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Abstract: The orientation of reinforcement fillers in composites plays a vital role in their mechanical
properties. This paper employs the Mori–Tanaka micromechanics model, incorporating the effect
of stretching-induced reorientation of graphene platelets (GPL), to predict Young’s modulus of
GPL/polymer nanocomposites. Subjected to uni-axial stretching, dispersion of GPLs is described
by an orientation distribution function (ODF) in terms of a stretching strain and two Euler angles.
The ODF shows that GPLs tend to realign along the stretching direction. Such realignment is enhanced
at a higher Poisson’s ratio and under a larger stretching strain. It is found that the out-of-plane
Young’s modulus of GPL nanofillers has a limited effect on the overall Young’s modulus of the
composites. With an increase in stretching strain and GPL concentration, Young’s modulus increases
in the stretching direction while it decreases in the transverse direction. A larger aspect-ratio of
GPLs with fewer layers is preferred for enhancing Young’s modulus in the stretching direction,
but it is unfavorable in the transverse direction. Moreover, Young’s moduli in both longitudinal and
transverse directions are more sensitive to the reorientation of smaller-sized GPLs with a greater
concentration in the composites.
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1. Introduction

Adding graphene and its derivatives into polymers as reinforcements has been observed
to dramatically enhance the mechanical properties of the composites and their structures while
keeping the advantages of polymers such as flexibility, large deformation, low cost and excellent
biological and biochemical compatibility [1–3]. This excellent combination promises a novel class
of polymer composite materials and structures for various engineering applications, including civil,
mechanical, automotive, medical and so on. Extensive studies have been carried out on graphene-based
nanocomposites. Rafiee et al. [4] experimentally demonstrated that with a weight fraction (wt) of
0.1%, the Young’s modulus of the graphene-based epoxy nanocomposites can be increased by 31%
compared to that of pristine epoxy. Liang et al. [5] found that the tensile strength and Young’s modulus
of poly(vinyl alcohol) nanocomposites reinforced by 0.7 wt % of graphene oxide (GO) were increased
by 76% and 62%, respectively. The enhancement of strength and toughness of graphene-reinforced
epoxy nanocomposites was also experimentally examined by other researchers, including Lee et al. [6],
Tang et al. [7], Hu et al. [8] and Yin et al. [9].

Apart from the experimental studies, extensive theoretical work has been done on graphene-based
nanocomposites as well. For example, Rahman and Haque [10] developed a molecular-modeling
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technique to determine the mechanical properties of graphene/epoxy nanocomposites and observed
a significant improvement in Young’s and shear moduli of the composites. Ji et al. [11]
and Spanos et al. [12] used a micromechanics model to obtain the effective elastic moduli of
graphene-reinforced polymer composites. Cho et al. [13] and Shokrieh et al. [14] predicted the
mechanical properties of graphene platelet (GPL)/epoxy nanocomposites through a combined
molecular dynamic (MD) simulation and micromechanics analysis. In addition to the observation on
material properties, the enhancement of graphene and its derivatives on structural behaviours also
has been reported [15–19]. The excellent reinforcing effect at a very low content is greatly attributed
to the extremely high specific surface areas of graphene and its derivatives, leading to excellent load
transfer between the reinforcements and the matrix [4,7,20,21]. Moreover, the mass production and the
relatively low cost of graphene’s derivatives, such as GPL and GO, make graphene-based polymer
composites promising material candidates in practical engineering applications.

It should be noted that the above-mentioned studies are mainly focused on the manufacturing
and characterization of the composites and their structures, with well-dispersed nanofillers,
without involving any effects of orientation and distribution state of the reinforcements. However,
it has been well-accepted that the orientation and distribution of reinforcing nanofillers have
a significant effect on the mechanical properties of the composites [22–28]. The mechanical
properties of the composites can be optimized via manually controlling the realignment of the fillers.
In their experimental work, Camponeschi et al. [29] observed improved Young’s modulus of the
carbon nanotube (CNT)-reinforced composites when exposed to a magnetic field for realignment.
By employing finite element simulation, Joshi et al. [30] found that Young’s modulus of CNT-reinforced
nanocomposites is remarkably dependent on the orientation of the dispersed CNTs. The dynamic
mechanical analysis by Deniz Ürk et al. [31] demonstrated that the alignment of CNTs increases
the longitudinal storage modulus of the composites. The experiments conducted by Li et al. [32]
using Raman spectroscopy showed that the Young’s modulus of the nanocomposites with randomly
distributed GPLs is lower than that of the nanocomposites where GPLs are perfectly aligned.
Several methods, including mechanical stretching [33–35], electrical field [36–38] and magnetic
field [29,30,39], have been well-recognized as effective approaches for the reorientation of nanofillers.
It is therefore necessary to investigate the effects of reorientation of the nanofillers on the mechanical
properties of the composites. However, research in this area, especially theoretical studies, is quite
limited, despite its practical significance.

