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Abstract: Peroxidase mimetic catalytic atom transfer radical polymerization (ATRP) was first
used to install tertiary amine-functionalized polymer brushes on the surface of mesoporous silica
nanoparticles (MSNs) in a facile and highly efficient manner. Poly(N,N-dimethylaminoethyl
methacrylate) (PDMAEMA) brushes-grafted MSNs were fabricated by biocompatible deuterohemin-
β-Ala-His-Thr-Val-Glu-Lys (DhHP-6)-catalyzed surface-initiated ATRP (SI-ATRP). The resulting
organic–inorganic hybrid nanocarriers were fully characterized by Fourier transform-infrared
spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy
(XPS), powder X-ray diffraction (XRD), SEM, TEM, Elemental analysis, Zeta-potential, and N2

adsorption–desorption isotherms, which demonstrated the successful coating of pH-responsive
polymers on the MSN surface. Rhodamine 6G (Rh6G) dyes were further loaded within the mesopores
of this nanocarrier, and the release of Rh6G out of MSNs in a controlled fashion was achieved upon
lowing the solution pH. The electrostatic repulsion of positively-charged tertiary ammonium of
PDMAEMAs in acidic environments induced the stretching out of polymer brushes on MSN surfaces,
thus opening the gates to allow cargo diffusion out of the mesopores of MSNs.

Keywords: drug delivery; enzyme memetic; mesoporous silica nanoparticle; nanomedicine; polymer
brush; SI-ATRP

1. Introduction

Enzymes/proteins are naturally-occurring, environmentally benign, and non-toxic
biocatalysts [1–4]. Enzymatic polymerization possesses great potential in the production of
materials for food processing and biomedical applications [5–7]. Nowadays, many researchers
have devoted themselves to developing enzyme/protein-based green catalytic reactions for
organic catalysis or (bio)polymer synthesis [8–11]. Oxidoreductases, transferases, and hydrolases
are three major enzyme classes that have been successfully employed for polymer synthesis.
Although oxidoreductase-catalyzed free radical polymerization has been developed for two and
half decades [8,9,12], atom transfer radical polymerization (ATRP) by oxidoreductases—including
horseradish peroxidase (HRP), catalase, and laccase—has emerged only within the last five
years [13–21]. These enzymatic catalytic polymerization systems effectively avoid the use of toxic
transition metal complexes, but naturally-occurring enzyme catalysts also possess some drawbacks
in catalysis, such as high molecular weight and high sensitivity to reaction conditions [16,20].
Recently, naturally-occurring hematin-based peroxidase mimetics have been developed to replace
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natural enzymes, which showed improved performance in the construction of well-defined
(bio)polymers [16,17]. Among them, deuterohemin-β-Ala-His-Thr-Val-Glu-Lys (DhHP-6) is a unique
type of peroxidase mimetic with well-defined structure and low molecular weight (Mw = 1229 Da),
which is easy to synthesize with renewable resources [22,23]. DhHP-6 could also serve as an ATRP
catalyst to expand the monomer’s range and increase catalytic tolerance to pH variation [19].

On the other hand, much attention has been paid to mesoporous silica nanoparticles
(MSNs), which are always attractive candidates for controlled drug release, biosensing, gene
transfection, etc. [24–28], owing to their high loading capacity, good stability, and biocompatibility.
A series of controlled cargo delivery systems based on MSNs have been developed through covalent
or noncovalent decoration by small molecules, supramolecules, or (bio)polymers [24,25,29–38].
Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) containing pendant tertiary amines is
a pH- and temperature-responsive polymer [39–43], usually used as cationic antibacterial surfaces
and nonviral gene delivery carriers for medical and biomedical applications [44–49]. PDMAEMA was
grafted onto the surfaces of various materials by ATRP [45,48], offering thermal- and pH-responsive
nanovalves or nonviral gene vectors.

