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Abstract: Flexible dielectric materials with high dielectric constant and low loss have attracted
significant attention. In this work, we fabricated novel polymer-based nanocomposites with both
homogeneously dispersed conductive nanofillers and ion-conductive nanodomains within a polymer
matrix. An unsaturated ionic liquid (IL), 1-vinyl-3-ethylimidazolium tetrafluoroborate ([VEIM][BF4]),
was first coated on the surface of multi-walled carbon nanotubes (CNTs) by the mechanical grinding.
The ILs coated CNTs were then well dispersed in poly(vinylidene fluoride) (PVDF) matrix by
melt-blending. The ILs on the surface of CNTs were subsequently grafted onto the PVDF chains by
electron beam irradiation (EBI). The formed ILs grafted PVDF (PVDF-g-IL) finally aggregated into
ionic nanodomains with the size of 20–30 nm in the melt state. Therefore, novel PVDF nanocomposites
with both homogenously dispersed CNTs and ionic nanodomains were achieved. Both carbon
nanotubes and ionic nanodomains contributed to the enhancement of the dielectric constant of PVDF
significantly. At the same time, such homogeneously dispersed CNTs along with the confined ions in
the nandomains decreased current leakage effectively and thus led to the low dielectric loss. The final
PVDF nanocomposites exhibited high dielectric constant, low dielectric loss and good flexibility,
which may be promising for applications in soft/flexible devices.
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1. Introduction

Dielectric materials have attracted significant attention in terms of their energy storage
applications [1–4]. Among the various physical properties, high dielectric constant, low dielectric loss
and high electric breakdown strength have become three important parameters for dielectric materials.
Dielectric ceramics materials can fulfill such requirements [4]. However, the inherent brittleness of the
inorganic materials limits their applications in soft/flexible devices. Flexibility is of great importance
for developing electric charge storage capacitors with miniature, lightweight and ultrathin features.
Therefore, extensive investigations have been carried out to make the composites by combining the
high-permittivity inorganic [5–11] or conductive nanofillers [12–18] with flexible polymers. Among the
numerous dielectric polymer composites, poly(vinylidene fluoride)/carbon nanotubes (PVDF/CNTs)
nanocomposites have been extensively investigated [19–23]. It has been found that an extremely
low loading level of CNTs can significantly improve the dielectric constant of PVDF due to its great
dielectric constant and long aspect ratio [24,25]. Although CNTs can enhance the dielectric constant
of PVDF at a low levels (below the percolation threshold [19]), their agglomeration nature due to the
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strong van der Waals interaction and/or π–π interaction between CNTs makes this strategy challenging.
The CNTs agglomerates with large domain size and the poor PVDF-CNTs interfaces can inevitably
cause serious current leakage and dielectric loss for the PVDF/CNTs nanocomposites. Therefore,
the key issue to fabricate high-dielectric-performance PVDF/CNTs composites is still located to
disperse CNTs in the PVDF matrix homogeneously.

On the other hand, room temperature ionic liquids (ILs) have recently been used as soft additives
to enhance the dielectric constant of PVDF due to their high ion conductivity [26–28] and good
miscibility with PVDF matrix, as reported in our previous works [29–31]. However, the ion movements
of ILs in the PVDF/IL blends cause considerable dielectric loss under AC electric filed. Fortunately,
the dielectric loss due to the ion movements can be effectively suppressed by chemically grafting the
ions onto the PVDF main chains by using electron beam irradiation (EBI) [32,33]. A further reduction
in dielectric loss of the PVDF/IL blends can be achieved by confining both cations and anions within
IL molecules grafted PVDF (i.e., PVDF-g-IL) nanodomains [34,35].