This paper investigates the effect of uni-axial stretching-induced reorientation of GPLs on Young’s
modulus of the nanocomposites through employing a micromechanics model. It is assumed that GPLs
are uniformly dispersed without agglomerations before stretching and that the bonding between GPLs
and the polymer matrix is perfect. An orientation distribution function (ODF) in terms of a stretching
strain and two Euler angles is incorporated into the micromechanics model to capture the influence
of reorientation of the nanofillers in the polymer matrix. It should be pointed out that the present
work is focused on the influence of reorientation of the nanofillers and the interphase between the
nanoparticles and the polymer matrix at nanoscale is not discussed.

2. Micromechanics Model

For the micromechanics model in this current work, GPLs can be assumed as flat disks with
average diameter dGPL and thickness tGPL [22,40,41]. GPLs are uniformly and randomly dispersed
in the polymer matrix with no agglomerations. To determine the effective mechanical properties of
the composites with two phases, that is, GPLs and polymer matrix, a representative volume element
(RVE) containing enough effective fillers with random orientations, as shown in Figure 1, is selected.
This RVE is able to statistically represent the overall properties of the nanocomposites. Based on
micromechanics theory, the effective elastic stiffness tensor Ceff of the composites can be determined
by averaging the terms over all orientations in the RVE [42–44] as
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Ceff = CM + fGPL

〈(
C̃GPL − CM

)
Ã
〉

, (1)

where CM and CGPL are the stiffness tensors of polymer matrix and GPL, respectively, I is the identity
tensor, f GPL is the volume fraction of the GPL, and the angle bracket ‹ › denotes term averaging over all
orientations in the global coordinates system of the RVE (i.e., X1, X2 and X3). To simplify the modeling
in the present work, the stiffness tensors for GPLs and polymer are reduced to the forms without
involvement of tangent stiffness, that is, CM = EMI and C̃GPL = (Ein, Eout, Ein)I, where EM is Young’s
modulus of the polymer matrix and Ein and Eout are the in-plane and out-of-plane Young’s moduli
of the GPLs, respectively. Ã is the mechanical concentration tensor in the local coordinate system of
the filler (i.e., x1, x2, x3). Using the Mori–Tanaka micromechanics model, the concentration tensor is
written as

Ã = T̃
{
(1 − vGPL)I + fGPLT̃

}−1
, (2)

where T̃ =

{
I + S̃

(
C̃M

)−1(
C̃GPL − CM

)}−1
with S being the Eshelby tensor of GPL. For uncoupled

behaviour, this Eshelby tensor is

S =

 S11 0 0
0 S22 0
0 0 S33

, (3)

where S11 = S33 = πtGPL
4dGPL

and S22 = πtGPL
2dGPL

, respectively. The average of the concentration tensor over
all orientations in Equation (1) can be integrated as

〈
Ã
〉
=

∫ 2π
0

∫ π
0 Ãρ(ϕ, θ) sin θdθdϕ∫ 2π

0

∫ π
0 ρ(ϕ, θ) sin θdθdϕ

, (4)

where ϕ and θ are polar and azimuth angles, respectively, defining the orientation of GPL in the
polymer matrix, and ρ(ϕ, θ) is the orientation distribution function (ODF) which denotes the probability
density of the distribution of GPLs. In particular, ρ(ϕ, θ) is equal to unity for random distribution,
denoting a uniform distribution of GPLs along any orientation.Polymers 2017, 9, 532  3 of 14 
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Figure 1. Sketch of a microscale RVE containing GPLs.

All quantities in the local coordinate system (x1, x2, x3) can be transformed into the global
coordinate system by using a transformation matrix, that is, [45]

Q =

 sin θ cos ϕ − cos θ cos ϕ sin ϕ

sin θ sin ϕ − cos θ sin ϕ − cos ϕ

cos θ sin θ 0

. (5)
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Then, the average of the concentration tensor in the global coordinate system can be transformed
from its counterpart in the local coordinate system [42,46–48] as

A = QTT̃Q
{
(1 − fGPL)I +

fGPL

4π

∫ 2π

0

∫ π

0

{
QTT̃Q

}
sin θdθdϕ

}−1

. (6)

Combining Equations (1)–(5), the overall elastic stiffness of GPL/polymer composites can be
written as

Ceff = CM +

∫ 2π
0

∫ π
0 ρ(ϕ, θ) fGPL(CGPL − CM)A sin θdθdϕ∫ 2π

0

∫ π
0 ρ(ϕ, θ) sin θdθdϕ

, (7)

where CGPL = QTC̃GPLQ is the GPL’s stiffness tensor in the global coordinate system.

