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Abstract: A Finsler geometric surface model is studied as a coarse-grained model for membranes
of three components, such as zwitterionic phospholipid (DOPC), lipid (DPPC) and an organic
molecule (cholesterol). To understand the phase separation of liquid-ordered (DPPC rich) Lo and
liquid-disordered (DOPC rich) Ld, we introduce a binary variable σ(= ±1) into the triangulated
surface model. We numerically determine that two circular and stripe domains appear on the
surface. The dependence of the morphological change on the area fraction of Lo is consistent with
existing experimental results. This provides us with a clear understanding of the origin of the line
tension energy, which has been used to understand these morphological changes in three-component
membranes. In addition to these two circular and stripe domains, a raft-like domain and budding
domain are also observed, and the several corresponding phase diagrams are obtained.

Keywords: biological membranes; multi-component; phase separation; liquid-ordered;
liquid-disordered; line tension; Monte Carlo; surface model; Finsler geometry

1. Introduction

Membranes of multiple components, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),
dipalmitoylphosphatidylcholine (DPPC) and cholesterol, are receiving widespread attention because of
their applications in many fields of science and technology, and numerous studies on the morphological
changes have been conducted [1–6]. In these membranes, morphological changes are induced by
a phase separation. Indeed, the phase separation causes domain formation and domain pattern
transition between the liquid-ordered (Lo) and the liquid-disordered (Ld) phases. This domain pattern
transition accompanies the morphological changes, such as the two circular domains, the stripe domain,
the raft domain and the so-called budding domain [5,6]. The multiplicity of components, as in a glass
transition [7], is essential for such a variety of morphologies. To date, these morphologies have been
studied on the basis of the line tension energy [3,4] in the context of the Helfrich–Polyakov (HP) model
for membranes [8,9]. The line tension energy is defined on the domain boundary and has an important
role in the morphological changes [3,4].

However, the origin of the line tension energy is not well understood. In fact, it is unclear what
type of internal structure is connected to the line tension energy until now. The problem that should be
asked is where the line tension energy originates. Therefore, in this paper, we clarify and discuss the
microscopic origin of the line tension energy.

To understand the origin of the line tension energy, we introduce a new degree of freedom σ(=±1)
to represent the Lo and Ld phases. The Ising model Hamiltonian, which we call aggregation energy,
for the variable σ is included in the general HP model Hamiltonian, where the “general” HP model
refers to the HP model with a nontrivial surface metric gab(,δab). Note that the general HP model
can be discretized on triangulated surfaces and becomes well defined only when it is treated in the
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context of Finsler geometry [10–12]. Moreover, note that our strategy towards the multi-component
membrane in this paper is a coarse-graining of the detailed information on the chemical structures of
DOPC, DPPC and cholesterol and on the interaction between them with the help of the variable σ and
the HP surface model. In addition, from the viewpoint of modeling, it is very natural to extend the
HP model to the general HP model for explaining the morphological changes in multi-component
membranes. Indeed, the HP model is considered as a straightforward extension of the linear chain
model for polymers [13].

The remainder of this paper is organized as follows. In Subsection 2.1, we introduce the continuous
Hamiltonian, which is identical to the Polyakov Hamiltonian [8]. In Subsection 2.2, we introduce
the two-component surface model, which is defined by including the aggregation energy in the
Hamiltonian of the FG surface model. The aggregation energy is defined by the variable σ, which is
introduced to label the triangles with Lo and Ld. The Monte Carlo (MC) technique is briefly discussed
in Section 3, and the MC results are presented in Section 4. Finally, we summarize the results in
Section 5. In Appendix A, we describe the technical details of the FG modeling. In Appendix A.1,
the discretization of the continuous model introduced in Subsection 2.1 is described, and a discrete
model is obtained. From this discrete model, we obtain the model for two-component membranes by
imposing a constraint on the metric function. In Appendix A.2, we show that the models constructed
in Appendix A.1 are ill defined in the conventional modeling and that the models become well defined
only in the context of Finsler geometry modeling.

2. Two-Component Surface Model

2.1. Continuous Surface Model

We begin with a continuous surface model, which is defined by the Polyakov Hamiltonian or the
Gaussian energy S1 for membranes and the bending energy S2 with a metric g(x), where x=(x1, x2) is
the local coordinate of the two-dimensional parameter space M [14]. Both of the energies are defined
by the surface position r(∈ <3), such that:

S1 =

∫
√

gd2xgab ∂r
∂xa
·
∂r
∂xb

,

S2 =
1
2

∫
√

gd2xgab ∂n
∂xa
·
∂n
∂xb

,
(1)

where g is the determinant of the 2 × 2 matrix gab of the metric function and gab is its inverse [14].
The symbol n denotes a unit normal vector of the surface. Both S1 and S2 are conformally invariant.
The conformal invariance is a property in which a scale change gab(x)→ f (x)gab(x) is not reflected in
both S1 and S2 for any positive function f . Two metrics g and g′ are called “conformally equivalent” if
a function f (x) exists, such that g′ab= f (x)gab [14].

For the case where gab(x) is given by the Euclidean metric gab = δab (or the induced metric
gab = ∂ar · ∂br), the surface shape r in <3 is treated from the perspective of statistical mechanics.
These are the HP model [8,9] corresponding to polymerized membranes, and the HP model and the
Landau–Ginzburg model [15] have been thoroughly investigated [16–22].

2.2. Discrete Model

First, in this subsection, let us introduce a new degree of freedom σ, which has only two different
values (σ=±1), on the triangulated lattice (see Figure A1 in Appendix A). We assume that the variable
σi is defined on the triangle ∆i, and moreover, the values of σi correspond to two different phases,
namely the liquid-ordered (Lo) and the liquid-disordered (Ld) phases, such that:

σ(∆) =

{
1 (∆ ∈ Lo)

−1 (∆ ∈ Ld) .
(2)
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This definition of σ implies that every triangle is labeled by the value of σ, and therefore,
σ represents the phase (or domain) to which the triangle ∆ belongs.

