2T + K
∂ψ

∂t
+

1
ReCp

τ : ∇([1− ψ/ζ0]u) (A6)

∇ · ([1− ψ/ζ0]u) = 0 (A7)

Re
(

∂([1− ψ/ζ0]u)
∂t

+ [1− ψ/ζ0]u · ∇u
)
= −[1− ψ/ζ0]∇p

+β(1 + a0ψ)∆([1− ψ/ζ0]u)+∇ · ([1− ψ/ζ0]τp)

(A8)

We
(

DC
Dt
− (∇[1− ψ/ζ0]u)

T ·C−C · (∇[1− ψ/ζ0]u)
)
= − C

1− tr(C)/b
+ I (A9)

τp =
(1− β)(1 + a0ψ)

We

(
C

1− tr(C)/b
− I
)

(A10)

where the dimensionless stress τ in Equation (A6) has the form

τ = β(1 + a0ψ)
∇u +∇uT

2
+ τp (A11)

Appendix B. Method for the Molecular Structure Model

As is well known, numerical difficulty usually arises when solving the coupled system
(A1)–(A4)—that is, the so called “high Weissenberg number problem” [63]. In order to avoid this
kind of difficulty, only some simple flows with steady-state solutions are considered. Take the plane
Poiseuille flow, for example. If we assume that the flow field always reaches its steady state during
the induced period, then the final molecular configuration caused by such flow will be solved exactly.
Consequently, the difficulty of “high Weissenberg number problem” will be avoided and the molecular
configuration caused by strong flow can also be easily obtained.

For the steady-state plane Poiseuille flow illustrated in Figure A1, its velocity can be expressed as
u = (u, v)T = (u0(1− y2/w2), 0)T , where u0 is the velocity at the middle axis and w is the half width
of the tube. Because the flow is in its steady state and the flow variables are invariant along the x-axis,
the configuration tensor C is irrelevant to time t and space variable x. Therefore, we have

DC
Dt − (∇u)T ·C−C · (∇u)

= ∂C
∂t + (u · ∇)C− (∇u)T ·C−C · (∇u) = −γ

(
2C12 C22

C22 0

)
(A12)
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where γ = ∂u/∂y = −2u0y/w2. By inserting Equations (A12) into (A3), we get

γWe

(
2C12 C22

C22 0

)
=

C
1− tr(C)/b

− I (A13)

that is,
2γWeC12 = C11/(1− tr(C)/b)− 1 (A14)

γWeC22 = C12/(1− tr(C)/b) (A15)

C22/(1− tr(C)/b)− 1 = 0 (A16)

From Equations (A14)–(A16), it is easy to get

C =
b

b + 2
I (A17)

when y = 0 and

C22 =

∣∣∣γ∣∣∣We
√

6(b + 2)
(

K− 1
K

)
6(γWe)2 (A18)

C11 = b− (b + 1)C22 (A19)

C12 = γWeC2
22 (A20)

when y 6= 0, where

K =
3
√

δ +
√

δ2 + 1 (A21)

δ =
54b|γ|We(√

6(b + 2)
)3 (A22)

If we insert γ = −2u0y/w2 into Equations (A18)–(A20), then the configuration tensor under the
plane Poiseuille flow will be exactly solved. In order to facilitate the following discussion, the maximum
shear rate of the plane Poiseuille flow is denoted by γm = 2u0/w, and a parameter γ̂ = We · γm is
used to measure the relative flow strength.
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Appendix C. Method for the Crystal Growth Model

In 2D, the system (A5)–(A11) contains eight coupled PDEs. If those PDEs are solved by implicit
schemes, great numerical difficulty will be encountered. To reduce the simulation difficulty, an explicit
fractional step method is adopted. The component form of the semi-discretized system is as follows:

ψn+1−ψn

∆t = −
(

Wψ(ψ− ζ)(ψ− ζ0)− κ2
0

(
∂

∂x

(
β2(θ) ∂ψ

∂x

)
+ ∂

∂y

(
β2(θ) ∂ψ

∂y

))
+κ2

0
∂

∂x

(
β(θ)β′(θ) ∂ψ

∂y

)
− κ2

0
∂

∂y

(
β(θ)β′(θ) ∂ψ

∂x

))n (A23)

Tn+1−Tn

∆t + un ∂Tn

∂x +vn ∂Tn

∂y = α
(

∂2T
∂x2 + ∂2T

∂y2

)n
+ K ψn−ψn−1

∆t

+ β(1+a0ψ)
ReCp

((
∂u
∂x

)2
+ 1

2

(
∂u
∂y + ∂v

∂x

)2
+
(

∂v
∂y

)2
)n

+ 1
ReCp

(
∂u
∂x τ11 +

(
∂u
∂y + ∂v

∂x

)
τ12 +

∂v
∂y τ22

)n

(A24)

Re
(

ũ−un

∆t +un ∂un

∂x + vn ∂un

∂y

)
= β(1 + a0ψ)

(
∂2u
∂x2 +

∂2u
∂y2

)n
+ [1− ψ/ζ0]

(
∂τ11
∂x + ∂τ12

∂y

)n (A25)

Re
(

ṽ−vn

∆t +un ∂vn

∂x + vn ∂vn

∂y

)
= β(1 + a0ψ)

(
∂2v
∂x2 +

∂2v
∂y2

)n
+ [1− ψ/ζ0]

