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Abstract: Superhydrophobic/superoleophilic surfaces (water contact angle greater than 150◦ with
low hysteresis, with an oil contact angle smaller than 5◦) have a wide-range of applications in
oil/water separation. However, most of the essential methods to fabricate this kind of surface are
complex, inflexible, and costly. Moreover, most methods focus on separating immiscible oil and water
mixtures but lack the ability to demulsify surfactant-stabilized emulsions, which is widely present
in industry and daily life. In this study, a facile and effective method was developed to fabricate
superhydrophobic/superoleophilic surfaces that can be easily applied on almost all kinds of solid
substrates. The treated porous substrates (e.g., steel mesh; cotton) can separate oil/water mixtures or
absorb oil from a mixture. Furthermore, the compressed treated cotton is capable of demulsifying
stabilized water-in-oil emulsions with high efficiency. The simple, low-cost, and material-unrestricted
method provides an efficient way to separate oil/water mixtures of various kinds and has great
potential in energy conservation and environmental protection.
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1. Introduction

Superlyophobic surfaces (on which a liquid’s contact angle is greater than 150◦ and its slide
angle is smaller than 10◦) and superlyophilic surfaces (on which a liquid’s contact angle is smaller
than 5◦) have widespread applications in energy conservation, environmental protection, and
biomedical materials [1–5]. Amongst them, superhydrophobic/superoleophilic surfaces (water contact
angle greater than 150◦, with an oil contact angle smaller than 5◦) have a wide range of potential
applications in oil/water separation thanks to its water-repellent/oil-absorbing properties [6–14].
A low-energy chemical composition and rough geometrical structure are two essential requirements
for fabricating superlyophobic surfaces. To fabricate superlyophilic surfaces, on the other hand, higher
surface energy and roughness is desired [15–17]. In order to fabricate surfaces of superwettablity,
effective processing methods like photoetching [18–22], chemical vapor deposition (CVD) [23–26],
and plasma treatment [27–33] are widely used. These methods, however, are generally costly,
material-restrictive, and unsuited for large-scale production [34–37]. Moreover, sometimes the
water/oil mixture is not just immiscible; it may form a more complete mixing state of the disperse
phase, called emulsion. The existence of emulsified oil and water mixtures, especially water-in-oil
emulsions, has always been a severe problem in the industry and environment. Most previous studies
of superhydrophobic/superoleophilic materials have good performance in separating immiscible
oil/water mixtures, but have failed in separating water-in-oil emulsions in which the dispersed phase
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is smaller than 20 µm [38–42]. The separation of emulsions is much more difficult, and the separation
is different from that of immiscible water/oil mixtures. Some methods have proven to be effective
in separating both immiscible water/oil mixtures and emulsions by changing substrates or applying
external stimulus, but the fabricating and operating process is complicated [43,44]. Therefore, methods
with lower cost, more flexibility, and better applicability and efficiency for both immiscible water/oil
mixtures and emulsions is highly desired for use in future widespread industrialization.

Herein, a facile and effective method was proposed to fabricate superhydrophobic/
superoleophilic surfaces simply by spraying or painting a mixed suspension on the substrate. The
preparation process is feasible and can be flexibly applied on almost any solid substrate. The treated
surfaces exhibit excellent superhydrophobicity and superoleophilicity. Various substrates can be used
for separating oil and water mixtures in different ways. For example, treated steel mesh can separate
immiscible oil/water mixtures effectively; and treated cotton can absorb oil from oil/water mixtures
without loss of water. Furthermore, compressed treated cotton is capable of separating stabilized
water-in-oil emulsions with high efficiency. The proposed method, which provides a shortcut to the
fabrication of superhydrophobic/superoleophilic surfaces, has extensive application prospects in
separating various kinds of oil/water mixtures and is an ideal solution for the growing problem of
resource recycling and environmental pollution.

2. Experimental Section

2.1. Materials

Aluminum oxide (Al2O3) nanoparticles in three different diameters (30 nm, ~200 nm, 1 µm),
n-dodecane (AR, 96%), n-octane (≥98%, GC), n-dodecane (≥99.7%, GC), 1,2-dichloroethane (≥99.8%,
GC), diiodomethane (98%), and hexadecane (≥99.5%, GC) were obtained from Shanghai Aladdin
Bio-Chem Technology Corporation (Shanghai, China). 1H,1H,2H,2H-Perfluorooctyltriethoxysilane and
Span 80 were purchased from Shanghai Macklin Biochemical Corporation (Shanghai, China). Olive oil
was purchased from Wal-Mart Stores, Inc. Diesel oil was obtained from Sinopec gas station (Harbin,
China). All chemicals were analytical grade reagents and were used as received.