3. Orientation Distribution Function (ODF)

As mentioned in the Introduction section, spatial orientation of reinforcing nanofillers has
significant effects on the mechanical properties of the composites. To quantify the orientation of
the fillers, ODF is introduced into the micromechanics model as defined in Equation (7). Particularly,
this ODF is unity in case of random and uniform distribution. However, when subjected to mechanical
deformation, the ODF, describing the distribution of the reinforcements in the polymer matrix, will no
longer be constant but will vary under the applied stretching strain. In what follows, a reorientation
model will be adopted to derive the new ODF in terms of the stretching strain and two Euler angles.
Regardless of the nanofiller orientation, an ODF is required to satisfy the following conditions [49,50]

ρ(ϕ, θ) ≥ 0 and
1

4π

∫ 2π

0

∫ π

0
ρ(ϕ, θ) sin θdθdϕ = 1. (8)

When the composites undergo deformation, the fillers dispersed in polymer matrix will be
reoriented due to the load transferred from the matrix. This will result in variations of the filler’s
orientation angles, ϕ and θ, and the ODF as well. Figure 2 shows a cell containing a GPL filler before
and after a uni-axial stretching strain ε in X3 direction. After stretching, the infinitesimal strains in the
three dimensions are written as

dε1 =
dx1

x1
, dε2 =

dx2

x2
, dε3 =

dx3

x3
= dε. (9)
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Integrating the three infinitesimal strains over the corresponding elongations, that is, ∆l, ∆w and
∆h, the strains in X1 and X2 directions are derived as ε1 = ε2 = (1 + ε)−ν − 1. Then, the dimensions of
the cell become

l = l0(1 + ε), w = w0(1 + ε)−ν and h = h0(1 + ε)−ν, (10)

where l0, w0 and h0 are the original lengths of the cell before stretching, and ν is Poisson’s ratio of
the composite. Theoretically, Poisson’s ratio in Equation (10) is dependent on both the orientation
and concentration of GPLs. For composites with random distribution of nanofillers, their Poisson’s
ratios can be estimated by using the rule of mixture. However, limited work has been done on the
determination of Poisson’s ratio in terms of GPL orientation. It is easily understood that Poisson’s ratio
of the composite is expected to fall within the range of the values of GPL and the polymer, regardless of
the composition of the composites and the orientation of the reinforcements. Therefore, to simplify the
modeling, the dependency of Poisson’s ratio on GPL’s concentration and orientation is not considered
and three values, that is, 0.1, 0.3 and 0.5, are selected instead to study the influence of Poisson’s ratio
on the mechanical properties of the composites.

Due to GPL’s significantly higher stiffness compared to that of the polymer matrix, the deformation
of the composites is mainly sustained by the polymer while the composites are subjected to stretching.
With GPL’s volumetric expansion being neglected, its volume fraction in the composites is updated as

fupdate =
V0 fGPL

V
=

fGPL

(1 + ε)1−2ν
, (11)

where V0 and V are the volumes of the cell in Figure 2 before and after stretching, respectively.
In particular, the volume fraction of GPLs will not change after stretching due to the fact that the
composites are incompressible with Poisson’s ratio 0.5.

Under the assumption of perfect bonding without slip between the GPL and the polymer matrix,
the GPL inside the cell tends to realign along the stretching direction under the uni-axial stretching,
which results in an increase in the polar angle from θ to θs. However, the variation of the azimuth
angle, ϕ, can be neglected in this case [51,52]. The updated polar angle θs can be derived in terms of
the initial polar angle θ as

θs = arctan
[
(1 + ε)−(1+ν) · tan θ

]
. (12)

The change of the polar angle after stretching indicates that GPLs tend to realign along the
stretching direction, leading to a variation in ODF. For a limiting case, the fillers in the polymer matrix
would be perfectly aligned along the stretching direction if the strain is sufficiently large. To determine
the new ODF after stretching, it is assumed that there are G nanofillers distributed in the RVE, as shown
in Figure 1. The total number of fillers dispersed in the ranges of (θ, θ + dθ) and (ϕ, ϕ + dϕ) in the RVE
can be written [51] as

dN
θ, θ + dθ

ϕ, ϕ + dϕ

=
1

4π
Gρ(ϕ, θ) sin θdθdϕ. (13)