We now introduce a discrete Hamiltonian for multi-component membranes. The technical details
of the discretization of the continuous Hamiltonian S1 and S2 introduced in Subsection 2.1 are described
in Appendix A.1, and the discrete expressions for S1 and S2 are given in Equation (A8) in Appendix A.1.
Using these S1 and S2, we have the total Hamiltonian S, such that:

S (r, σ) = λS0 + S1 + κS2,

S0 (σ) =
∑

i j

(
1− σi · σ j

)
,

S1 (r, σ) =
∑

i j

γi j(σ)`
2
i j,

S2 (r, σ) =
∑

i j

κi j(σ)
(
1− ni · n j

)
,

(3)

where S (r, σ) denotes that the Hamiltonian depends on the variables r(∈ <
3) and σ.

The three-dimensional vector r denotes the vertex position of the triangulated lattice. The energy
λS0 is called the aggregation energy. When λ→ 0, the variable σ becomes random, and this random
configuration simply corresponds to the coexistence phase, where Lo and Ld are not separated.
Conversely, when λ becomes sufficiently large, two neighboring σ’s have the same σ, and this
configuration corresponds the phases where Lo and Ld are separated. As described above, the second
and third terms S1 and S2 in S are the discrete Hamiltonians corresponding to the continuous ones
introduced in Section 2.1. The coefficient κ of S2 is the bending rigidity and has units of [1/kBT], where
kB and T are the Boltzmann constant and the temperature, respectively. In this paper, we assume that
kBT=1. The symbol ni in S2 expresses a unit normal vector of the triangle i. The symbols γi j(σ) and
κi j(σ) denote that γi j and κi j depend on the variable σ, and this dependence arises from an interaction
between σ and r. The interaction between σ and r is defined by the function ρ (see Equation (A1) in
Appendix A.1), such that:

ρ(∆) =

{
c (∆ ∈ Lo ⇔ σ(∆) = 1)
1 (∆ ∈ Ld ⇔ σ(∆) = −1) ,

(4)

where c is a parameter that should be fixed at the beginning of the simulations.
From this definition of ρ(∆) and Equation (A9) in Appendix A.1, we have (see Figure 1):

γi j = κi j =
ci + c j

4
=

1
4

(
ρi +

1
ρi

+ ρ j +
1
ρ j

)

=


(c + c−1)/2

[
σi = σ j = 1 : (Lo, Lo)

]
(2 + c + c−1)/4

[
σiσ j = −1 : (Lo, Ld)

]
1

[
σi = σ j = −1 : (Ld, Ld)

]
.

(5)
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Lo Ld

Ld Lo

Ld Ld

Figure 1. The dependence of κi j and γi j on four possible combinations of Lo and Ld: (a) κi j = γi j =

(c+c−1)/2 on (Lo, Lo); (b) κi j = γi j = (2+c+c−1)/4 on (Lo, Ld); and (c) κi j = γi j = 1 on (Ld, Ld).
(Lo,d, Lo,d) correspond to the bonds represented by the duplicated lines.

These expressions represent how the effective surface tension γi j and bending rigidity κκi j depend
on the position of the bond i j, which is one of the three domain boundary bonds (Lo, Lo), (Lo, Ld) and
(Ld, Ld). The symbol (Lo, Ld) refers to the bond shared by the two neighboring triangles of the Lo and Ld
phases (see Figure 1). Note that only (Lo, Ld) corresponds to the bond on the domain boundary, and the
other two correspond to the bonds inside the domains Lo and Ld. From the expressions of γi j and κi j in
Equation (5), we understand that the dependence of γi j and κi j on the domains and their boundary is
automatically determined. Thus, this expression is one of the most interesting outputs of the model in
this paper. The values of γi j and κi j depend on the parameter c, which is an input parameter.

In Figure 2, γi j(=κi j) for (Lo, Lo), (Lo, Ld) and (Ld, Ld) are plotted as functions of c in the region 1≤c.
The expressions of γi j and κi j in Equation (5) are symmetric under the exchange c↔1/c, and therefore,
we use the value of c rather than 1/c to represent γi j and κi j. The curve of γi j(=κi j) against c is almost
linear except for the region c'1. The dashed vertical lines in the figure correspond to c=5 and c=8.37,
which are assumed in the simulations.

0 5 10
0

2

4

6

c

γij,κij
(Lo,Lo)

(Lo,Ld)

(Ld,Ld)

Figure 2. Three different values of γi j and κi j vs. c, where κi j =γi j =(c+c−1)/2 on the (Lo, Lo) boundary,
κi j =γi j =(2+c+c−1)/4 on the (Lo, Ld) boundary and κi j =γi j =1 on the (Ld, Ld) boundary. The dashed
lines denote the values of c assumed in some of the simulations.

The fluid surface model is defined by the sum over all possible triangulations
∑
T in the partition

function, such that:

Z(λ,κ) =
∑
T

∫
′ N∏

i=1

dri exp [−S(r, σ)] , (6)
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where the prime in
∫
′

denotes that the center of mass of the surface is fixed at the origin of <3 to
protect the surface translation. The dynamical triangulation, denoted by

∑
T , is performed using the

bond flip technique [23–28]. Due to this bond flip, the vertices can freely diffuse over the surface,
where two neighboring triangles merge and split into two different ones, and the total number of
triangles remains unchanged in this process. Therefore, not only the vertices, but also the triangles
diffuse over the surface.

Note that the metric variable, or in other words, the function ρ, is not summed over (or integrated
out) in Z; hence, strictly speaking, it is not a dynamical variable. However, the metric variable ρ is
effectively considered as dynamical in the sense that ρ changes its value on the surface due to the
diffusion of triangles.

Moreover, note that the aggregation energy λS0 simply corresponds to the line tension energy
in [3,4]. Indeed, the energy 1−σi · σ j at the bond i j has a non-zero positive value only when the bond is
on the domain boundary between Lo and Ld. More precisely, S0 is proportional to the total number of
bonds that form the domain boundary because the mean bond length is constant (or non-zero finite)
on the boundary.