(
∂τ12
∂x + ∂τ22

∂y

)n (A26)

(
∂2 p
∂x2 +

∂2 p
∂y2

)n+1

=
Re
∆t

(
∂ũ
∂x

+
∂ṽ
∂y

)
(A27)

un+1 − ũ
∆t

= −[1− ψ/ζ0]
1

Re
∂pn+1

∂x
(A28)

vn+1 − ṽ
∆t

= −[1− ψ/ζ0]
1

Re
∂pn+1

∂y
(A29)

Cn+1
11 − Cn

11
∆t

+

(
u

∂C11

∂x
+ v

∂C11

∂y
− 2

∂u
∂x

C11 − 2C12
∂u
∂y

)n
=

1
We

(
−C11

1− (C11 + C22)/b
+ 1
)n

(A30)

Cn+1
12 − Cn

12
∆t

+

(
u

∂C12

∂x
+ v

∂C12

∂y
− ∂u

∂y
C22 − C11

∂v
∂x

)n
=

1
We

(
−C12

1− (C11 + C22)/b

)n
(A31)

Cn+1
22 − Cn

22
∆t

+

(
u

∂C22

∂x
+ v

∂C22

∂y
− 2

∂v
∂x

C12 − 2C22
∂v
∂y

)n
=

1
We

(
−C22

1− (C11 + C22)/b
+ 1
)n

(A32)

τn+1
11 =

(1− β)(1 + a0ψ)

We

(
C11

1− (C11 + C22)/b
− 1
)n+1

(A33)

τn+1
12 =

(1− β)(1 + a0ψ)

We

(
C12

1− (C11 + C22)/b

)n+1
(A34)

τn+1
22 =

(1− β)(1 + a0ψ)

We

(
C22

1− (C11 + C22)/b
− 1
)n+1

(A35)

where ∆t is the time step size, the superscript n means the corresponding variable taken its value at
the time tn = n∆t, and u represents the averaged velocity [1− ψ/ζ0]u. In simulations, all of the spatial
derivatives are discretized by the standard central finite difference scheme. Note that the pressure
Poisson Equation (A27) is the most time-consuming part in each time step. In this paper, a high efficient
BiCGSTAB solver is used to reduce the cost.
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For the phase-field Equation (A23), the model parameters W and κ0 can be determined through
experimentally measurable quantities. They may be calculated by [22]

W = 6
∆H

RTζ3
0

(
Tm − T

T0
m

)(
ζ0

2
− ζ

)−1
(A36)

κ0 = 6
σ

nRT

(
2

W

)1/2
(A37)

with ∆H being the latent heat, R the gas constant, σ the surface free energy per unit area, and n the
amount of substance of polymer monomers per unit volume. Finally, the unstable energy barrier ζ,
which increases with temperature, may be determined by [25]

ζ =

(
1 +

2
π

arctan(kT)
)

4ζ0ψ̂− 3ψ̂2

6ζ0 − 4ψ̂
(A38)

where ψ̂ is estimated as ψ̂ = ζ0(T0
m − Tm)/(T0

m − T) and k is a dimensionless coefficient inversely
proportional to the supercooling. In this work, it is simply evaluated as k = K.

Appendix D. Summarization of the Whole Simulation Process

For the steady-state plane Poiseuille flow, the whole simulation process can be summarized
as follows:

Step 1: Fast Flow Induced Molecular Structure

For given γ̂, compute the configuration tensor C by Equations (A17)–(A20).

Step 2: Nucleation upon Oriented Molecular Structure

(1) For given Tc, calculate the density of activated nuclei N by Equations (11)–(14);
(2) Determine the center of each nucleus in the simulation area by a random number generator;
(3) Calculate the orientation and aspect ratio of each nucleus by Equations (11)–(20) according to the

molecular configuration at the position where the nucleus is located;
(4) Generate the oriented nuclei upon the simulation lattice;

Step 3: Crystal Growth with Slow Melt Flow

(1) Given model parameters and initial conditions for the crystal growth model;
(2) For given ψn and Tn, compute ψn+1 by Equation (A23);
(3) For given Tn, ψn, ψn−1, un = [1− ψn/ζ0]un and τn

p, compute Tn+1 by Equation (A24);

(4) For given un = [1 − ψn/ζ0]un, ψn and τn
p, compute the intermediate velocity ũ by

Equations (A25) and (A26);
(5) For given ũ, compute the pressure pn+1 by Equation (A27);
(6) For given pn+1, correct the velocity un+1 by Equations (A28) and (A29);
(7) For given Cn and un = [1− ψn/ζ0]un, compute Cn+1 by Equations (A30)–(A32);
(8) Compute τn+1

p from Cn+1 by Equations (A33)–(A35);

(9) If the terminal time is not reached, update n by n + 1 and return to (2).

Note that the physical problem we considered is first putting the hot polymer melt into a fast
simple flow for a period of time, and then decreasing the flow to a large extent and cooling the melt to
a scheduled crystallization temperature quite rapidly. Thus, the flow parameters used in the first step
are generally different from those used in the third step. Moreover, to keep it simple in this paper, we
assume that the ordered structures induced by the fast flow would be completely retained after the
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weakening of flow until the nucleation takes place. Based on this assumption, the transient process
from the fast melt flow to the slow melt flow may be ignored.
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