Considering the structure and properties of PVDF/CNTs nanocomposites and the
microphase-separated PVDF/IL blends with the PVDF-g-IL nanodomains [34,35], it is interesting
to fabricate the PVDF nanocomposites with both CNTs and the PVDF-g-IL nanodomains. More
interestingly, it has been reported that ILs show specific interactions with CNTs and that ILs can help
the dispersion of CNTs in polymer matrix [31,36,37]. Therefore, the incorporation of ILs may first
improve the dispersion of CNTs and then can microphase separate after a grafting-melting-procedure
in the PVDF matrix. Such an idea might lead to the new PVDF nanocomposites with both CNTs
and ILs nanodomains, and the nanocomposites may show high dielectric performance and good
flexibility. In this study, 1-vinyl-3-ethylimidazolium tetrafluoroborate ([VEIM][BF4]) is firstly used to
improve the dispersion of CNTs within the PVDF matrix and the cations of the ILs are then chemically
grafted onto PVDF chains by electron-beam irradiating PVDF/IL-CNTs films at room temperature
in air. A following melting process gives rise to the PVDF nanocomposites with homogeneously
dispersed CNTs and organic conductive PVDF-g-IL nanodomains in the PVDF matrix. The as-prepared
PVDF nanocomposites exhibited significantly enhanced dielectric constant (>100 at 103 Hz) and low
loss (<1 at 103 Hz) with only 1 wt% CNTs content. Moreover, the dielectric loss of CNTs can be
significantly suppressed by this strategy. Although numerous strategies have been proposed to meet
such requirements, such as coating and surface modification of fillers [38–40], filler alignment by
electrospinning [39] and injection molding [41], the use of hybrid additives [42,43], the modulation of
topological structure [44], and the alignment of fillers by cell growth during polymer foaming [45],
blend morphology development [46], the present work provides new avenue to fabricate the high
performance dielectric polymer materials.

2. Materials and Methods

2.1. Materials

PVDF pellets (KF850) were purchased from Kureha Chemicals in Tokyo, Japan, with a Mw

of 2.09 × 105 and an Mw/Mn of 2. The unsaturated ionic liquid (IL), 1-vinyl-3-ethylimidazolium
tetrafluoroborate [VEIM][BF4], was bought from Center of Greenchemistry and Catalysis, Lanzhou,
China and was used as received. Multiwall carbon nanotubes (MWCNTs) were kindly provided by
Nikkiso Co. Ltd (Tokyo, Japan). The purity of the MWCNTs is higher than 95%. The diameter of
MWCNTs is about 20 nm and the average length ranges from 2 to 10 µm.

2.2. Preparation of PVDF/MWCNTs Nanocomposites with IL Nanodomains

The final nanocomposites were prepared by the following steps: (1) preparation of ILs modified
CNTs (IL/CNTs)—the MWCNTs were first ground with the ILs at room temperature with various weight
ratios, MWCNTs bulky gel was thus prepared and termed IL/CNTs; (2) preparation of PVDF/IL-CNTs
nanocomposites—the IL/CNTs were melt compounded with PVDF at 190 ◦C using a Haake mixer (Haake
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Polylab QC), (Thermo Fisher Scientific, Waltham, MA, USA) with the screw rotation speed of 50 rpm,
the PVDF/IL-CNTs blends were then hot-pressed at 190 ◦C into films with the thickness of about 300 µm;
(3) preparation of EB irradiated PVDF/IL-CNTs nanocomposites—the hot pressed films were irradiated
at a dose of 45 kGy in air at room temperature using an electron beam accelerator, the as-irradiated
PVDF/IL-CNTs films were thus fabricated and termed ir-PVDF/IL-CNTs (the acceleration energy and
beam current were 2.5 MeV and 17 mA, respectively); and (4) preparation of PVDF/CNTs with IL
nanodomains—the EBI irradiated PVDF/IL-CNTs nanocomposites were heated to 210 ◦C for 30 min,
followed by a cooling procedure, and the PVDF nanocomposites with IL nanodomains were then prepared;
they were termed nano-PVDF/IL-CNTs nanocomposites (for instance, the sample of PVDF/IL-CNTs
100/10-1 meant that the weight ratios of PVDF, IL and CNTs was 100:10:1).

2.3. Morphological Characterization

Field-emission scanning electron microscope (FE-SEM) has been used to characterize the
dispersion of MWCNTs in the PVDF matrix. The measurements were carried out using Hitachi
S-4800 SEM (HITACHI, Tokyo, Japan) at an accelerating voltage of 5 kV. All the samples were fractured
in liquid nitrogen and the fracture surface was then coated with a thin layer of gold before the
observation. Transmission electron microscopy (TEM) was also performed using a Hitachi HT-7700
(HITACHI, Tokyo, Japan) operating at an acceleration voltage of 100 kV. The composite samples were
ultramicrotomed to a section at −120 ◦C into a thickness of about 80 nm. The sections were then
stained using ruthenium tetroxide (RuO4) for 4 h.