We comment on the reason why λS0 is considered as the line tension energy in more detail.
First, the fact that the mean bond length becomes constant is understood from the scale-invariant
property of the partition function Z in Equation (6). Indeed, we have 〈S1〉/N = 3/2 [29]. It is
easy to see that this relation is satisfied: Z is independent of the scale change r→ αr for arbitrary
α ∈ <, and therefore, we have dZ(α)/dα

∣∣∣
α=1 = 0. Because Z(α)=α3N−1 ∑

T

∫
′∏N

i=1 dri exp [−S(αr)],
S(αr)=λS0+α2S1+κS2, we have S1/N=1.5 for sufficiently large N. The relation 〈S1〉/N=3/2 means
that 〈γi j`

2
i j〉 is constant. This implies that 〈`2

i j〉, and hence, 〈`i j〉 becomes constant. This constant 〈`i j〉

varies depending on whether the bond i j belongs to Lo, Ld or the boundary between Lo and Ld because
the coefficient γi j varies depending on these domains and the domain boundary, as in Equation (5).
For this reason and because 〈γi j`

2
i j〉=constant, we understand that the bond length on the boundary

between Lo and Ld becomes well defined (or non-zero finite). Importantly, the mean bond length is
expected to be finite, although it fluctuates around the mean value, and the mean value itself varies
depending on the domains or the domain boundary. Therefore, λS0 is considered to be an extension
of the line tension energy because S0 is proportional to the length of the phase boundary if the two
phases are clearly separated as the domains Lo and Ld at least.

The remaining problem to be clarified is how the domain boundary is formed on the triangulated
surfaces. During experiments, the area fraction of Lo (and Ld) is fixed [3]. Hence, in our model, the
total number of triangles No

T for σ=1 (and Nd
T for σ=−1) is fixed, where the total number of triangles:

NT =No
T + Nd

T (7)

is also fixed to be constant (because NT = 2N−4 and the total number N of vertices is fixed).
The relation between the area fraction of Lo and the fraction of No

T will be described in the next section.
Another constraint imposed on the triangles in our model is that the value of σi of triangle i remains
unchanged for all i during the simulations. Therefore, the triangles themselves have to diffuse over
the surface to form the Lo and Ld domains. This triangle diffusion is numerically possible on the
dynamically-triangulated surfaces, which are called triangulated fluid surfaces, via the Monte Carlo
(MC) technique with dynamical triangulation, as described above [23–28].

The function ρ(∆) in Equation (4) characterizes the difference between the phases Lo and Ld of ∆,
and these two different phases are labeled by the variable σ(∆) as in Equation (2). Therefore, the model
in this paper is limited to membranes with two-component domains; however, the modeling technique
is applicable to membranes with multi-component domains. Here, we comment on how to extend the
model to a n-component model. To extend the two-component model, we have to define the value of
ρ(∆) for the n-component model, such that ∆ ∈ Li(1≤ i≤n) (see Equation (4)), where {L1, L2, · · · , Ln} is
the set of domains assumed. In this case, the variable σ(∆) should be n components, and therefore,



Polymers 2016, 8, 284 6 of 18

the corresponding energy term λS0 in Equation (3) should also be extended. The Hamiltonian of the
n-states Potts model, for example, can be used for S0. Hamiltonians of continuous models, such as
the Heisenberg spin model, can also be assumed for S0, where the continuous variable σ(∆) should
be connected in one-to-one correspondence with the n-component function ρ(∆) (see Equation (4)).
In these n-component models, the energy λS0 is still expected to play the role of line tension energy
between two different domains, because λS0 becomes zero (nonzero) if the phases of two neighboring
triangles are identical to (different from) each other. The parameters κi j and γi j are given by the same
expression in Equation (A9); however, the final expression of these parameters in the n-component
model are in general different from those in Equation (5) because of the dependence of the parameters
on the definition of ρi. Indeed, the parameters κi j and γi j in the n-component model will be different
from those determined by the single parameter c in the two-component model.

3. Monte Carlo Technique

The canonical Metropolis technique is used [30,31]. The vertex position r is updated, such that
r′= r+δr. The symbol δr denotes a random three-dimensional vector in a sphere of radius R. The new
position r′ is accepted with probability Min[1, exp(−δS)], where δS=S(new)−S(old). The radius R of
the small sphere is fixed such that the acceptance rate for the update of r is approximately equal to 50%.

The triangulation T is updated using the bond flip technique, as described in the previous
section [23–28]. We use the same technique used in [23–28], except for the following constraint. In the
bond flip, the two neighboring triangles of the bond change to a new pair of triangles, such that the
fraction φ0 of Lo (or Ld) remains unchanged, where φ0 is defined by:

φ0 = No
T/NT. (8)

More precisely, if the two triangles have the same value of σ prior to the bond flip, then the new
values of σ for the new triangles are fixed to be the same as the old one. However, if the values of σ
are different from each other before the bond flip, then the new values are also fixed randomly to be
different. Only through this process is the variable σ updated. Due to this update of σ through the
dynamical triangulation, the function ρ changes, and hence, a domain structure of Lo (or Ld) is formed
on the surface.

We comment on the relation between the fraction φ0 and the area fraction of Lo. As described in
the previous section, the mean triangle areas ao and ad in the domains Lo and Ld are constant because
of the scale invariance of Z. Therefore, the area fraction of Lo can be written as No

Tao/(No
Tao+Nd

Tad),
which is identical to φ0=No

T/NT if ao=ad. However, the area fraction of Lo is not always reflected in
the fraction φ0 if ao,ad.

The initial configuration for the simulations is fixed to be the random phase, where the Lo (or Ld)
triangles are randomly distributed on the surface under a constant ratio φ0. This random state
corresponds to the two-phase coexistence configuration.