After a stretching, these fillers will be reoriented within the ranges of (θs, θs + dθs) and (ϕ, ϕ + dϕ),
and the total number [52] is

dN
θs, θs + dθs

ϕ, ϕ + dϕ

=
1

4π
Gρ(ϕ, θs) sin θsdθsdϕ = dN

θ, θ + dθ

ϕ, ϕ + dϕ

. (14)

Using Equation (12) and substituting sinθs and dθs into Equation (14), the new ODF ρ(ϕ, θs) is
derived as

ρ(ϕ, θs) =
(1 + ε)

1+ν
2[

(1 + ε)−(1+ν) cos2 θs + (1 + ε)1+ν sin2 θs

]3/2 . (15)
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As expected, the new ODF ρ(ϕ, θs) in Equation (15) reduces to unity in the absence of deformation,
that is, ε = 0. Figure 3 demonstrates the variation in the ODF with polar angle for different Poisson’s
ratios and stretching strains. From Figure 3a, it is seen that more GPLs tend to reorient along the
stretching direction as the strain increases, which is indicated by the increasing peaks at θs = 90◦.
Figure 3b investigates the effect of Poisson’s ratio on the ODF. It is found that an increased Poisson’s
ratio enhances the realignment of GPLs along the stretching direction. The enhancement of the
reorientation behavior can be explained by the dependency of the new polar angle on Poisson’s ratio
and the stretching strain, as defined in Equation (12).
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4. Results and Discussion

The micromechanics model in this current work is first validated. The material properties are
chosen as those used by Wang et al. [41] in their experiments. Two grades of GPLs with the same
thickness but different diameters, that is, GnP-5 and GnP-C750, are employed to fabricate GPL/epoxy
nanocomposites. GnP-5 has an average diameter dGPL = 5 µm, thickness tGPL = 5–10 nm and surface
area of 150 m2/g. GnP-C750 has the same thickness as GnP-5 but its diameter is smaller than 1 µm
with a surface area of 750 m2/g. Epoxy 828 is used as the polymer matrix with m-phenylene diamine
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(m-PDA) as the curing agent. After the process of stirring, sonication and milling, the final product
demonstrated the appearance of a homogeneous mixture with well-dispersed GPLs. Young’s modulus
of the epoxy is EM = 2.72 GPa and the in-plane Young’s modulus of GPLs is Ein = 1.0 TPa. The mass
densities of the epoxy and GnP are ρM = 1.2 g/cm3 and ρGPL = 2.0 g/cm3 [40,41]. GPL’s out-of-plane
Young’s modulus Eout is predicted to be in the range of 20–60 GPa [13], which is argued to be the
modulus of exfoliation in the graphite c-axis (out-of-plane) [40,53]. Figure ?? shows the variation
of Young’s modulus change ratio ζ = (ECS − EC0)/EC0 with the out-of-plane Young’s modulus for
stretching and transverse directions. ECS and EC0 denote the overall Young’s moduli of the composites
before and after stretching, respectively. It can be seen from this figure that Young’s moduli of the
composites in the stretching and transverse directions are not sensitive to the out-of-plane Young’s
modulus of GPLs, which agrees with the previously reported observations [11–13]. It should be
noted that GPL/epoxy composites can only sustain a maximum stretching strain of ~5%. However,
the stretching strain for certain polymer matrices, such as Polydimethylsiloxane (PDMS) and rubber,
can reach over 100%. For a theoretical study of the orientation effect on Young’s modulus of the
composites, a maximum strain of 10% is applied in the present work.
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To validate the Mori–Tanaka micromechanics model, the present results are compared with
the experimental data [41]. The dimensions of the two grades of GPL are set as dGPL = 5 µm and
tGPL = 7.5 nm for GnP-5 and dGPL = 0.5 µm and tGPL = 2 nm for GnP-C750. It is found from Figure 5
that both experimental and theoretical results indicate that GPLs with a larger aspect ratio have
better reinforcing effect on Young’s modulus of the composites compared to their counterparts
with a smaller aspect ratio. This phenomenon was explained by Wang et al. [41], that a larger
aspect ratio facilitates better load-transfer from the matrix to GPL, thus leading to a higher modulus.
Compared with experimental results, the micromechanics model overestimates Young’s modulus
for both GnP-5/Epoxy and GnP-C750/Epoxy composites. Such overestimation can be attributed to
several reasons. Firstly, it is assumed in the micromechanics model that GPLs are flat disks randomly
and uniformly dispersed in the polymer matrix. However, GPLs usually exist in curvature and
agglomeration often happens due to their large aspect ratio and the van der Waals force among
neighboring GPLs. Both can lead to a reduction in Young’s modulus of the composites. Secondly,
the interaction between GPLs and polymer matrix is susceptive to the bubbles, contamination and
agglomerations produced during fabrication, which can result in a decreased bonding-strength and
load-transfer between the polymer matrix and GPLs. These factors, however, are not taken into account
in the model under the assumption of perfect bonding and no slipping.
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Figure 6 plots the variation of Young’s modulus change ratio with GPL weight fraction for the
composites under various stretching strains. With an increase in GPL weight fraction, Young’s modulus
increases in the stretching direction while it decreases in the transverse direction. This effect becomes
more significant when the composites are subjected to a bigger stretching strain. This is because for
composites with a higher GPL concentration, the latter tends to realign along the stretching direction.
Since GPL’s in-plane Young’s modulus is much higher than its counterpart in the out-of-plane direction,
the realignment due to stretching results in an increased Young’s modulus in the stretching direction
but a decreased Young’s modulus in the transverse direction. Therefore, the changes of Young’s
moduli in the two directions are more sensitive to higher stretching strain for composites with a greater
GPL concentration.
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Figure 6. Young’s modulus change ratio of GPL/Epoxy nanocomposites (a) stretching direction;
(b) transverse direction.

