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Abstract: The determination of brominated flame retardants is of great importance, but remains
a challenge. Particularly, universal and facile approaches are limited. Here we report a new
general approach, combining molecular imprinting and electrospinning, for the efficient and facile
imprinting sensor of 2,4,6-tribromophenol (TBP), which was used as a “novel” brominated flame
retardant. With TBP as the template molecular, β-cyclodextrin (β-CD) as the functional monomer, and
poly-vinylbutyral (PVB) as the electro-spinning matrix, the nanofiber film was deposited on the glassy
carbon electrode (GCE) via electrospinning technique directly. The β-CD-PVB/GCE sensor system
exhibited excellent TBP sensing performances, such as a low detection limit (6.29 ˆ 10´10 mol¨ L´1)
at room temperature, selective recognition to TBP/phenol/4-methyl-phenol, and good regeneration
performance. The approach of fabricating a molecular imprinting nanofiber sensor may shed new
light in the detection of other phenolic pollutants.
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1. Introduction

Brominated flame retardants (BFRs) have been routinely added to a variety of consumer and
industrial products for several decades [1,2]. Some of the BFRs are stable, bioaccumulative, capable
of long distance transport in the environment, and potentially harmful to ecosystems and human
health [3,4]. This has paved the way for the use of “novel” BFRs (NBFRs) as replacements for the
banned formulations. Recently, a number of these NBFRs are of particular concern as they are being
found in the Arctic, indicating long-range atmospheric transport (LRAT) [5,6].

2,4,6-Tribromophenol (TBP) has been used as a NBFR or a synthetic intermediate of most of the
important BFRs [7]. It is ubiquitously found in aquatic environments and biota [8–10]. What is more,
there is some information on TBP toxicity and its effects on humans and the environment. For example,
TBP caused an induction of aromatase activity in the human adrenocortical (H295R) cell line [11];
chronic exposures to environmental levels of tribromophenol impair zebrafish reproduction [12].
Therefore, the detection of TBP has attracted considerable attention. Recently, methods to detect
TBP in the environment were almost established by gas chromatography (GC) coupled with mass
spectrometry (MS) or electron capture (EDC) with good sensitivity [13–15]. These protocols need
relatively expensive equipment, and it is not conducive to the emergency and simple monitoring of
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environmental pollutants. Hence, the important and challenging task is to develop a simple, sensitive,
and selective method for on-site determination of TBP.

Sensor technology has attracted considerable attention due to its good selectivity, low cost, and
simple operation. In order to improve the sensitivity of sensors, the current trend is to produce
nanoscale sensors [16]. Among various methods to build nanoscale structures, electrospinning
is rapidly emerging as a facile and versatile approach to produce multifunction nanofibers with
controllable morphology [17–19], with the reported nanosensor exhibiting satisfying sensing
properties [20,21].

In recent years, molecular imprinting technology (MIT) has been a fascinating area of scientific
research because it has been proven to be the most efficient way of making synthetic materials
bearing selective molecular recognition sites [22]. Molecular imprinting polymers (MIPs) are prepared
by a process that involves co-polymerization of functional monomers and cross-linkers around
template molecules. The molecules are removed from the polymer, rendering complementary
binding sites capable of subsequent template molecule recognition [23]. Based on MIPs with affinity
and specificity, they possess many promising characteristics, such as desired selectivity and easy
preparation. Therefore, MIPs have been an increasing concern for applications [24–28], particularly for
the use as the recognition element in the sensor [29–32]. Up to now, the methods of fabricating the
imprinted sensor were mainly developed by (a) electropolymerization in electric conductive material,
such as a glassy carbon electrode surface; (b) in situ photopolymerization by the monomer mixture spin
coating on the surface of the converter; and (c) preparing nanometer- or micron-sized MIP particles,
then mixing the particles and inert soluble polymer, then fixing the mixture on the surface of the
converter. If the sensor is fabricated via incorporating molecular imprinting with electrospinning,
it might provide a perfect effect on the selectivity and sensitivity of the sensors.

