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XPS analysis: Experimental method 

 

X ray photoelectron spectroscopy characterisation of the samples was carried out with a KAlpha device 

from Thermo Scientific using a monochromatic Al K X ray source (1486.6 eV) operating at 100 W and 

a hemispherical electron energy analyzer. High-resolution spectra of the C 1s and O 1s signals were 

recorded in 0.1 eV steps with a pass energy of 50 eV, while the takeoff angle was fixed at normal to the 

sample. Low energy electron flooding was used for charge compensation. After the linear baseline was 

subtracted, curve fitting was performed by a mixed Gaussian-Lorentzian product function. The energy 

scale was internally calibrated by referencing the binding energy of the C1s peak at 284.40 eV for 

contaminated carbon. 

 

XPS analysis: Results 

 
The high resolution C1s XPS spectra of graphite, GO and different chemically reduced GOs are 

presented in Figure S1. The C1s spectrum (Figure S1a) of graphite powder exhibits a main C1s peak at 

284.4 eV implying that carbon is mostly present in the sp2 hybridization state [1]. The broad C1s peak 

at ~285.5 eV can be attributed to carbon in C–O and C–O–C groups [2, 3]. The C1s XPS spectrum of GO 

(Figure S1b) distinctly indicates a significant degree of oxidation with six deconvoluted components 

that correspond to carbon atoms in various functional groups: non-oxygenated ring C (sp3 C ~ 283.9 eV 

and sp2 C ~ 284.6 eV) [4], C in C–O bonds (~285.5 eV), epoxide C (C-O-C, ~286.8 eV), carbonyl C (C=O, 

~288.0 eV), and carboxylate C (O–C=O, ~289.0 eV) [5-7]. On the other hand, the high resolution C1s XPS 

spectrum of NarGO (Figure S1c), while showing the same oxygenated functional groups as GO, had 

smaller peak intensities for these fitting components, revealing partial de-oxygenation by the chemical 

reduction method. For HyrGO and NaHyrGO (Figure S1d-e), the high resolution C1s spectra show 

almost diminished peak intensities for these fitting components corresponding to the different 

functionalities which indicates a better reduction of the different functional groups of GO by hydrazine 

and dual reducing agents (NaBH4 and hydrazine) as compared to only NaBH4. For the high resolution 

C1s spectrum of GO and NaHyrGO, the determination of separate sp3 C and sp2 C contributions was 

possible. However, for NarGO and HyrGO, their combined involvement was denoted as C-C (sp3 C & 

sp2 C), since deconvolution into two separate peaks was not feasible. Similarly, for the high resolution 

C1s spectra of different reduced GOs, the C-O and C-O-C, and C=O, O-C=O and π-π* (graphitic shake-

up satellites, ~291 eV) contributions for NarGO; the C-O-C, C=O and O-C=O contributions for HyrGO; 

the C-O and C-O-C, and C=O, O-C=O and π-π* contributions for NaHyrGO were not denoted 

separately, as the deconvolution into 2-3 peaks was also not possible [8, 9]. The (π-π*) graphitic shake-

up satellite contribution, noticed for different chemically reduced GOs around ∼291 eV, evolves upon 

chemical reduction of GO. This implies that the delocalized π conjugation, a conventional trait of the 

aromatic carbon structure, was to some degree restored in various chemically reduced GOs [10-12]. 

Overall, the XPS spectra show a more pronounced presence of oxygen containing groups in NarGO 

whereas both HyrGO and NaHyrGO are quite similar in terms of their C1s spectra. 



 

 

 
 

Figure S1: High resolution XPS (C1s) spectra of (a) graphite, (b) GO, (c) NarGO, (d) HyrGO and (e) 

NaHyrGO. 
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