2.4. Properties Measurements

Differential scanning calorimeter (DSC) with a type of TA-Q2000 (TA Instruments, New Castle,
USA) was performed to determine the melt-crystallization temperatures (Tc) of samples. Samples were
first heated to 230 ◦C, which is higher than the equilibrium melting point of PVDF, for 10 min under
N2 atmosphere to vanish their thermal history. The following cooling down process to −50 ◦C at a
cooling rate of 10 ◦C/min was recorded.

The crystal forms of samples were determined by using wide-angle X-ray diffraction (WAXD)
with a Bruker D8 type (Bruker, Karlsruhe, Germany). The detective angles of the WAXD experiments
were from 5◦ to 40◦ at 1◦/min. The correlations of crystal-amorphous parts in the PVDF and the
IL nanoclusters-PVDF matrix were determined by using small-angle X-ray scattering (SAXS) at 16B
beam line in Shanghai Synchrotron Radiation Facility in China. The wavelength of X-ray beam,
sample-detector distance and exposed time were 1.24 Å, 1943 mm and 200 s, respectively. The obtained
two-dimensional array images were processed with a fit 2D software. Alpha-N high-resolution
dielectric analyzer (GmbH Concept 40) (Novocontrol Technologies, Montabaur, Germany) was used
to evaluate the dielectric properties of PVDF samples. Circle samples with diameter of 1 mm and
thickness of 0.3 mm were sprayed with gold layers on both surfaces before measurements at room
temperature. The frequency from 10−1 to 107 Hz and the AC of 1.0 V were adopted, respectively.

Raman spectra were obtained by using a Bruker raman system (Bruker, Karlsruhe, Germany)
with a Senterra R200 type. The wavelength of laser was 785 nm and at least three different locations
were measured on the samples. The final reported data was averaged.

Thermogravimetric analysis (TGA) with a TA-Q500 type (TA Instruments, New Castle, DE, USA)
was used to investigate the thermal stability of samples. Each sample with about 5 mg was heated
from room temperature to 650 ◦C with a heating rate of 10 ◦C/min under a continuously high purity
N2 atmosphere. Note that the excess ILs on the surface of CNTs was removed by resolving the
CNTs/IL sample in methanol (CH3OH) and then by a centrifugation treatment before measurement.
The CH3OH was the good solvent of IL here.

Mechanical properties of samples were determined by using a universal material testing with
an Instron-5966 model (Instron, Norwood, MA, USA). The samples were cut into dumbbell shape
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before measurements. The stretched speed was 10 mm/min and a fixed gauge length was 18 mm,
respectively. An averaged value was reported after at least three measurements.

Direct current (DC) electrical properties of samples were evaluated by measuring their surface
resistivity (Rs) with an ultrahigh resistivity meter (MCP-HT450) (Mitsubishi, Nagasaki, Japan) at room
temperature. The applied DC voltage was 10.0 V. An average value of Rs was reported after at least
five measurements on the samples.