In this paper, a facile strategy to incorporate MIT with electrospinning and electrochemical
techniques is proposed to sense TBP, which is trace in water. With poly-vinylbutyral (PVB) as
the electro-spinning matrix, β-cyclodextrin (β-CD) as the functional monomer, and TBP as the
template molecule, the β-CD-PVB nanofiber film was deposited on the glassy carbon electrode
(GCE) via electrospinning technique directly, which could retain the intrinsic high specific surface
area of β-CD-PVB nanofibers and significantly simplify the TBP detection process. β-CD is chosen
as the functional monomer for imprinted nanofibers because of its special properties and ease of
electrospinning with various polymer materials to form nanofibers with good chemical and mechanical
stability [33,34]. The β-CD-PVB/GCE sensor system exhibited excellent TBP sensing performance,
such as good selective recognition to TBP/phenol/4-methyl-phenol and low detection limits of
6.29 ˆ 10´10 mol¨ L´1 (0.21 µg¨ L´1). Our research might provide new insight to construct the
molecularly-imprinting nanofiber sensor to sensitively sense other phenolic pollutants.

2. Experimental

2.1. Instruments and Reagents

Morphology of the nanofibers was characterized by SEM (JSM-7500F, JEOL, Tokyo, Japan).
The thermal stability of fibers was characterized by thermal gravimetric-differential thermal
analysis (TG/SDTA851e, Mettler-Toledo, Zurich, Sweden). A CHI660E electrochemical workstation
(CHI Instrument, Shanghai Chenhua Apparatus Company, Shanghai, China) was used for
electrochemical measurements.

PVB (aerial grade, butyral content: 66%–75%) and β-CD were obtained from Guoyao Chemicals
Co., Ltd (Shanghai, China). TBP and hexamethylene diisocyanate (HMDI) were obtained from Aladdin
Chemistry Co., Ltd (Shanghai, China). All other chemicals were analytical reagent grade or better.

2.2. Fabrication of the Imprinted Nanofiber Sensor (INS)

As shown in Figure 1, the INS was fabricated by the following description.
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Figure 1. Schematic illustration of the fabrication of INS. 
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and an Ag/AgCl electrode with saturated KCl as the reference electrode [35,36]. All potentials 
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chosen as the redox probe of the INS/NINS sensors in solutions because TBP is electroinactive over 
the studied potential range. All measurements were carried out at room temperature. 

The amperometric i-t curve (AC) (potential: 0 V) was utilized to evaluate the response to 
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2.2.1. Preparation of the Composite Nanofibers

Similar to [33], the PVB/β-CD/TBP solution was obtained by dissolving PVB, β-CD, and TBP in
N,N-dimethylformamide (DMF). The PVB concentration was of 0.08 g¨ mL´1, a β-CD concentration
of 0.04 g¨ mL´1, and the TBP:β-CD molar ratio was 1:5. The resulting PVB/β-CD/TBP mixture was
stirred at room temperature to obtain a homogenous mixture with viscosity suitable for electrospinning.

Electrospinning was carried out at room temperature. The solutions were placed in a 10 mL
syringe fitted with a metallic needle of 0.4 mm inner diameter. The syringe was fixed horizontally,
and a stainless steel electrode was connected to a high-voltage power supply (Tianjin Technical Corp,
Tianjin, China). The applied voltage between the tip and collector was 18 kV, with a tip-to-collector
distance of 10 cm. The flow rate of the solution was controlled by a syringe pump at a constant rate of
0.5 mL¨ h´1. The polished GCE was used as the collector. Prior to modification, GCE was polished
with emery paper and chamois leather containing 0.3 and 0.05 µm Al2O3 slurry, respectively, and then
thoroughly rinsed ultrasonically with HNO3, ethanol, and doubly-distilled water for 3 min, in turn.
Then, the electrode was cycled between ´0.3 and 1.5 V in 0.5 mol¨ L´1 H2SO4 at a 100 mV¨ s´1 scan
rate so that a reproducible voltammogram was obtained.

2.2.2. Cross-linking and Elution of Nanofibers

The PVB/β-CD/TBP nanofiber was immersed into HMDI at room temperature for 24 h. Then,
the template molecule TBP was removed from the resultant nanofiber with ethanol by shaking.

As a comparison, the non-imprinted nanofiber sensor (NINS) was also prepared by the same
method as the preparation of INS, just without the addition of the template molecule TBP.

2.3. Electrochemical Measurements

A conventional three-electrode system was employed with a modified glassy carbon electrode
(GCE, 3.0 mm in diameter) as the working electrode, a platinum electrode as the counter electrode, and
an Ag/AgCl electrode with saturated KCl as the reference electrode [35,36]. All potentials reported in
this article were referenced to the Ag/AgCl electrode. Hexacyanoferrate (K3[Fe(CN)6]) is chosen as
the redox probe of the INS/NINS sensors in solutions because TBP is electroinactive over the studied
potential range. All measurements were carried out at room temperature.