Herein, we first decorate the surface of MSNs with PDMAEMA polymer brushes by a
biocompatible DhHP-6-catalyzed surface-initiated ATRP (SI-ATRP) approach in a facile and highly
efficient manner that avoids the use of toxic transition metal complexes and increases catalytic
performance. Rhodamine 6G (Rh6G) cargo is used as a model drug loading in the mesopores
of PDMAEMA brushes-MSN hybrid materials, and its controlled release in response to pH
changes is further demonstrated. The green catalysis-mediated biocompatible organic–inorganic
hybrid nanomaterials hold great potential in nanomedicine and cancer therapy, and hopefully
this environment-benign development will contribute to “green chemistry” for maintaining a
sustainable society.

2. Materials and Methods

2.1. Materials

N,N-Dimethylaminoethyl methacrylate (DMAEMA) was purchased from Sigma-Aldrich
(Shanghai, China), and inhibitors were removed through an alumina column before use.
2-Bromoisobutyryl bromide (BIBB) was purchased from Sigma-Aldrich and used as received.
Hydroxyl-terminated MSN (MSN-OH) material was prepared according to our previously reported
procedure [50]. DhHP-6 was obtained as a gift sample from College of Life Sciences, Jilin University
(Changchun, China).

2.2. Measurements

Fourier transform infrared spectra (FT-IR) were recorded on a Shimadzu FTIR 8400S spectrometer
(Kyoto, Japan). Thermogravimetric analysis (TGA) data were obtained on a TA Q500 instrument
(New Castle, DE, USA). X-ray photoelectron spectroscopy (XPS) was recorded on a Thermo Scientific
ESCALAB 250 spectrometer (Waltham, MA, USA). Elemental analysis was performed on a Vario EL
cube elementar (Hanau, Germany). Scanning electron microscopy (SEM) and transmission electron
microscopy (TEM) images were obtained on a HITACHI SU4800 instrument (Kyoto, Japan) and
JEM-2100F (with an accelerating voltage of 200 kV, Kyoto, Japan), respectively. Powder X-ray diffraction
(XRD) was carried out on a PANalytical B.V. Empyrean powder diffractometer (Almelo, Holland).
Hydrodynamic diameter and Zeta-potentials were measured on Zetasizer Nano ZS90 (Malvern, UK),
where nanoparticles were dispersed in deionized water. N2 adsorption–desorption isotherms were
measured on an ASAP 2020 micromeritics porosimeter (Norcross, GA, USA). UV–Vis spectra were
recorded on a Shimadzu UV-2550 spectrophotometer (Kyoto, Japan).
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2.3. Methods

2.3.1. ATRP-Initiator Immobilization (Synthesis of MSN-Br)

The ATRP initiator-anchored MSN (MSN-Br) was synthesized via the reaction of the hydroxy
groups of MSN-OH with BIBB in the presence of triethylamine (TEA). MSN-OH (0.5 g), triethylamine
(TEA, 6.8 mL), and freshly-dried toluene (150 mL) were added into a 250 mL round-bottomed flask.
After ultrasonically dispersed for 1 h, the mixture was cooled in an ice-water bath, followed by
the dropwise addition of BIBB (3 mL). After stirring at 0 ˝C for 2 h, the mixture was allowed to
warm up to room temperature and stirred overnight. Crude product was isolated by centrifugation
(12,000 rpm, 30 min) and then washed with chloroform (50 mL ˆ 3), ethanol (50 mL ˆ 1), and distilled
water (50 mL ˆ 3), respectively. The resulting MSN-Br was then dried overnight under vacuum at
room temperature.