3. Results

3.1. The ILs Coated CNTs and Their Homogeneous Dispersion in PVDF Matrix

A good dispersion state of CNTs within PVDF matrix can decrease their current leakage and dielectric
loss effectively. ILs have been demonstrated to modify CNTs via a possible cation-π interaction [47–49].
In view of this, CNTs were first grounded with ILs and the corresponding IL/CNTs bulky gel was formed.
As shown in Figure 1A, pristine CNTs have large agglomeration in size and their bundles entangle each
other. This can be attributed to the strong van der Waals interaction and/or π–π interaction between
CNTs. After treatment for CNTs by ILs, CNTs are debundled by ILs and single CNTs can be observed
(Figure 1B). Besides, a clear organic layer of IL molecules can be observed in the ILs modified CNTs
hybrids. A further confirmation of ILs onto the surface of CNTs is found, according to the TGA curves,
as shown in Figure 1C. A decrease of weight percent in IL/CNTs hybrids is in fact the decomposition of
ILs that coated on the surface of CNTs by the possible cation-π interaction during heating.
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Figure 1. (A) Transmission electron microscopy (TEM) image of pristine carbon nanotubes
(CNTs) dispersed in the water; (B) TEM image of ionic liquids (ILs) coated CNTs dispersed
in the water; (C) Thermogravimetric analysis (TGA) curves of pristine CNTs, pure ILs and
ILs modified CNTs, respectively; (D) Raman spectra of pristine CNTs and IL coated CNTs
(i.e., CNTs/IL = 1/10); (E) TEM image of PVDF/CNTs (100/1) composite; (F) TEM image of PVDF/
IL-CNTs (100/10-1) nanocomposites.
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Note that the excess IL molecules in the IL/CNTs hybrids used in the TGA measurements have
been removed by centrifugation in advance, as shown in the Experimental Section (2.4). The interaction
of CNTs with ILs can be directly characterized by Raman spectra in Figure 1D. Two peaks in Raman
spectra for pristine CNTs can be assigned to G-band and D-band. The treatment by ILs leads to a red
shift of G-band and a variation of ratio of IG/ID, indicating that the electric properties of surface of
CNTs are affected by IL-layers coating. This phenomenon is also reported in other literatures [50].

The IL-coated CNTs were directly dispersed in PVDF matrix by melt blending. Figure 1E,F
show the TEM images of PVDF composites with pristine (unmodified) CNTs and IL-coated CNTs,
respectively. It is clear that the pristine CNTs agglomerate in the PVDF matrix (Figure 1E), while the
significantly improved CNTs dispersion can be observed after the coating of CNTs by ILs (Figure 1F).
This can be attributed to the bridging effects of ILs that couples the CNTs with the PVDF matrix [31].

3.2. The Irradiation Induced In Situ Grafting of ILs onto PVDF and the Following Phase Separation
of PVDF-g-IL

The above results confirm that the ILs benefit the dispersion of CNTs in the PVDF matrix. However,
ILs can generate considerable dielectric loss by their both cations and anions movements in AC electric
field [32–34]. This obviously impairs the dielectric performance of PVDF/IL-CNTs composites. In order
to reduce the dielectric loss induced by the movements of ions of ILs in the nanocomposites, we try to
chemically bonding the cations of ILs onto the PVDF molecular chains. The melt-prepared composites
films were then exposed upon the electron beam irradiation at room temperature. We have previously
reported the chemically grafting of the ILs onto the PVDF by electron beam irradiation in binary
PVDF/IL blends [32–34]. In that binary system, ILs were located in the amorphous region of PVDF
at room temperature [34,35]. Therefore, the high energy electrons from electron beam generators
induce free radicals by knocking out the H and/or F atoms from the PVDF backbones and the double
bonds of the cations in ILs [32,51]. The cations of ILs were then grafted locally onto the PVDF chains
through coupling of these free radicals [35]. In the present case, the ILs are mainly located at the
interface between the CNTs and the PVDF matrix. The irradiation will lead to the ILs at the interface
to graft onto the PVDF molecular chains at the room temperature. It should be noted that some excess
ILs may also locate at the amorphous region of PVDF during the melt mixing due to the miscibility
between PVDF and ILs. Thus, those ILs will also be grafted onto the PVDF amorphous region, similar
to the behavior in the PVDF/ILs binary systems [32,34,35]. Figure 2 shows the TEM image of the
as-irradiated PVDF/IL-CNTs nanocomposites. It is seen that the morphology of the as-irradiated
nanocomposites is almost the same with that of the melt-mixed nanocomposites before the irradiation
(Figure 1F). This is rational because the irradiation was carried out at room temperature and the
chemical grafting occurs locally. No morphology changes can be expected when the samples were
irradiated at room temperature [32].
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The as-irradiated PVDF/IL-CNTs were then heated to 210 ◦C and kept at there for 30 min,
followed by the cooling down to the room temperature. The samples were then evaluated by TEM and
the image is shown in Figure 3A.
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scattering (SAXS) patterns of PVDF/IL-CNTs (100/10-1), irradiated-PVDF/IL-CNTs (100/10-1) and
nano-PVDF/IL-CNTs (100/10-1) samples.