A single Monte Carlo sweep (MCS) consists of N updates of r and of N updates for the bond
flips. The total number of MCS that should be performed depends on the parameters; it ranges from
approximately 1× 108 to 8× 108. The numbers of MCS for almost all simulations are 2× 108

∼3× 108.
The simulations at the phase boundaries are relatively time consuming in general because the domain
structure and, hence, the surface shape change very slowly at these boundaries. The total number of
vertices N is fixed to N=5762 in this paper.

4. Simulation Results

Two types of models, which are denoted as Model 1 and Model 2, are simulated. The Gaussian
energy S1 =

∑
i j `

2
i j of the canonical surface model is assumed for Model 1. From this assumption,

the effective surface tension γi j for Model 1 is γi j = 1. Model 2 is the same as the one introduced
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in Section 2.2. The Gaussian energy S1 and the parameters γi j and κi j for Model 1 and Model 2 are
presented in Table 1.

Table 1. The Gaussian bond potential S1 and the parameters γi j and κi j assumed in Model 1 and
Model 2. (see Equation (A9) in Appendix A.1)

S1 γi j κi j

Model 1 S1=
∑

i j `
2
i j 1 (ci + c j)/4

Model 2 S1=
∑

i j γi j`
2
i j (ci + c j)/4 (ci + c j)/4

In Model 1, the surface shape is influenced only by κi j because γi j = 1. In contrast, in Model 2,
the coefficient γi j influences the surface size because S1 in Equation (3) has the unit of length squares.
Indeed, as described in Section 2, from the scale invariance of Z, we have 〈S1〉/N = 3/2 [29],
and therefore, `2

i j deviates from the constant expected from this relation if the constraint γi j=1 is not

imposed on γi j. For example, if γi j is large (small), then `2
i j becomes small (large). Therefore, due to

this dependence of `2
i j on γi j, the size of the triangles in Model 2 depends on the domains. By contrast,

there is no dependence of `2
i j on the domains in Model 1, where γi j=1 over the entire surface.

The input parameters for the simulations are λ, κ, c, and φ0, where c is the value of the function ρ
in Equation (4) and determines γi j and κi j. The parameter φ0 defined by Equation (8) is identical to the
area fraction in Model 1, whereas it differs from the area fraction in Model 2 because the triangle area
is not uniform in Model 2. More precisely, the mean triangle area in the Lo domain is different from
that in the Ld domain in Model 2. In Table 2, we show the parameters assumed in the simulations.
The values of κi j corresponding to the input c are listed in Table 3.

Table 2. The input parameters λ, κ, c and φ0 for the simulations.

λ κ c φ0

Model 1 0.03 ≤ λ ≤ 0.5 7 5 0.3 ≤ φ0 ≤ 0.8

Model 2 0.03 ≤ λ ≤ 0.8 10 8.37 0.7 ≤ φ0 ≤ 0.9
Model 2 3 7 ≤ κ ≤ 15 5 0.65 ≤ φ0 ≤ 0.95

Table 3. The input parameter c automatically defines the values of κi j and γi j, where γi j =1 for Model 1
and γi j =κi j for Model 2.

c κi j(Lo, Lo) κi j(Lo, Ld) κi j(Ld, Ld)

Model 1 5 2.6 1.8 1

Model 2 8.37 4.24 2.62 1
Model 2 5 2.6 1.8 1

4.1. Model 1

We first show a phase diagram on the λ−φo plane in Figure 3. The parameters κ and c are fixed
to κ=7 and c=5, as shown in Table 1, and λ is varied in its relatively small region. The dots (•) are the
data points where we perform the simulations to construct the phase diagram. We find that the two
phases Lo and Ld are not separated in the region λ < 0.1; the domain pattern is random; and the surface
is almost spherical, as observed in the snapshots. In contrast, in the region λ > 0.1, Lo and Ld are clearly
separated, and the two circular domains and the stripe domain appear. The domain structure depends
on the value of φ0, and the corresponding surface morphology appears to be almost discontinuously
separated on the phase diagram. We observe that the two circular domains change to the stripe domain
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as the fraction φ0, which is identical with the area fraction of Lo, increases for constant λ. This result
is consistent with the experimental results reported in [3], where the area fraction of Lo is changed.
The two circular domains and the stripe domain correspond to the Lo phase, where κi j is higher than
those of both the Ld domain and the boundary, as shown in Table 1. For this reason, the Lo domain is
relatively smooth compared to the Ld domain. The ratio κi j(Lo, Lo)/κi j(Ld, Ld)(=2.5∼4.3) assumed in
the simulations is almost comparable to the experimental prediction κi j(Lo, Lo)/κi j(Ld, Ld)(=1∼4) [3].

0.4 0.6 0.8

0.1

0.2

0.3

φo

λ
model 1:  κ=7, c=5

two circ stripe

random

Figure 3. A phase diagram of Model 1 on the λ − φo plane at κ= 7 and c = 5 and the snapshots of
surfaces obtained at the points indicated by the symbol (×). The solid lines denote the phase boundaries,
and the dashed lines denote the positions for the simulations for Figure 4a–c. The solid circles (•)
denote the data points of the simulations for the phase boundaries. The two circular domains and
the stripe domain correspond to the Lo phase, which is DPPC rich. The two separated domains on
the surface of the striped domain and the connected domain on the surface of two circular domains
correspond to the Ld phase, which is DOPC rich.