2.2. Fabrication of Superhydrophobic/Superoleophilic Surfaces

First, 1 g 1H,1H,2H,2H-Perfluorooctyltriethoxysilane was mixed with 100 g absolute ethanol
solution and magnetically stirred for 20 min at room temperature until fluoroalkyl silane was
hydrolyzed, and then 1 g Al2O3 nanoparticles (diameter of 1 µm), 5 g Al2O3 nanoparticles (diameter of
200 nm) and 2.5 g Al2O3 nanoparticles (diameter of 30 nm) were added to the solution with stirring for
1 h to form a homogeneous suspension. The suspension could be sprayed (using a spray gun, 20 psi)
or painted on the substrates. The treated surfaces showed superhydrophobicity and superoleophilicity
as soon as the surfaces were dried within several minutes.

2.3. Preparation of Water-in-Oil Emulsions

Stabilized water-in-oil emulsions was prepared by mixing deionized water (95 mL), oil (5 mL),
and Span 80 (0.4 mL) in a beaker. Then the mixture was vibrated with an ultrasonic homogenizer
(Xinzhi JY92-11N, 20 kHz frequency at 20% amplitude, Xinzhi, Ningbo, China) for 3 h, and the obtained
emulsion was stable for more than 20 h in ambient environment. In this study, three kinds of emulsions
were prepared with olive oil, diesel, and hexadecane.

2.4. Setup of Water-in-Oil Emulsion Separation

To separate water-in-oil emulsion, cotton was initially soaked in the suspension and ultrasonic
vibrated for 30 min, then dried at 80 ◦C for 3 h until the ethanol solution had completely evaporated.
The treated cotton was compressed to a density larger than 0.28 g/cm−3 with a medical injector
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(Hongda M.D., Nanchang, China). The pressure exerted on the piston was measured by a pull gage
(NK300, GTYG, Co., Ltd., Shanghai, China).

2.5. Characterization

Scanning Electron Microscopy (SEM) (ZEISS MERLIN Compact SEM, operated at a 20 kV
acceleration voltage, Carl Zeiss Jena, Germany) was employed for product characterization. Contact
angles were measured at ambient temperature using an optical contact angle meter (DropMeterTM

Element A-60, water droplet of 6 µL, Maist, Ningbo, China), each measurement was taken at least
three times. The optical images of the emulsion and the filtrate were taken using a Leica DVM6s 3D
Microscope (Leica, Germany). The density of the liquid was tested by Westphal balance (YuePing
PZ-D-5, Zhengzhou, China), and the measurement was performed at 20 ◦C. The distribution of water
droplets in the emulsion was measured at room temperature by a NanoBrook ZetaPALS Potential
Analyzer (Brookhaven, NY, USA).

3. Results and Discussion

Since the surface tension of oil is smaller than that of water, it is possible to fabricate water-repellent
and oil-attractive surfaces based on the surface tension theory [45,46]. The prepared suspension
contains fluorate polymer (1H,1H,2H,2H-Perfluorooctyltriethoxysilane) and Al2O3 nanoparticles
in different sizes. The fluorate polymer, which contains amounts of fluoric group such as –CF2

and –CF3, can lead to a lower surface energy, while different sizes of nanoparticles form a
multi-dimensional structure, which is an essential requirement of constructing superlyophobic and
superlyophilic surfaces.