Totally different from the structure of the as-irradiated sample before the melting, numerous black
domains with the size of around 20–30 nm are observed, except for the CNTs in the matrix. We can
also observe some nanodomains which are adhering to the surface of the CNTs. The formation of
the nanodomains during the melting can also be confirmed by the SAXS measurements, as shown
in Figure 3B. Only one scattering peak was observed for the PVDF/IL-CNTs and as-irradiated
PVDF/IL-CNTs at the q of 0.58 nm−1. This peak originates from the lamellar structure of PVDF
matrix. The density difference between the amorphous region and the crystalline region contributes
to such scattering. In contrast, the nano-PVDF/IL-CNTs (100/10-1) sample displays a totally distinct
scattering pattern. Two strong scattering peaks at q = 0.09 nm−1 and q = 0.53 nm−1, respectively,
are observed. Obviously, the scattering peak at q = 0.53 nm−1 originates from the lamellar structure in
the PVDF crystals. The other peak at q = 0.09 nm−1 originates from the nanodomains in the PVDF
matrix. It is considered that the melting processing of the as-irradiated sample leads to microphase
separation of PVDF-g-IL chains from PVDF matrix, similar to the PVDF/IL binary systems [34,35].

Figure 4 shows the TEM and SEM images of nano-PVDF/IL-CNTs samples with various IL/CNTs
ratios. The IL content keeps constant with changing the CNTs loadings in the final nanocomposites.
It is seen that the CNTs in the all samples are almost perfectly dispersed in the PVDF matrix.
The microphase separation in the melt does not induce the re-aggregation of CNTs. This is attributed
to the long aspect ratio of CNTs and the high viscosity of the matrix melt. As a dielectric material,
the CNTs content within PVDF matrix should be less than their percolation threshold [19] because
the formation of conductive pathway in the PVDF is not accessible to the dielectric materials. With
increasing the CNTs contents, the number of conductive pathway increases. On the other hand,
it is clear that all the samples have the nanodomains and no significant difference could be observed
for the nanodomains with varying the CNTs loadings. It is also seen that CNTs form a conductive
networks at the loading of 2 wt% CNTs, which means this sample might not be suitable for fabricating
dielectric materials.
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Figure 4. TEM and SEM images of nano-PVDF/IL-CNTs samples with various content of CNTs: (A) and
(a): 100/10-0.1; (B) and (b): 100/10-0.5; (C) and (c): 100/10-1; (D) and (d) 100/10-2, respectively.

