Next Article in Journal / Special Issue
Finsler Geometry Modeling of Phase Separation in Multi-Component Membranes
Previous Article in Journal
Enhanced Anti-Ultraviolet and Thermal Stability of a Pesticide via Modification of a Volatile Organic Compound (VOC)-Free Vinyl-Silsesquioxane in Desert Areas
Previous Article in Special Issue
Semiflexible Biopolymers in Bundled Arrangements
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Polymers 2016, 8(8), 283; doi:10.3390/polym8080283

Microscopic Dynamics and Topology of Polymer Rings Immersed in a Host Matrix of Longer Linear Polymers: Results from a Detailed Molecular Dynamics Simulation Study and Comparison with Experimental Data

1
Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, Patras, GR 26504, Greece
2
Department of Mechanical and Process Engineering, Particle Technology Laboratory, ETH-Z, CH-8092 Zürich, Switzerland
*
Author to whom correspondence should be addressed.
Academic Editor: Martin Kröger
Received: 15 June 2016 / Revised: 21 July 2016 / Accepted: 27 July 2016 / Published: 4 August 2016
(This article belongs to the Special Issue Semiflexible Polymers)
View Full-Text   |   Download PDF [7678 KB, uploaded 4 August 2016]   |  

Abstract

We have performed molecular dynamics (MD) simulations of melt systems consisting of a small number of long ring poly(ethylene oxide) (PEO) probes immersed in a host matrix of linear PEO chains and have studied their microscopic dynamics and topology as a function of the molecular length of the host linear chains. Consistent with a recent neutron spin echo spectroscopy study (Goossen et al., Phys. Rev. Lett. 2015, 115, 148302), we have observed that the segmental dynamics of the probe ring molecules is controlled by the length of the host linear chains. In matrices of short, unentangled linear chains, the ring probes exhibit a Rouse-like dynamics, and the spectra of their dynamic structure factor resemble those in their own melt. In striking contrast, in matrices of long, entangled linear chains, their dynamics is drastically altered. The corresponding dynamic structure factor spectra exhibit a steep initial decay up to times on the order of the entanglement time τe of linear PEO at the same temperature but then they become practically time-independent approaching plateau values. The plateau values are different for different wavevectors; they also depend on the length of the host linear chains. Our results are supported by a geometric analysis of topological interactions, which reveals significant threading of all ring molecules by the linear chains. In most cases, each ring is simultaneously threaded by several linear chains. As a result, its dynamics at times longer than a few τe should be completely dictated by the release of the topological restrictions imposed by these threadings (interpenetrations). Our topological analysis did not indicate any effect of the few ring probes on the statistical properties of the network of primitive paths of the host linear chains. View Full-Text
Keywords: blend; molecular dynamics; poly(ethylene oxide); ring; simulation; threadings; topological analysis; probe blend; molecular dynamics; poly(ethylene oxide); ring; simulation; threadings; topological analysis; probe
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Papadopoulos, G.D.; Tsalikis, D.G.; Mavrantzas, V.G. Microscopic Dynamics and Topology of Polymer Rings Immersed in a Host Matrix of Longer Linear Polymers: Results from a Detailed Molecular Dynamics Simulation Study and Comparison with Experimental Data. Polymers 2016, 8, 283.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top