Figure 7 demonstrates that the variation in Young’s modulus in the stretching direction increases,
but the value in the transverse direction decreases. In addition, it can be seen that the change of Young’s
modulus becomes higher in both of the two directions at a bigger Poisson’s ratio. This phenomenon can
be attributed to the dependency of ODF on Poisson’s ratio of the composites as suggested in Figure 3,
which indicates that a higher Poisson’s ratio is beneficial for the reorientation of GPL reinforcements.
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Figure 7. Effect of stretching on Young’s modulus of GPL/Epoxy nanocomposites (a) stretching
direction; (b) transverse direction.

Figure 8 shows the effect of GPL dimension, in the form of diameter-to-thickness ratio dGPL/tGPL,
on the Young’s modulus change ratio of the composites subjected to different stretching strains. In this
example, the GPL thickness tGPL is fixed as a constant while the diameter dGPL varies. It is observed
that the Young’s modulus increases (decreases) dramatically in the stretching (transverse) directions
when the diameter-to-thickness ratio is approximately less than 500, that is, dGPL/tGPL ≤ 500. However,
further increase in dGPL/tGPL is seen to have a limited effect. This indicates that Young’s moduli of
the composites are more sensitive to the stretching for composites dispersed with smaller-sized GPLs.
This is due to the fact that at the same GPL concentration, a smaller size corresponds to more GPL
nanofillers dispersed in the matrix, which consequently results in more reorientations when subjected
to stretching. The sensitivity of Young’s modulus of the nanocomposites on the GPL weight fraction
is investigated in Figure 9. Similar to the trend as previously observed, stretching increases Young’s
modulus in the stretching direction while it reduces Young’s modulus in the transverse direction.
The change of Young’s modulus in both directions is more sensitive to the stretching for composites
with a greater GPL concentration.
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5. Conclusions

The effects of uni-axial stretching-induced GPL reorientation on Young’s moduli of GPL/polymer
composites are investigated by employing the Mori–Tanaka micromechanics model. The orientation
distribution of the GPLs in the polymer was characterized by ODF. It was found that GPLs tend to
realign along the stretching direction due to the deformation of the RVE when the composites are
subjected to stretching. The results show that GPL’s out-of-plane Young’s modulus has a limited effect
on the overall Young’s modulus of the nanocomposites, a higher Poisson’s ratio is beneficial for the
realignment of GPL nanofillers and such realignment increases Young’s modulus of the composites
in the stretching direction while it lowers Young’s modulus in the transverse direction. Given the
same stretching strain, larger-sized GPLs are preferred in achieving enhanced Young’s modulus in
the stretching direction. Moreover, the variations in Young’s modulus of the composites in both
stretching and transverse directions are more sensitive to the stretching when smaller GPLs in a greater
concentration are distributed in the matrix.
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