0.3 0.5 0.7

20

24

28

φ0

D2

(a)

model 1

κ=7
λ=0.2

two circ
stripe

0 0.2 0.4

20

24

28

λ

D2

(b)

model 1

κ=7
φ0=0.7

stripe

two
circ

random

0 0.2 0.4

0.026

0.028

λ

S2/NB

(c)

model 1

κ=7
φ0=0.7

two
circ

stripe

random

Figure 4. (a) The size D2 vs. φ0 at λ = 0.2; (b) D2 vs. λ at φ0 = 0.7; and (c) the bending energy
S2/NB vs. λ at φ = 0.7. These are calculated on the dashed horizontal and vertical lines in Figure 3.
The minor axis D2 and the bending energy S2/NB change almost discontinuously and smoothly at the
phase boundaries, which are denoted by the vertical dashed lines.
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Next, to show the dependence of the surface size on the parameters, we define semi-axis lengths
D1, D2 and D3 of the surface such that D1 > D2 > D3 as in Figure 5. D1 and D2, D3 correspond to the
major and minor axes, respectively. The surface of the stripe domain corresponds to the so-called
prolates, where D1 > D2 ' D3 is expected. It is also expected that D1 ' D2 > D3 in the so-called oblates,
which corresponds to the surface shape of the two circular domains. Therefore, the surfaces with the
stripe and two circular domains can be distinguished by the minor axis D2.

��

��

��

�� > �� > ��

Figure 5. The surface size is characterized by three diameters D1, D2 and D3, where D1 > D2 > D3.
The three axes are perpendicular to each other.

We plot D2 vs. φ0 in Figure 4a, where λ= 0.2. As shown, D2 discontinuously changes against
φ0 at the phase boundary between the two circular and stripe domains. From the plot of D2 vs. λ in
Figure 4b, we also observe that D2 discontinuously changes at the same phase boundary. The bending
energy S2/NB in Figure 4c also discontinuously changes at this boundary, and this result indicates that
this morphological change is considered as a first-order transition. However, note that the change
of the morphology at this phase boundary is relatively smooth. In fact, one circular domain surface,
which is not shown as a snapshot in Figure 3, can be observed at the boundary. This implies that the
stripe domain surface and one circular domain surface have the same bending energy, or in other
words, the bending energy is degenerate. Additionally, note that the phase boundary between the
two circular and random domains appears to be continuous. This means that the shape of the two
circular domain surfaces continuously changes to the random domain surface. At this phase boundary,
the surface shape continuously changes from pancake to sphere.

4.2. Model 2

In Model 2, not only κi j, but also γi j depend on the domain (or the domain boundary) whether it
is Lo or Ld. For this reason, the area of the triangles in the Lo domain becomes considerably smaller
than that in the Ld domain. Therefore, the fraction φ0 does not reflect the area fraction of Lo in this case.
In fact, it is easy to see that the area fraction of Lo in the snapshots at φ0 = 0.9 in Figure 6 is much
smaller than 90%. Nevertheless, the phase diagram on the λ−φ0 plane in Figure 6 appears almost the
same as that in Figure 3. The only difference between the two phase diagrams is the appearance of
one circular domain phase, denoted by “one circ” in Figure 6. This one circular phase is stable, where
“stable” means that the surface domain remains unchanged against a small variation of the parameters
inside the phase boundary. This is in sharp contrast to the one circular domain surfaces observed
at the region close to the boundary between the two circular and stripe domains because these one
circular surfaces are very sensitive to the parameter variation and, hence, “unstable”. The shape
of the one circular surface in the one circular region is almost spherical, such as the one shown in
Figure 6, and this result is in contrast to the result in [4], where the one circular phase is separated
into two phases: the prolate and oblate phases. One possible reason for why only a spherical surface
appears in the one circular domain in Figure 6 is because the Lo domain is hardly bent due to the high
ratio κi j(Lo, Lo)/κi j(Ld, Ld) = 4.24, which is slightly larger than the one 1 < κi j(Lo, Lo)/κi j(Ld, Ld) < 3
assumed in [4]. The parameters assumed on this plane are κ = 10 and c = 8.37, which are listed
in Table 2.
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Figure 6. A phase diagram of Model 2 on the λ−φo plane at κ = 10 and c = 8.37 and the snapshots of
surfaces obtained at the points indicated by the symbol (×). The solid lines on the phase diagram denote
the phase boundaries, and the dashed lines denote the positions for the simulations for Figure 7a–c.
The solid circles (•) denote the data points of the simulations for the phase boundaries.
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φ0
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(a)

model 2

κ=10
λ=0.5

two circ stripe

0 0.4 0.8
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λ

D2

(b)

model 2

κ=10
φ0=0.8

stripetwo circ

random

0.7 0.8 0.9

0.018

0.019

0.02

φ0

S2/NB

(c)

model 2

κ=10
λ=0.5

two circ
stripe

Figure 7. (a) The size D2 vs. φ0 at λ = 0.5; (b) D2 vs. λ at φ0 = 0.8; and (c) the bending energy S2/NB vs.
φ0 at λ = 0.5. These are calculated on the dashed horizontal and vertical lines in Figure 6. The size of
the surface changes almost discontinuously and smoothly at the phase boundaries, which are denoted
by the dashed lines.

The simulations are also performed on the λ−φ0 planes for larger κ, such as κ = 15 and κ = 20,
and with c = 8.37. The phase diagrams obtained in these simulations are (not shown) relatively close
to those shown in Figure 6; however, surfaces with three or four circular domains appear in the lower λ
region in the two circular domain phase. The bending energy κS2 of the three or four domains is lower
than that of the two circular domain; moreover, the aggregation energy λS0 of these multi-circular
domains is larger than that of the two circular domain. These are the reasons for the appearance of the
three or four domains only in the relatively small λ region in the simulations with relatively large κ.

To observe the variation of the surface size at the phase boundaries, we calculate the size D2

on the dashed lines in Figure 6 and plot them in Figure 7a,b. We determine that D2 discontinuously
changes against φ0 and λ at the phase boundaries, similar to that in Model 1 shown in Figure 4a,b.
Moreover, the phase boundary is also not as clear because of the same reason as that for Model 1.
In fact, the surface shape at the phase boundary between the two circular and stripe domains is not
always stable in Model 2, similar to that in Model 1. Figure 7c also shows that S2/NB discontinuously
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changes; however, the gap is very small, and these two phases are hence separated by a weak first-order
transition. The phase boundary between the two circular and the random domains is also expected to
be continuous in Model 2. The boundaries of one circular to two circular and one circular to stripe are
also not as clear, and the boundary of one circular to random is continuous.

