Next Article in Journal
Tannic Acid as a Bio-Based Modifier of Epoxy/Anhydride Thermosets
Previous Article in Journal
Recent Advances for Flame Retardancy of Textiles Based on Phosphorus Chemistry
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Polymers 2016, 8(9), 320; doi:10.3390/polym8090320

Potential Biomedical Application of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges—Biocompatible Scaffolds Inducing Chondrogenic Differentiation of Human Adipose Derived Multipotent Stromal Cells

1
Department of Animal Products Technology and Quality Management, Faculty of Food Science, Wrocław University of Environmental and Life Sciences, 37 Chelmonskiego St., 51-630 Wrocław, Poland
2
Department of Environment Hygiene and Animal Welfare, The Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 38 C Chelmonskiego St., 50-630 Wrocław, Poland
3
Wroclaw Research Centre EIT+, Stablowicka 147, 54-066 Wroclaw, Poland
*
Author to whom correspondence should be addressed.
Academic Editors: Frank Wiesbrock and Katja Loos
Received: 12 May 2016 / Revised: 30 July 2016 / Accepted: 12 August 2016 / Published: 26 August 2016
View Full-Text   |   Download PDF [8570 KB, uploaded 26 August 2016]   |  

Abstract

Current regenerative strategies used for cartilage repair rely on biomaterial functionality as a scaffold for cells that may have potential in chondrogenic differentiation. The purpose of the research was to investigate the biocompatibility of enzymatically treated alginate/chitosan hydrosol sponges and their suitability to support chondrogenic differentiation of human adipose derived multipotent stromal cells (hASCs). The alginate/chitosan and enzyme/alginate/chitosan sponges were formed from hydrosols with various proportions and were used as a biomaterial in this study. Sponges were tested for porosity and wettability. The porosity of each sponge was higher than 80%. An equal dose of alginate and chitosan in the composition of sponges improved their swelling ability. It was found that equal concentrations of alginate and chitosan in hydrosols sponges assure high biocompatibility properties that may be further improved by enzymatic treatment. Importantly, the high biocompatibility of these biomaterials turned out to be crucial in the context of hydrosols’ pro-chondrogenic function. After exposure to the chondrogenic conditions, the hASCs in N/A/C and L/A/C sponges formed well developed nodules and revealed increased expression of collagen type II, aggrecan and decreased expression of collagen type I. Moreover, in these cultures, the reactive oxygen species level was lowered while superoxide dismutase activity increased. Based on the obtained results, we conclude that N/A/C and L/A/C sponges may have prospective application as hASCs carriers for cartilage repair. View Full-Text
Keywords: sponges; adipose derived multipotent stromal cells; biocompatibility; chondrogenic potential; oxidative stress markers sponges; adipose derived multipotent stromal cells; biocompatibility; chondrogenic potential; oxidative stress markers
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zimoch-Korzycka, A.; Śmieszek, A.; Jarmoluk, A.; Nowak, U.; Marycz, K. Potential Biomedical Application of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges—Biocompatible Scaffolds Inducing Chondrogenic Differentiation of Human Adipose Derived Multipotent Stromal Cells. Polymers 2016, 8, 320.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top