The amperometric i-t curve (AC) (potential: 0 V) was utilized to evaluate the response to different
substances. The electrochemical performance of INS/NINS sensors was studied by cyclic voltammetry
(CV) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV), which
is relatively sensitive compared to the conventional CV method, was employed for the determination
of the imprinting effect. CV, DPV, EIS, and AC experiments were performed in the 10 mL 5.0 mmol¨ L´1

K3[Fe(CN)6] with the addition of 0.1 mol¨ L´1 KCL as a support electrolyte.
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3. Results and Discussion

3.1. Preparation of the INS

The INS was fabricated by the combining of MIT and electrospinning, pioneered by Ye et al. [37],
and recognized as an efficient technique allowing the creation of imprinting nanofibers for the affinity
separation materials [38–40]. Similar to [34], the nanofibers were cross-linked by using HMDI. On the
basis of SEM microphotographs of the nanofibers, a comparison can be made for nanofibers in terms of
the morphological differences. It is observed that PVB/β-CD/TBP nanofibers have uniform diameters
and are very straight in Figure 2a. However, it is interesting to find that the nanofibers cross-linked by
HMDI are curly and adhered together at some sites (Figure 2b). This may be attributed to the flexible
hexamethylene chain in HMDI.
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Figure 2. SEM morphology of nanofibers ((a) before cross-linking; and (b) after cross-linking).

CV was used to track the elution process. As shown in Figure 3, due to the dense films coated on
the surface of the electrode before elution, almost no electrochemical reaction occurred, while, with
the increase of the elution time, the peak current increases. Removing the imprinting molecule is an
important factor when preparing MIPs. The imprinted cavity matched with the imprinting molecule
will be formed after eluting the temple molecule. After elution, the electrochemical reaction occurs by
a [Fe(CN)6]3´ ion through the imprinted cavities into the imprinted electrode surface. The differences
before and after elution were shown by SEM and TG in a later section.
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Compared with nanofibers before elution (Figure 4a), the nanofibers after elution (Figure 4b) are
still curly, but more rough and loose. These changes are due to the removal of the template molecule.
After eluting imprinting molecules, cavities left in the imprinted nanofibers may perfectly match with
imprinting molecules.
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and (b) after elution).

Figure 5 shows TG-DTG thermal stability curves of the composite fibers obtained at 18 kV. The
weight decreased substantially in the low temperature region, which was attributed to the dehydration.
In curve a, there were three further weight loss steps. A gentle peak at 180 ˝C in the DTG curve was
attributed to the decomposition of TBP. The peak at 280 ˝C was assigned to the decomposition of β-CD.
There was a weight loss of ~50% at 380 ˝C, which was assigned to the decomposition of PVB. After
elution (curve b), no thermal decomposition peak of TBP emerged, except PVB and β-CD.
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3.2. Electrochemical Properties of the INS

EIS is an efficient tool for studying the films regarding the interfacial electron transfer kinetics.
To characterize the surface property of the sensors, EIS (Init E = 0 V, High Freq = 1 ˆ 104 Hz,
Low Freq = 1 Hz, Amplitude = 0.005 V) was used to investigate the change of resistance of different
electrodes. As shown in Figure 6, the impedance value of bare GCE is minimal (curve a), and the
diameter of semicircles of NINS electrode is larger than that of the INS (after elution), equal to the
curve d (INS before elution). The result manifests that the imprinted one had a lower electron transport
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barrier presumably due to the existence of porous binding sites after the template removal. The
decrease in interfacial impedance is desirable because it can decrease both the interfacial resistance
drop of the electrode current and overpotential, leading to the enhancement of sensorial sensitivity [41].
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and (d) INS before elution).

Useful information involving electrochemical reactions can usually be obtained from the
relationship between the peak current and scan rate. Therefore, the influence of scan rate on the
INS was investigated by CV. As shown in Figure 7, the peak current increased with the scan rate over
the range of 20~400 mV¨ s´1 and a good linear relationship between the anodic peak current and the
square root of scan rates (v1/2) was obtained. The regression equation was Ipa = ´3.18 v1/2 ´ 12.0 with
a correlation coefficient of 0.9886. Moreover, the cathodic peak current was strongly dependent on the
scan rate and the regression equation was Ipc = 4.71 v1/2 + 11.89 with a correlation coefficient of 0.9936.
This indicated the reaction of imprinted sensor is a typical diffusion controlling process.