3.1. The Characterization of the Superhydrophobic/Superoleophilic Surface

The structure of the treated surface was investigated with scanning electron microscope
(SEM), as shown in Figure 1a,b. It is obvious that a multi-dimensional structure was formed
on the treated surface, indicating a high porosity ratio, which is indispensable for superwetting
a surface based on the Cassie-Baxter theory [47]. The functionalization of the surface was also
demonstrated by Energy Dispersive Spectroscopy (EDS), as shown in Figure 1c,d, and the elements
of fluorine—which represents fluoric groups of –CF2 and –CF3—and aluminum—which represents
the Al2O3 nanoparticles—were widely distributed on the surface, indicating the low surface energy
and the high roughness [48]. The vast majority of oils have much smaller contact angles than water on
flat 1H,1H,2H,2H-Perfluorooctyltriethoxysilane-treated surfaces due to their lower surface tensions,
and the corresponding tendency of wettability can be expanded by constructing appropriate surface
structures [49,50]. In this study, the superhydrophobicity and superoleophilicity was obtained on the
rough surface created by the fluorinated nanoparticles. This method has high flexibility in fabricating
superhydrophobic/superoleophilic surfaces on substrates with different hardnesses. Figure 2a,b shows
the wettability of water and various kinds of oils on spray-treated glass and paint-treated cotton, while
the insets show the shape of the droplets on the corresponding surfaces. The water droplets on both of
the treated surfaces are nearly spherical without any contamination, while the droplets of hexadecane
(27.05 mN·m−1, dyed red), olive oil (33.2 mN·m−1, yellow), diiodomethane (DDE, 50.8 mN·m−1, dyed
green), and diesel (25.05 mN·m−1, claybank) wetted or permeated the surfaces. Water contact angle
on the flat treated surface is ~164◦ and the sliding angle is smaller than 2◦, which indicates a good
performance of superhydrophobicity. The low hysteresis of the water droplet on the treated glass is
further demonstrated in Figure 2c–f, as the water droplet slides freely on the treated surface without
apparent stickiness, which further confirms the water-repellent behavior of the surface.
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Figure 1. (a,b) Scanning Electron Microscope (SEM) images of a treated surface in different scales 
and Energy Dispersive Spectroscopy (EDS) distribution maps of (c) fluorine and (d) aluminum. 

 
Figure 2. The wettability of water (dyed blue), hexadecane (dyed red), olive oil (yellow), 
diiodomethane (DDE, dyed green), and diesel (claybank) on (a) spray-treated glass and (b) 
paint-treated cotton. Insets show the shapes of the water droplets from a parallel point of view. (c–f) 
Continuous scene of the sliding test on the treated glass; the water droplet was pushed on the surface 
and slid from left to right before detachment. 

3.2. Separation of Oil/Water Mixtures 

The high flexibility of the method in this study makes it possible to separate mixtures in 
different ways by choosing different substrates. To illustrate this idea, treated stainless-steel mesh 
(mesh number, 300) and degreasing cotton were used to separate immiscible oil/water mixtures, as 
shown in Figure 3. The mesh, spray-treated with approximate 5 mL prepared suspension on one 
side, was subject to the ability of water-repellency and oil-penetrability after the evaporation of 
ethanol solution. Figure 3a demonstrates the process of separating an immiscible hexadecane/water 
mixture; the hexadecane spread and permeated the treated mesh instantly, while the water (dyed 
blue) was resisted on the surface and slid off the mesh easily without any contamination. To test the 
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Figure 2. The wettability of water (dyed blue), hexadecane (dyed red), olive oil (yellow), diiodomethane
(DDE, dyed green), and diesel (claybank) on (a) spray-treated glass and (b) paint-treated cotton. Insets
show the shapes of the water droplets from a parallel point of view. (c–f) Continuous scene of the
sliding test on the treated glass; the water droplet was pushed on the surface and slid from left to right
before detachment.

3.2. Separation of Oil/Water Mixtures

The high flexibility of the method in this study makes it possible to separate mixtures in different
ways by choosing different substrates. To illustrate this idea, treated stainless-steel mesh (mesh number,
300) and degreasing cotton were used to separate immiscible oil/water mixtures, as shown in Figure 3.
The mesh, spray-treated with approximate 5 mL prepared suspension on one side, was subject to the
ability of water-repellency and oil-penetrability after the evaporation of ethanol solution. Figure 3a
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demonstrates the process of separating an immiscible hexadecane/water mixture; the hexadecane
spread and permeated the treated mesh instantly, while the water (dyed blue) was resisted on the
surface and slid off the mesh easily without any contamination. To test the function of absorbing oil
from a mixture, a piece of degreasing cotton was initially soaked in the prepared suspension for at
least 10 min, then dried at 80 ◦C until the ethanol solution was completely evaporated. The treated
cotton could easily remove hexadecane from the mixture, as shown in Figure 3b, and there was no
water (dyed blue) sticking during the whole process. The treated substrates have the same effect in
separating other kinds of oil/water mixtures (e.g., n-octane/water, n-dodecane/water, olive oil/water,
diesel/water, dimethicone/water). The high flexibility of the method provides an effective way to
fabricate superhrodrophobic/superoleophilic materials of various forms, and thus has great potential
in water pollution control and efficient oil removal.
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3.3. Demulsification of Surfactant-Stabilized Water-in-Oil Emulsions