3.3. The Crystallization Behaviors and the Crystal Form in the Nano-PVDF/IL-CNTs

Figure 5 shows the crystallization behaviors of neat PVDF, binary blends PVDF/CNTs (100/1),
ternary PVDF/IL-CNTs (100/10-1), as-irradiated PVDF/IL-CNTs (100/10-1) and nano-PVDF/IL-CNTs
(100/10-1) composites, respectively. In Figure 5A, neat PVDF shows a crystallization temperature (Tc)
at 141.1 ◦C when cooling down from the melt at a cooling rate of 10 ◦C/min. However, for the other
three samples with CNTs, the Tc increased to about 146.3 ◦C, indicating the nucleation effects of the
CNTs. It is further observed that the crystallization peak of PVDF/IL-CNTs is wider than those of
the PVDF/CNTs sample and nano-PVDF/IL-CNTs. ILs are miscible with PVDF matrix, so the simple
addition of ILs leads to the depression of the Tc in binary PVDF/ILs [31]. Therefore, the IL-coated CNTs
induce higher Tc with the wider crystallization peak. In other words, the ILs at the interface between
the CNTs and the PVDF impede the CNTs nucleation effects partially. On the other hand, both the
PVDF/CNTs and nano-PVDF/IL-CNTs show significant nucleation effects for the matrix PVDF with a
very sharp crystallization peak. The high nucleation effects of CNTs in nano-PVDF/IL-CNTs possibly
indicate ILs peeling off from the interface and CNTs directly nucleate the crystallization of PVDF.
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Figure 5. Characterization of crystallization behaviors of nano-PVDF/IL-CNTs (100/10-1)
nanocomposite in comparison with its counterparts, including neat PVDF, PVDF/CNTs (100/1),
PVDF/IL-CNTs (100/10-1) and ir-PVDF/IL-CNTs (100/10-1). (A): Differential scanning calorimeter
(DSC) cooling curves with a 10 ◦C /min cooling rate; (B) Wide-angle X-ray diffraction (WAXD) patterns
in the range of 10–40◦ with a scanning rate of 1◦/min.
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PVDF has various types of crystal forms and the polar β or γ crystals exhibit ferroelectric
properties. Figure 5B shows XRD patterns of the neat PVDF, PVDF/CNTs (100/1), PVDF/IL-CNTs
(100/10-1), as-irradiated PVDF/IL-CNTs (100/10-1) and nano-PVDF/IL-CNTs (100/10-1). Neat
PVDF shows the typical nonpolar α phase with the diffractions at 2θ = 17.7◦, 18.4◦, 20.0◦ and 26.6◦,
corresponding to the (100), (020), (110) and (021), respectively. The simple addition of unmodified
CNTs does not change the crystal forms of the matrix PVDF. Although literatures reported the CNTs
induced crystal form transitions of PVDF [44], the aggregation of CNTs provides very limit contact of
CNTs with molecular chains of PVDF. However, significant difference was observed with the addition
of ILs coated CNTs. PVDF crystallizes into mainly the polar β phase. The almost zigzag conformation
of PVDF was induced due to the specific interactions between >CF2 of PVDF with the planar cationic
imidazolium ring wrapped on the CNTs surface; thus, nucleation in polar crystals (β and γ forms)
lattice is achieved and polar crystals are obtained by subsequent crystal growth from the nuclei [31].
The electron beam irradiation at room temperature locally grafts ILs onto the PVDF chains and this does
not affect the crystal forms of PVDF [32–34]. Therefore, the as-irradiated PVDF/IL-CNTs shows almost
same WAXD pattern as the PVDF/IL-CNTs and the PVDF is mainly polar crystal forms. However,
the melting of the irradiated sample induces the microphase separation of PVDF-g-IL and no specific
interaction occurs between cations with CF2 in the melt. The nonpolar PVDF α crystals were obtained
when cooling down, as similar to that of neat PVDF. This indicates again that the possible peeling off
of ILs from CNTs during the microphase separation.

3.4. Physical Properties of the PVDF Nanocomposites with Both CNTs and Nanodomains

3.4.1. Electrical Conductivity of the PVDF Nanocomposites

Figure 6 shows AC electrical conductivity (Figure 6A) and DC electrical resistivity (Figure 6B)
of neat PVDF and PVDF-based composites. CNTs nanofillers reduce the surface resistivity (Rs) of
PVDF in PVDF/CNTs (100/1) because of the excellent conductivity of CNTs. The PVDF/IL-CNTs
(100/10-1) composites have higher conductivity because of the improved CNTs dispersion and
also the good ionic conductivity of IL itself. The grafting of ILs limits the movement of ions,
so the conductivity of as-irradiated PVDF/IL-CNTs is lower than that of the PVDF/IL-CNTs.
However, the nano-PVDF/IL-CNTs show lowest electrical conductivity in the all samples due to
the confinement of the ions in the nanodomains. Figure 6C,D shows the electrical conductivity of the
nano-PVDF/IL-CNTs with various amount of CNTs. Obviously, the increasing of CNTs loadings did
not affect the conductivity of nano-PVDF/IL-CNTs samples. It can be attributed to the well dispersed
CNTs and the confined ions.
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Figure 6. Electrical properties of PVDF and PVDF-based samples. (A,B) are AC conductivity and
surface resistivity (Rs) of typical samples including neat PVDF, PVDF/CNTs (100/1), PVDF/IL-CNTs
(100/10-1), ir-PVDF/IL-CNTs (100/10-1) and nano-PVDF/IL-CNTs (100/10-1), respectively; (C) AC
conductivity of nano-PVDF/IL-CNTs samples with various CNTs loading levels; (D) Rv values of three
typical systems, including PVDF/IL-CNTs, as-irradiated PVDF/IL-CNTs and nano-PVDF/IL-CNTs
with different CNTs contents.