2.3.2. PDMAEMA Growth on MSNs by DhHP-6-Catalyzed MSN-Br SI-ATRP of DMAEMA

MSN-Br (100 mg) was dispersed in a mixed solvent of DMF/H2O (5 mL, 2/3 in v/v) in a 10 mL
round-bottomed flask, and ultrasonically dispersed for 1 h. DhHP-6 (3 mg, 0.0024 mmol) was added
in the above reaction mixture. The flask was maintained at 45 ˝C in an oil bath, and nitrogen was
bubbled through the mixture for 0.5 h. After the addition of L-ascorbic acid (0.2 mL, 2.2 mM in water),
the system was sealed. DMAEMA (0.5 mL, 2.96 mmol) was then added by purging into the reaction
system to start the reaction, which was then kept for 24 h under stirring. The product was separated by
centrifugation (13,000 rpm, 30 min), then washed with ethanol (50 mL) and distilled water (50 mL ˆ 3).
The PDMAEMA-grafted MSN (MSN-PDMAEMA) hybrid material was obtained after drying under
vacuum at room temperature.

2.3.3. Rh6G Loading

MSN–PDMAEMA (50 mg) nanoparticles were dispersed in PBS of pH 2.0 (20 mL) by
ultrasonication, followed by the addition of Rh6G (30 mg, 0.031 mmol). The resulting mixture
was stirred at room temperature for 24 h to achieve the loading of Rh6G in the mesopores of MSNs.
The product (Rh6G@MSN-PDMAEMA) was centrifuged and washed with distilled water to remove
free and surface-absorbed Rh6G.

2.3.4. Rh6G Release from Rh6G@MSN-PDMAEMA

Rh6G@MSN-PDMAEMA material (1.5 mg) was dispersed in 1 mL PBS buffer and then transferred
into a dialysis bag (cut-off MW = 8000´14,000 Da). The dialysis bag was immersed into different
release media (9 mL PBS of pH 5.0, pH 7.4, and phosphoric acid buffer of pH 2.0), and stirred at
room temperature. At certain time intervals, 3 mL of release solution was withdrawn and replenished
with 3 mL of fresh buffer. The cumulative release of Rh6G was determined by UV–Vis spectroscopy
at 526 nm. The calibration curves for the rhodamine 6G in different PBS buffers are provided in
Figure S1 (Supplementary Material).

3. Results and Discussion

3.1. ATRP-Initiator Immobilization

In order to introduce PDMAEMA on the surface of MSNs by SI-ATRP, the hydroxyl groups of
MSN-OH were converted to 2-bromoester-terminated MSN (MSN-Br) (Scheme 1). Figure 1 shows
the FT-IR spectra of MSN-OH and MSN-Br. In the FT-IR spectrum of MSN-Br, the appearance of
a peak at 1728 cm´1—attributed to the carbonyl (C=O) stretching vibrations of the ester group of
the initiator—confirmed that alkyl halide was anchored to the surface of the MSNs. The increased
elemental contents of C and H in MSN-Br also suggested that the ATRP initiator was introduced onto
the silica surface. As MSNs are thermally-stable materials, TGA was used to analyze the weight loss
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of these silica-based materials (Figure 2). Weight loss of MSNs at temperatures above 100 ˝C was
attributed to the loss of functional groups on the surface. Except for the weight loss of MSN-OH,
the weight loss of MSN-Br is about 5.8%, which is also consistent with the elemental analysis results
(Table 1). We can estimate that ca. 0.38 mmol¨g´1 of alkyl halide was anchored onto MSN-OH.
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(b) MSN-Br (weight loss above 100 ˝C was 14.9%); and (c) MSN-PDMAEMA (weight loss above 100 ˝C
was 30.7%).

3.2. DhHP-6 Catalyzed Synthesis of MSN-PDMAEMA and Its Characterization

In order to expand the range of DhHP-6-catalyzed polymerizable monomers and to explore the
potential application of this kind of biocatalyst, PDMAEMA was grafted from the initiator-anchored
surface of MSN-OH for the first time under ATRP mechanism. As we demonstrated earlier, DhHP-6
could tolerate pH in the range of 3.0–11.0; herein we chose distilled water as the reaction medium
for SI-ATRP.

