Polymers

Electronic Supporting Information

Correlating PSf Support Physicochemical Properties with the Formation of Piperazine-Based Polyamide and Evaluating the Resultant Nanofiltration Membrane Performance

Micah Belle Marie Yap Ang¹, Victor Jr. Lau², Yan-Li Ji^{1,3*} Shu-Hsien Huang^{1,4*}, Quan-Fu An⁵, Alvin R. Caparanga², Hui-An Tsai¹, Wei-Song Hung¹, Chien-Chieh Hu¹, Kueir-Rarn Lee^{1*}, and Juin-Yih Lai^{1,6}

- ¹ R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, Taoyuan 32023, Taiwan; mbmyang@gmail.com (M.B.M.Y.A.); huian@cycu.edu.tw (H.A.T.); wshung@cycu.edu.tw (C.C.H.); jylai@cycu.edu.tw (J.Y.L.)
- ² School of Chemical Engineering and Chemistry, Mapúa University, Manila 1002, Philippines; victorlau@yahoo.com (V.J.L.); arcaparanga@mapua.edu.ph (A.R.C.)
- ³ Center for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China;
- ⁴ Department of Chemical and Materials Engineering, National Ilan University, I-Lan 26047, Taiwan 2
- ⁵ Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China; anqf@bjut.edu.cn (Q.F.A.)
- ⁶ Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- * Correspondence: krlee@cycu.edu.tw; Tel.: +886-3-2654190

huangsh@niu.edu.tw; Tel.: +886-3-9317505

yanliji@zjut.edu.cn; Tel.: +86-571-88324135

The bulk porosity lists in the Table 1S. The PEG MW did not affect the bulk porosity (82.0–86.2 % range). For low-MW PEG, the majority of PEG was readily removed during the phase-inversion process, leaving behind a small amount of PEG. However, for high-MW PEG, the majority of PEG was retained in the support, and although the amount of PEG removed was smaller (compared with the case of low-MW PEG), its MW was higher, leading to the formation of bigger pores. Therefore, the effect of PEG MW on the bulk porosity was not substantial.

weights.									
Membrane	Bulk porosity (%)			Total membrane thickness ^a (μm)			Skin layer thickness ^b (nm)		
PSf	85.8	±	1.9	41.6	±	4.6	452.8	±	20.6
PSf-PEG200	86.2	\pm	2.3	48.1	\pm	2.8	719.2	±	16.1
PSf-PEG1k	82.0	±	2.1	51.7	±	5.7	860.9	±	33.6
PSf-PEG10k	85.2	\pm	2.0	62.9	±	2.4	2569.9	±	204.1
PSf-PEG20k	86.8	\pm	0.7	63.8	±	6.7	7466.8	±	300.3
PSf-PEG35k	85.5	±	2.0	66.8	±	4.1	18318.6	±	1030.2

Table S1. Physical characteristics of PSf support prepared using PEG with varying molecular weights

^aexcludes nonwoven layer.

^bmeasured from surface to macrovoid tip.