Supplementary Materials: Tailoring the Static and Dynamic Mechanical Properties of Tri-Block Copolymers through Molecular Dynamics Simulation

Zijian Zheng, Hongji Liu, Jianxiang Shen, Jun Liu, Youping Wu and Liqun Zhang

Figure S2. After enough equilibration $(1 \times 10^8 \text{ MD steps})$ with the NVT ensemble, the change of the potential energy (**a**–**c**), the variation of the mean squared end-to-end distance R_{end}^2 , and the radius of gyration R_g^2 of all three systems in the following $1 \times 10^6 \text{ MD steps}$ (**d**–**f**).

Figure S3. The snapshot of the A₅B₁₀A₅ tri-block copolymer with 48,000 beads.

Figure S4. The stress-strain behavior of the A₅B₁₀A₅ tri-block copolymer (48,000 beads) in three different directions.

1. Further Discussion

We have performed the case with a much longer chain length, which varies from A₁₆B₆₇A₁₇ to A₂₅B₅₀A₂₅, corresponding to the formation of the cylindrical and lamellar phases, respectively. The results are shown in Figures S5a and S6a. Obviously, the stress-strain behavior of these two systems exhibits anisotropic behavior, as displayed in Figures S5b and S6b.

Figure S5. (a) The self-assembly process of the microstructure of A16B63A17 tri-block copolymer; (b) The stress-strain behavior of the tri-block copolymer along three different directions.

Figure S6. (a) The self-assembly process of the microstructure of A25B50A25 tri-block copolymer; (b) The stress-strain behavior of the tri-block copolymer along three different directions.