MSN-PDMAEMA sample was first ascertained by FT-IR spectra (Figure 1). The appearance of
a peak at 1732 cm´1, attributed to the C=O stretching vibration of the ester groups of PDMAEMA,
and the ratio of ethyl bending (1460 cm´1) to methyl bending (1390 cm´1) peak areas increases
obviously compared to MSN-Br, jointly indicating that the polymer was grafted on the surface of
MSNs. Compared to that of MSN-Br, the increased 15.8% weight loss of MSN-PDMAEMA (Figure 2) in
TGA experiments also suggested that PDMAEMA was grafted onto the MSN surface, corresponding
well with the results of elemental analysis (Table 1).

In order to further confirm that PDMAEMA was successfully grafted from MSN-Br, XPS was
employed. As shown in Figure 3b, four curve-fitted peaks with binding energy (BE) of ca. 284.6,
285.2, 286.4, and 288.8 eV can be attributed to the C–H, C–N, C–O, and O=C–O components of
PDMAEMA, respectively.

Polymers 2016, 8, 277 5 of 10 

 

 
Figure 2. Thermogravimetric analysis (TGA) of (a) MSN-OH (weight loss above 100 °C was 9.1%);  
(b) MSN-Br (weight loss above 100 °C was 14.9%); and (c) MSN-PDMAEMA (weight loss above 100 
°C was 30.7%). 

3.2. DhHP-6 Catalyzed Synthesis of MSN-PDMAEMA and Its Characterization 

In order to expand the range of DhHP-6-catalyzed polymerizable monomers and to explore the 
potential application of this kind of biocatalyst, PDMAEMA was grafted from the initiator-anchored 
surface of MSN-OH for the first time under ATRP mechanism. As we demonstrated earlier, DhHP-6 
could tolerate pH in the range of 3.0–11.0; herein we chose distilled water as the reaction medium for 
SI-ATRP. 

MSN-PDMAEMA sample was first ascertained by FT-IR spectra (Figure 1). The appearance of a 
peak at 1732 cm−1, attributed to the C=O stretching vibration of the ester groups of PDMAEMA, and 
the ratio of ethyl bending (1460 cm−1) to methyl bending (1390 cm−1) peak areas increases obviously 
compared to MSN-Br, jointly indicating that the polymer was grafted on the surface of MSNs. 
Compared to that of MSN-Br, the increased 15.8% weight loss of MSN-PDMAEMA (Figure 2) in 
TGA experiments also suggested that PDMAEMA was grafted onto the MSN surface, corresponding 
well with the results of elemental analysis (Table 1). 

In order to further confirm that PDMAEMA was successfully grafted from MSN-Br, XPS was 
employed. As shown in Figure 3b, four curve-fitted peaks with binding energy (BE) of ca. 284.6, 
285.2, 286.4, and 288.8 eV can be attributed to the C–H, C–N, C–O, and O=C–O components of 
PDMAEMA, respectively. 

 
Figure 3. X-ray photoelectron spectroscopy (XPS) C 1s spectra of (a) MSN-OH (BE of 284.6 and 286.4 
eV, attributed to C–H and C–O); (b) MSN-PDMAEMA (BE of 284.6, 285.2, 286.4, and 288.8 eV, 
attributed to C–H, C–N, C–O, and O=C–O). 

Figure 3. X-ray photoelectron spectroscopy (XPS) C 1s spectra of (a) MSN-OH (BE of 284.6 and 286.4 eV,
attributed to C–H and C–O); (b) MSN-PDMAEMA (BE of 284.6, 285.2, 286.4, and 288.8 eV, attributed to
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SEM and TEM were used to demonstrate the particle morphology of MSN-OH and
MSN-PDMAEMA (Figure 4). MSNs showed uniform particle size, before (MSN-OH, 79.5 ˘ 15.5 nm)
and after (MSN-PDMAEMA, 84.6 ˘ 7.1 nm) DhHP-6-catalyzed SI-ATRP. A rough surface was observed
in the SEM image of MSN-PDMAEMA. TEM images further revealed the existence of the ordered
pore structure of MSN-OH. After PDMAEMA immobilization, the mesopores of MSNs became blurry,
which is visual evidence of polymer grafting onto the surface of the MSN-OH material (Figure 4 and
Figure S2).
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The microcrystalline structure of MSNs could also be verified by small-angle powder XRD.
MSN-OH has a similar XRD pattern to standard microporous silica (Figure S3). After PDMAEMA
grafting on the MSNs surface, the intensity of diffraction peaks reduced correspondingly, in accordance
with the results reported before [35,46,51,52]. Together with the TEM results, these indicate that the
materials were surface-functionalized with PDMAEMA polymer brushes.