3.4.2. Dielectric Performance of the PVDF Nanocomposites

Figure 7A,B shows the dielectric constant and the loss for neat PVDF and PVDF based composites.
As also shown in Figure 6, the PVDF/CNTs (100/1) and PVDF/IL-CNTs (100/10-1) have high electrical
conductivity, and both of the two samples exhibit the dielectric behaviors of conductive materials
in Figure 7A,B. Therefore, no dielectric permittivity can be recorded at the low frequency for the
conductive composites. Similar phenomena can also be observed for the nano-PVDF/IL-CNTs
(100/10-2) (Figure 7C,D). The high CNTs loading leads to the conductive nature of the sample.
However, for the microphase separated ternary nanocomposites with the CNTs loadings lower than
the percolation threshold, they exhibit higher dielectric constant than the neat PVDF. According to the
Maxwell-Wagner-Sillars (MWS) effect [52,53], charges can be accumulated at the interface when electric
current flows across the PVDF/CNTs and the PVDF/nanodomains interfaces. This largely enhanced
the average electric field and thus the permittivity of PVDF matrix. However, poor compatibility
of PVDF with pristine CNTs caused relatively larger CNTs agglomeration, which increased leakage
current and induced high dielectric loss. Therefore, the simply melt mixed PVDF/CNTs (100/1) do
not show the good dielectric performance. In contrast, the nano-PVDF/IL-CNTs (100/10-1) have the
excellent dielectric performance with the high dielectric constant and depressed dielectric loss.
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Figure 7. Frequency dependency of dielectric constant (A,C) and loss tangent (B,D) of samples
including neat PVDF, PVDF/CNTs (100/1), PVDF/IL-CNTs (100/10-1), as-irradiated PVDF/IL-CNTs
(100/10-1) and nano-PVDF/IL-CNTs with various CNTs contents.

Figure 7C,D show the effects of different CNTs content on the dielectric constant (Figure 7C)
and loss tangent (Figure 7D) of microphase separated PVDF ternary nanocomposites. Obviously, too
much CNTs loading (2 wt%) leads to the conductive nature of the nano-PVDF/IL-CNTs (100/10-2)
sample. However, it is very interesting to find that, in Figure 7C, as the content of CNTs increases,
the permittivity of nanocomposite increases significantly in the CNT loadings ranging from 0.1 to
1%. At the same time, all the samples have the almost same dielectric loss in Figure 7D. Specifically,
the dielectric constant and loss of the nano-PVDF/IL-CNTs (100/10-1) are 180 and 0.81 at 102 Hz,
respectively. The values are 19 and 0.82 for the nano-PVDF/IL-CNTs (100/10-0.1) sample. This
means that we can enhance the dielectric constant, but keep almost constant loss simultaneously with
increasing the CNT loadings.

3.4.3. Mechanical Properties of the PVDF Nanocomposites

Figure 8 shows the strain-stress curves of the neat PVDF and its nanocomposites with ILs and
CNTs. It is clear that the pristine CNTs lead to slightly increased modulus and strength, but with
drastically decreased elongation at break. The modified CNTs by ILs can be well dispersed in
the PVDF matrix and the interface is improved by the ILs, so PVDF/IL-CNTs (100//10-1) have
much higher stretchability than the PVDF/CNTs (100/1) composites. However, the ILs plasticize
PVDF simultaneously and the strength of the nanocomposites decreases significantly. The irradiation
induces the fixation of the small molecules of ILs and the plasticizer effects of ILs are much depressed.
The ir-PVDF/IL-CNTs show enhanced yielding strength and decreased elongation at break when
compared with the PVDF/IL-CNTs. The microphase separation leads to the aggregation of PVDF-g-IL.
This means that the PVDF-g-IL located at the interface between the CNTs and matrix aggregate
together to form nanodomains, so the interface was weakened. Therefore, we observed much decreased
elongation at break of about 20%. It should be noted that the nano-PVDF/IL-CNTs (100/10-1) exhibited
higher modulus than the nano-PVDF/CNTs (100/10) and show pretty good stretchability of 20%,
which is significantly higher than that of the dielectric ceramics.
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4. Discussion