Another difference between Model 1 and Model 2, other than the appearance of the stable one
circular domain, is the raft-like domain and the budding domain. More precisely, the budding domain
can also be seen in Model 1; however, it is more clear in Model 2. The phase diagram of Model 2 on the
κ−φ0 plane is drawn in Figure 8. The parameter λ is fixed to λ = 3, which is relatively large compared
to the previous one assumed in the simulations for Figures 3 and 6. Consequently, the energy λS0,
which is the line tension energy, at the phase boundary between L0 and Ld becomes large in the region
where κ is relatively small. This is the reason why the budding domain appears on this κ−φ0 plane
in Figure 8. Note that the budding domain in some of the budding surfaces goes inside the surface,
and some of them self-intersect because no self-avoiding interaction is assumed. Figure 8 also shows
that the raft-like domain is stable in the relatively large κ region, where the surface hardly deforms.
The reason why the raft domains, which are multi-circular domains, appear only at the region of
small φ0 is because the multi-circular domains are more energetically favorable than the stripe domain.
Indeed, the effective bending rigidity κκi j and, hence, κS2 become very large on the large connected Lo

domain, such as the stripe domain, where the line tension energy λS0 is relatively small. Note that S0

has a non-zero positive value only on the boundary bonds between Lo and Ld, while S2 has a non-zero
value on all of the bonds. Moreover, note that the boundary length between Lo and Ld becomes longer
(shorter) if the total number of circular domains increases (decreases), whereas the areas of Lo and Ld
remain constant and are independent of the total number of Lo domains.

Finally, we show that S1/N satisfies the relation S1/N = 1.5, which is expected by the scale
invariance of Z in Equation (6) [29]. As described in Section 2, the bond length is expected to be well
defined in the sense that the mean bond length is constant on the surface, although this constant
varies depending on the domains or the domain boundary to which the bond belongs. The data in
Figure 9a,b are obtained on the dashed lines in Figure 3, and those in Figure 9c,d are obtained on the
lines in Figure 6. These data shown in Figure 9 indicate that the simulations including the energy
discretization are successful.

0.7 0.8 0.9

8

10

12

14

φο

κ

budding

stripe
raft
like

model 2:  λ=3, c=5

Figure 8. A phase diagram of Model 2 on the κ−φo plane at λ= 3 and c = 5 and the snapshots of
surfaces obtained at the points indicated by the symbol (×). The solid lines on the phase diagram
denote the phase boundaries. The solid circles (•) denote the data points of the simulations for the
phase boundaries.
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1 
 

 

Figure 9. (a) The Gaussian energy S1/N vs. φ0 at λ = 0.2; (b) S1/N vs. λ at φ0 = 0.7 for Model 1;
(c) S1/N vs. φ0 at λ = 0.5; and (d) S1/N vs. λ at φ0 = 0.8 for Model 2. The data in (a) and (b) ((c) and
(d)) are obtained on the dashed lines in Figure 3 (Figure 6).

5. Summary and Conclusions

We have studied the phase separation of the three-component membrane with DPPC, DOPC
and cholesterol using a Finsler geometry (FG) surface model. The FG model is obtained from the
Helfrich–Polyakov (HP) model for membranes by replacing the surface metric with a general one
gab,δab, which can be called the Finsler metric. In other words, we have extended the HP model to
explain the morphological changes of the three-component membranes in the context of FG modeling.
This new model includes a new degree of freedom σ, which represents the liquid-ordered (Lo) and
liquid-disordered (Ld) domains. The results obtained from Monte Carlo (MC) simulations are consistent
with the experimental results that have been reported in the literature. We confirm the phase separation
of the Lo and Ld domains on the surface and that the surface shows a variety of morphologies, such as
the two circular domain, the stripe domain, the raft domain and the budding domain.

The line tension energy, which has been used for understanding the morphological changes,
simply corresponds to the aggregation energy term λS0 in our model. Indeed, the value of S0 is only
the total number of bonds on the boundary between Lo and Ld in our new model. Moreover, the fact
that λS0 is simply the line tension energy implies that the line tension originates from the interaction
between the domains because the interaction between the variables σ in S0 describes the interaction
between the domains. This interaction is closely connected to the property of the new model that
the surface strength, such as the surface tension and the bending rigidity, is dependent on the bond
position on the surface. This property arises from the interaction between σ and r introduced via the
Finsler metric.
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Abbreviations

The following abbreviations are used in this manuscript:

MC Monte Carlo
MCS Monte Carlo sweep
Lo Liquid-ordered
Ld Liquid-disordered
DOPC Dioleoylphosphatidylcholine
DPPC Dipalmitoylphosphatidylcholine
HP Helfrich and Polyakov
FG Finsler geometry

Appendix A. Finsler Geometry Modeling

Appendix A.1. Discrete Surface Model

To obtain the discrete model from the continuous surface model introduced in Section 2.1,
we assume that the surface is triangulated in <3. The Hamiltonian is defined on the triangulated
surfaces, which are composed of three simplexes, such as vertices, bonds and triangles. Thus,
all physical quantities, including Hamiltonians and the metric function, are defined on these simplexes
labeled by integers. For example, the vertex position ri is defined at the vertex i; the bond length `i j is
defined on the bond i j; and the elements of gab are defined on the triangle ∆. Note that the variable r is
considered as a mapping from the parameter space M to<3.