The typical type IV isotherm of MSN-OH in Brunauer–Emmett–Teller (BET) nitrogen
sorption isotherms confirms its mesoporous structure. The BET surface area of MSN-OH is
829 m2¨g´1 (Figure 5A), and the pore diameter is about 2.4 nm (Figure 5B). In contrast, the N2

adsorption–desorption isotherm of the PDMAEMA grafted nanoparticle, MSN-PDMAEMA, reveals
the characteristics of nonporous materials [28]. The BET surface area of MSN-PDMAEMA was
decreased to 337 m2¨g´1, and the pore diameter distribution and volume were also obviously changed
(Table 2). These may be attributed to the fact that polymer brushes on the MSN surface avoided
N2 penetration, which also indicated that the DhHP-6-catalyzed SI-ATRP on the MSNs surface
was successful.
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Table 2. Mesopore parameters of MSN-OH and MSN-PDMAEMA.

Sample BET surface area/m2¨g´1 Volume of pores/cm3¨g´1

MSN-OH 829.32 0.98
MSN-PDMAEMA 337.22 0.69

3.3. Rh6G Release from Rh6G@MSN-PDMAEMA in Solutions of Different pH Values

Tertiary amine groups of the PDMAEMA side chains could be protonated at lower pH, resulting
in the stretching out of polymer brushes on MSNs due to strong electrostatic repulsion, thus opening
the gates on MSNs to allow cargo release [48,53,54]. At neutral pH, the deprotonation of PDMAEMA
polymer chains makes them stay on the MSNs surface in a shrunken/collapsed state to reduce
surface tension; therefore, MSNs pores will be blocked by the polymer layer and prevent cargo
release. In a typical proof-of-concept study, Rh6G was loaded into MSN-PDMAEMA to result in
Rh6G@MSN-PDMAEMA. The conformational states of PDMAEMA on MSNs change in different
pH conditions, as shown in Scheme S1. Cargo release was monitored in buffer solutions of different
pH values (Figure 6). At pH 2.0, fast release was observed; there was about 56% cumulative release
within 8 h. At pH 5.0, the release reached a plateau in 30 h, and the cumulative release amount of
Rh6G was 57%. At pH 7.4, the release speed was quite low and the final release content was ca. 42%.
Therefore, we can conclude that MSN-PDMAEMA constructed from DhHP-6-catalyzed SI-ATRP also
exhibited a pH-dependent cargo release property. Apparent Zeta-potential dependency of MSNs
toward pH values of different PBS buffers was then investigated (Figure S4). The Zeta-potential
of nanoparticles decreased with increasing pH values of the MSN suspensions. The critical
electrostatic equilibrium pH of Rh6G@MSN-PDEAEMA was determined to be about 7.0, which
means that the MSN-grafted PDEAEMA should be deprotonated at the pH value of blood circulation
(pH 7.4). Based on this observation, this DhHP-6 catalyzed SI-ATRP of PDEAEMA could be used as
pH-dependent gatekeeper on the surface of MSNs for pH-controlled sustained drug release. The final
loading and delivery properties of this system are expected to be fine-tuned by controlling the grafting
degree of polymer brushes on the MSN surface and adjusting the polymer components, which is the
on-going research in our laboratory.
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