For dielectric materials, increased permittivity is usually accompanied with enhanced dielectric
loss. It is very interesting to find in the present work that the nano-PVDF/IL-CNTs samples show
enhanced dielectric constant with increasing CNTs loading but keep almost the constant dielectric loss,
in the range of less than 2 wt% CNTs. The unique behavior can be attributed to the double formation
of the nanophases in the PVDF matrix, i.e., the homogeneously dispersed CNTs and PVDF-g-IL
nanodomains. It is important to elucidate the formation of the double nanophases structure by
the combination of the ILs modification of CNTs with the irradiation process. Figure 9 depicts the
schematic diagrams of the formation of the double nanophases. ILs were first coated on the surface
of CNTs due to the specific cation-π interactions by grinding (Figure 9A), which is confirmed by
the enhanced D-band to G-band intensity ratio after the coating compared with the pristine CNTs
in Raman spectra (Figure 10). The surface-coated CNTs can be homogeneously dispersed in PVDF
matrix (Figure 9B). This is attributed to the cation-CF2 interactions between the PVDF and ILs [31].
Therefore, ILs significantly improve the dispersion of CNTs in the PVDF matrix, which leads to the
reduction of the current leakage under the AC electric field during the dielectric measurements. In this
stage, the ILs are mainly still located on the surface of CNTs, that is, at the interface, as evidenced by
the almost no intensity ratio change compared with that of the IL-coated CNTs samples. However,
the cations and anions in ILs in the simply blended PVDF/IL-CNTs are mobile and easily move under
the electric field, therefore, we still observed high dielectric loss. The electron beam irradiation induces
the grafting of the cations with the double bonds onto the PVDF chains (Figure 9C). The irradiation
was carried out at room temperature, so the ILs grafting occurs locally and large amount of IL at
the interface are chemically bonded onto the PVDF. The melting of the as-irradiated sample leads
to the microphase separation of PVDF-g-IL from the PVDF matrix (Figure 9D). The formation of the
nanodomains of PVDF-g-IL can be attributed to the ionic interactions in the melt state. The molecular
chains are much dynamic and the ionic interactions lead to the PVDF-g-IL nanoclusters and therefore
numerous nanodomains were observed in the PVDF matrix (as shown in Figures 3 and 4). Not only
the cations grafted onto the PVDF were aggregated in the nanodomains, but also the anions without
chemically grafted were confined within the nanodomains simultaneously due to the ionic interactions
between the cations and anions [35]. In other words, the PVDF-g-IL peels off from the interface
between the CNTs and PVDF matrix in the melt state. It should be mentioned that the ILs peeling
off from the surface of CNTs does not induce the re-aggregation of CNTs. It is rational that the CNTs
have long aspect ratio and the aggregations in the viscous PVDF matrix take long time. The peeling
off of ILs from the CNTs can be confirmed direct by the Raman spectra measurements (Figure 10).
It is observed that the D-band and G-band intensity ratio of nano-PVDF/IL-CNTs is lower than that
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of the PVDF/IL-CNTs. Therefore, we can achieve a novel nanocomposite with both homogeneously
dispersed CNTs and the PVDF-g-IL nanoclusters.
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PVDF-g-IL nanodomains (i.e., IL nanoclusters).
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5. Conclusions

In this study, a novel nano-PVDF/IL-CNTs composite with both homogeneously dispersed
CNTs and ionic nanodomains in the PVDF matrix was fabricated. The processes included surface
coating, melt blending, electron beam irradiation (EBI) and microphase separation. The ILs first
improved the dispersion of CNTs in the PVDF matrix and then were grafted onto the chains of
PVDF by the electron beam irradiation. With the following heating, the PVDF-g-IL aggregated
into the ionic nanodomains and separated from the ungrafted PVDF matrix. The homogeneously
dispersed CNTs and the confined cations and anions in the nanodomains depressed the dielectric loss
significantly. Therefore, the nanocomposites exhibit high dielectric constant and low dielectric loss,
with good flexibility.
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