We start with the discrete metric gab, such that:

gab =

(
1/ρ 0
0 ρ

)
, ρ > 0, (A1)

where ρ is a function on a triangle ∆(⊂ <3) (see Figure A1a). More precisely, the elements of gab
are functions on the triangle ∆M(⊂ M), where M is the aforementioned two-dimensional space M
(independent of <3). We assume that M is also triangulated by the triangles ∆M. On this ∆M, an
orthogonal coordinate can be taken for any one of three vertices [14]. For this reason, the metric gab can
be diagonalizable. The inequality ρ> 0 in Equation (A1) is necessary for the positivity of the bond
length. This metric depends only on x and is independent of y, and hence, it simply corresponds
to the Riemannian metric. Indeed, this metric in Equation (A1) comes from the most general one,

such as gab =

(
E F
F G

)
, with the functions of E> 0, G> 0, EG−F2 > 0. By assuming F = 0, we have

gab=

(
E 0
0 G

)
=E

(
1 0
0 G/E

)
'

(
1 0
0 ρ2

)
'

(
1/ρ 0
0 ρ

)
, where ρ2=G/E and the symbol “'” denotes

conformally equivalent. Note that this expression of gab depends on the local coordinates on ∆, and
therefore, the expression of gab implicitly depends on the vertex of ∆ because the coordinate origin is
located on one of the vertices of ∆. In the discrete models that have been studied thus far, the Euclidean
metric gab=δab (or the induced metric gab=∂ar · ∂br) is always assumed as mentioned above, and it has
been reported that the model for polymerized membranes undergoes a discontinuous or a continuous
transition between the crumpled phase and the smooth phase [32–35].
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ℓ23ℓ31

(b)
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X3

(c)

1
2

3

1

2

∆+

∆−

Figure A1. (a) A triangle ∆ included in a triangulated sphere in <3; (b) the three nearest neighbor
triangles of ∆ and the unit normal vectors n0, n1, n2 and n3; and (c) the triangle orientation that defines
the direction-dependent bond potential γ12`

2
12 and γ21`

2
21 of the bond 12, where `12 =`21.

Let the vertex r1 of the central triangle ∆ in Figure A1b be the local coordinate origin in this ∆.
By replacing: ∫

√
gd2x→

∑
∆

,

∂r
∂x1
→ r2 − r1,

∂r
∂x2
→ r3 − r1,

∂n
∂x1
→ n0 − n2,

∂n
∂x2
→ n0 − n1,

(A2)

we have:

S1 =
∑
∆

S1 (∆) =
∑
∆

(
ρ`2

12 +
1
ρ
`2

13

)
,

S2 =
∑
∆

S2 (∆) =
∑
∆

[
ρ (1− n0 · n1) +

1
ρ
(1− n0 · n2)

]
,

(A3)

where ni(i=1, 2, 3) are the unit normal vectors shown in Figure A1b. The symbol `i j(= ` ji) is defined
by `i j= |r j−ri|. Note that the unit normal vector also represents the surface orientation; indeed, n0 is

defined by n0= ~̀12 × ~̀13/|~̀12 × ~̀13|, for example.
We have three possible coordinate origins in the triangles. For this reason, S1 and S2 can be

symmetrized by including the terms that are cyclic permutations, such as 1→2, 2→3, 3→1 for `i j, ni
and ρi. Summing over all possible terms and multiplying by a factor of 1/3, we obtain:

S1 =
1
3

∑
∆

[(
ρ1 +

1
ρ2

)
`2

12 +

(
ρ2 +

1
ρ3

)
`2

23 +

(
ρ3 +

1
ρ1

)
`2

31

]
,

S2 =
1
3

∑
∆

[(
ρ1 +

1
ρ2

)
(1− n0 · n1) +

(
ρ2 +

1
ρ3

)
(1− n0 · n3)

+

(
ρ3 +

1
ρ1

)
(1− n0 · n2)

]
,

(A4)

where ρi(i=1, 2, 3) are defined on the triangle ∆. The reason for why these three different functions ρi
are included is because the expression for gab generally depends on the local coordinate as mentioned
above. More precisely, ρi is the element of gab on ∆where the coordinate origin is located at vertex i.
For arbitrary gab, we always have the metric of the form in Equation (A1) by the same procedure as
described above.
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Here, we further simplify the model by assuming that:

ρ1 = ρ2 = ρ3(= ρ∆). (A5)

Thus, we have the expressions:

S1 =
1
3

∑
∆

(
ρ∆ +

1
ρ∆

) (
`2

12 + `2
23 + `2

31

)
,

S2 =
1
3

∑
∆

(
ρ∆ +

1
ρ∆

)
(1− n0 · n1 + 1− n0 · n2 + 1− n0 · n3) .

(A6)

Replacing the sum over triangles
∑
∆ with the sum over bonds

∑
i j, we obtain:

S1 =
1
3

∑
i j

(
ρi +

1
ρi

+ ρ j +
1
ρ j

)
`2

i j,

S2 =
1
3

∑
i j

(
ρi +

1
ρi

+ ρ j +
1
ρ j

) (
1− ni · n j

)
.

(A7)

Note that S1 and S2 defined by the sum over triangles
∑
∆ in Equation (A6) are exactly the same as

those defined by the sum over bonds
∑

i j in Equation (A7), and the difference is only in their expressions.
Additionally, note that the suffixes i, j of `i j in Equation (A7) denote the bond i j, whereas those of ρi
and ρ j denote the two neighboring triangles i and j of the bond i j. Thus, we finally have:

S (r, σ) = S1 + κS2,

S1 =
∑

i j

γi j`
2
i j, S2 =

∑
i j

κi j
(
1− ni · n j

)
, (A8)

with:

γi j = κi j =
ci + c j

4
, ci = ρi +

1
ρi

, (A9)

where the irrelevant numerical factor 1/3 is replaced by 1/4 in the final expressions for S1 and S2.
Note that γi j (κκi j) can be called the effective surface tension (effective bending rigidity) on the

bond between vertices i and j. It must be emphasized that the quantities γi j and κi j are independent of
the bond direction, or in other words, these are symmetric under the exchange of i and j, and for this
reason, γi j and κi j are considered as the quantities defined on the bond i j. Indeed, from the expression
given in Equation (A9), we have:

γi j = γ ji, κi j = κ ji. (A10)