Emulsions, especially those stabilized with surfactants, are difficult to separate due to their
micro-scale dimensions (dispersed phase <20 µm). To separate an emulsion by filtration, the filtering
porous material should have the opposite wetting behavior of oil and water in a liquid environment,
and the pore size of the material should also be smaller than the disperse phase [51–54]. Thanks to the
flexibility of the proposed method, treated cotton can be used as a substrate to separate a stabilized
water-in-oil emulsion due to its high porosity and compressibility. To illustrate this idea, the wettability
of soak-treated cotton in a liquid environment was firstly tested. Figure 4a shows that oil (hexadecane,
dyed red) can still spread and permeate the cotton in a water environment, while Figure 4b shows
that the cotton preserves its superhydrophobicity when immersed in oil (n-dodecane). Moreover, the
small pore size was made by compressing the cotton to a density larger than 0.25 g/cm−3 in an injector.
The water-in-oil emulsion can be demulsified in the injector by exerting a certain force on the piston.
The demulsification mechanism of the treated compressed cotton is demonstrated in Figure 4c, as
the oil in the emulsion can pass through the internal gaps of the treated cotton fibers easily, while
the dispersed water droplets are repelled due to the under-oil superhydrophobicity of the treated
surface. Various stabilized water-in-oil emulsions can be effectively demulsified using this method. To
demonstrate this effect, the quality of the feed and the filtrate of three kinds of stabilized water-in-oil
emulsions (water-in-olive oil, water-in-diesel, and water-in-hexadecane) was initially tested. The
results are shown in Figure 5; it is obvious that the filtrate is transparent and clear compared with the
feed, which is murky and fuzzy, illustrating the good effect of the demulsification. The distribution
of water droplets was further investigated by a Laser Particle Size Analyzer (ZetaPALS, NanoBrook,
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Brookhaven, NY, USA), as shown in Figure 6a–c, and particle size analysis demonstrated that the
distribution of water droplets in the feed ranged from hundreds of nanometers to 1 µm, while the
size of water droplets in the corresponding filtrate were no larger than 1.3 nm, further demonstrating
the considerable effect of the demulsification. To demonstrate the efficiency of the demulsification,
separation fluxes were tested, as summarized in Figure 6d. The considerable fluxes, which increased up
to 11,540 Lm−2·h−2·bar−2, were higher than that achieved by most of the demulsifying methods using
membranes [42,55–58]. Moreover, the densities of the feed and filter of different stabilized water-in-oil
emulsions were also measured (Table 1), and it was found that the measured densities of the filter
were highly consistent with that of the original pure oil, further demonstrating the high efficiency of
the method. The treated compressed cotton (0.25 g/cm−3, diameter of 1.5 cm, thickness of 1 cm) kept
its efficiency after the continuous separation of 3-L emulsions, indicating a strong practicability.
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Table 1. Densities of feed, filter, and pure oil.

Water-in-Oil Emulsion Density of Feed (g/cm3)
Density of Filtrate

(g/cm3)
Density of Pure Oil

(g/cm3)

Water-in-n-octane 0.982 0.700 0.703
Water-in-n-dodecane 0.984 0.753 0.750
Water-in-hexadecane 0.985 0.772 0.770

Water-in-diesel 0.990 0.840 0.840
Water-in-olive oil 0.996 0.925 0.920

Water-in-dichloroethane 1.012 1.263 1.260

4. Conclusions

The proposed method for fabricating superhydrophobic/ superoleophilic surfaces is facile and
effective; the prepared suspension containing fluoride and Al2O3 nanoparticles of different sizes can be
easily coated on almost any solid substrate by spraying, painting, or soaking. Thanks to the flexibility
of the method, different kinds of porous substrates such as mesh, cotton, and sponge can be easily
coated and have good performance in separating immiscible oil/water mixtures in different ways.
Moreover, the compressed treated cotton is capable of separating stabilized water-in-oil emulsions,
which is widely present in practice, and the resultant demulsification is stable and efficient. The
excellent flexibility and simplicity of the proposed method provides well-optimized solutions for
environment protection and eco-saving.
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