Therefore, the physical quantities γi j`
2
i j in S1 and κi j(1−ni · n j) in S2 of Equation (A8) are well

defined in the sense that these quantities are symmetric under the exchange of i j. The reason why
we need this symmetry in the physical quantities γi j`

2
i j and κi j(1−ni · n j) is because these quantities

correspond to the energies for the expansion and bending of the surface at the bond i j, and these
energies are independent of the bond direction, such as the one from i to j or the reverse. Thus, the
symmetry property in Equation (A10) allows us to call γi j and κκi j the effective surface tension and the
effective bending rigidity on the bond i j, respectively. However, as we will show in the next subsection,
γi j and κi j are not symmetric in general (see Figure A1c). Moreover, note that this problem of whether
γi j and κi j are symmetric arises only when γi j and κi j depend on the functions ρi and ρ j on the two
neighboring triangles i and j. This is in sharp contrast to the case where γi j and κi j depend only on
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the quantity defined on the vertices [10], where γi j and κi j are always symmetric. This exchange
symmetry/asymmetry reflects the orientation symmetry/asymmetry, which will be discussed in the
next subsection.

Appendix A.2. Finsler Geometry Model

In this subsection, we show that the discrete surface models constructed above are well defined
only in the context of Finsler geometry modeling [10]. For this purpose, we should first remind
ourselves of the fact that the symmetry properties in Equation (A10) can be observed in the model only
under the condition of Equation (A5). This symmetry is not present in the model of Equation (A4).
To show the breakdown of the symmetry of Equation (A10) in the model of Equation (A4) in more
detail, we replace the sum over triangles

∑
∆ of S1 and S2 in Equation (A4) with the sum over bonds

∑
i j

before the condition of Equation (A5) is imposed. In this new expression of S1, which is expressed by
the sum over bonds

∑
i j, the Gaussian bond potential for the bond 12, which is shared by the triangles

∆+ and ∆− as in Figure A2a, for example, is given by:

S1(`12) = (1/3)

ρ+1 +
1
ρ+2

+ ρ−2 +
1
ρ−1

 `2
12 ∼ γ12`

2
12. (A11)

(a)
1

2

∆+
∆−1/ρ+2

ρ+1 1/ρ−1

ρ−2

(b)

1/ρ−2

ρ−11/ρ+1

ρ+2

4

3

1

2

∆+
∆−

4

3

Figure A2. Local coordinate origins of the triangles ∆+ and ∆− for S1(`12) and the elements of γ12 and
γ21 of the configurations of (a) the original and (b) the inside out (inside view).

In this expression, the former half S+
1 (`12)= (1/3)

(
ρ+1 +1/ρ+2

)
`2

12 is the contribution from ∆+,

and the latter half S−1 (`12)=(1/3)
(
ρ−2 +1/ρ−1

)
`2

12 is the contribution from ∆−. However, it is clear that
γ12, and hence, S1(`12) in Equation (A11) are not symmetric under the change of surface orientation.
In fact, we have:

S̄1(`12) = (1/3)

ρ+2 +
1
ρ+1

+ ρ−1 +
1
ρ−2

 `2
12 ∼ γ21`

2
12 (A12)

for the opposite orientation (see Figure A2b). In Equation (A12), we write the coefficient of `2
12 by γ21

because it is obtained from γ12 in Equation (A11) by exchanging the suffixes 1 and 2. It is also easy to
show that γ12,γ21, and hence, S1(`12) are not always identical to S̄1(`12) in general.

Thus, we find that the asymmetry γ12,γ21 means that S1(`12) is not invariant under the orientation
exchange. From this, we can see that the Gaussian bond potential energy (and also the bending energy)
of the bond 12 of one surface configuration differs from that of the opposite orientation configuration.
However, we have no reason for the difference in S1 for two surfaces with different orientations.
Thus, the model defined by Equation (A4), which is orientation asymmetric, is ill defined in the context
of conventional surface modeling.
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Moreover, we have to remark that the model defined by Equation (A8), which is orientation
symmetric, is also ill defined. The reason for this ill definedness is that the bond length squares
calculated with ρ+ in ∆+ is not always identical to the one calculated with ρ− in ∆− in Figure A2a,

where ρ±1 =ρ
±

2 in the model of Equation (A8). Indeed, the metric on ∆+ is given by gab=

(
1/ρ+ 0
0 ρ+

)
,

where the coordinate origin is at the vertex 1. Then, we have the bond length squares (1/ρ+) `2
12 for the

bond 12 with respect to the metric gab, and changing the vertex origin from 1 to 2, we also have ρ+`2
12.

Thus, summing over these two expressions without the coefficient 1/2, we have (1/ρ++ρ+) `2
12 for

the bond length squares. Through the same procedure, we have (1/ρ−+ρ−) `2
12 from ∆−. These two

square lengths of the bond 12 must be the same. However, we have:

1
ρ+

+ ρ+ ,
1
ρ−

+ ρ− (A13)

because ρ+ , ρ− in general. The edge length of triangles should uniquely be given as the basic
requirement even in the discrete models. Therefore, in a model construction on the triangulated lattices,
we always obtain an ill-defined discrete model if we start with an arbitrary Riemannian metric in
which the elements are defined on the triangles. Note that the bond “length” used here is the length
with respect to gab on ∆± and is different from the Euclidean bond length `i j (also note that gab is simply
a Riemannian metric at this stage).

However, these ill-defined models in Equations (A4) and (A8) become well defined in the context
of Finsler geometry [10–12]. In this context, the bond length calculated with gab on the triangle ∆+ can
be considered as the direction-dependent length from 1 to 2, and the one calculated with gab on ∆− can
be considered as the length from 2 to 1 (Figure A2a). Therefore, the inequality in Equation (A13) is
satisfied in general. Moreover, the aforementioned quantities S+

1 (`12) and S−1 (`12) in Equations (A11)
and (A12) are meaningful because these quantities are also considered as direction dependent in the
Finsler geometry context (Figure A1c).
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