Polymers 2016, 8, 222 6 of 11 

transport barrier presumably due to the existence of porous binding sites after the template 
removal. The decrease in interfacial impedance is desirable because it can decrease both the 
interfacial resistance drop of the electrode current and overpotential, leading to the enhancement of 
sensorial sensitivity [41]. 

 
Figure 6. EIS of different electrodes ((a) bared electrode; (b) INS after elution; (c) NINS after elution;  
and (d) INS before elution). 

Useful information involving electrochemical reactions can usually be obtained from the 
relationship between the peak current and scan rate. Therefore, the influence of scan rate on the INS 
was investigated by CV. As shown in Figure 7, the peak current increased with the scan rate over 
the range of 20~400 mV·s−1 and a good linear relationship between the anodic peak current and the 
square root of scan rates (v1/2) was obtained. The regression equation was Ipa = −3.18 v1/2 − 12.0 with a 
correlation coefficient of 0.9886. Moreover, the cathodic peak current was strongly dependent on 
the scan rate and the regression equation was Ipc = 4.71 v1/2 + 11.89 with a correlation coefficient of 
0.9936. This indicated the reaction of imprinted sensor is a typical diffusion controlling process. 

 
Figure 7. CV of the INS at various scan speeds of 20, 50, 75, 100, 125, 150, 175, 200, 250, 300, and  
400 mV/s (from inner to outer), inset shows the calibration plot of I~v1/2. 

3.3. Effect of Imprinting of INS 

In this study, DPV was performed after the INS was immersed in solutions containing TBP of 
different concentrations (1.0 × 10−7, 1.0 × 10−5, and 1.0 × 10−3 mol·L−1) and the background solution  
(5 mmol·L−1 K3[Fe(CN)6]). When the INS was immersed in the solution containing TBP, the cavities in 

Figure 7. CV of the INS at various scan speeds of 20, 50, 75, 100, 125, 150, 175, 200, 250, 300, and
400 mV/s (from inner to outer), inset shows the calibration plot of I~v1/2.



Polymers 2016, 8, 222 7 of 11

3.3. Effect of Imprinting of INS

In this study, DPV was performed after the INS was immersed in solutions containing TBP of
different concentrations (1.0 ˆ 10´7, 1.0 ˆ 10´5, and 1.0 ˆ 10´3 mol¨ L´1) and the background solution
(5 mmol¨ L´1 K3[Fe(CN)6]). When the INS was immersed in the solution containing TBP, the cavities
in the film were partially occupied by TBP, which led to the decrease of current signal produced by
[Fe(CN)6]3´. As shown in Figure 8, the higher the concentration of TBP (from curve a to curve c), the
lower the current would be, which suggests that more and more binding sites in the film are occupied
by TBP molecules. Additionally, the experiment on the NINS immersed in 1.0 ˆ 10´5 mol¨ L´1 TBP
solutions was also carried out (curve d). For NINS, due to no imprinting molecule, even after elution,
its surface is still a layer of compact electrospinning film, which lacks cavity-containing binding sites.
[Fe(CN)6]3´ is difficult to infiltrate into the electrode surface through the compact film, and curve d is
relatively flat.
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3.4. The Detection Limit of the INS

The detection limit of the INS was evaluated by the measurements of AC, which were performed
in the 5 mL 5 mmol¨ L´1 K3[Fe(CN)6] solution, with 0.05 mL 1.0 ˆ 10´7 mol¨ L´1 TBP added at the
same time. As is shown in Figure 9, the current value of NINS is always lower than INS because the
[Fe(CN)6]3´ ion is blocked from diffusing to the electrode by the dense surface structure of NINS. The
current of K3[Fe(CN)6] gradually decreased with increasing TBP concentrations (Figure 9, curve a).
It appeared as a platform at every concentration stage and stability in ~30 s, which indicated that
the INS sensor has a short response time. When the imprinted electrode was immersed into the
mixture solution, template molecules could be absorbed because of the imprinting spatial similarity.
Therefore, it causes the variation of the K3[Fe(CN)6] peak current response. The relative change of
the peak current is linearly proportional to the TBP concentration in the range of 9.9 ˆ 10´10 mol¨ L´1

to 1.071 ˆ 10´8 mol¨ L´1 (shown in Figure 9B), with a correlation coefficient of 0.98944. The limit of
detection (LOD, LOD = 3 S/m, where S is standard deviation of current value, and m is sensitivity,
which is the slope of the linear equation.) was 6.29 ˆ 10´10 mol¨ L´1 (0.21 µg¨ L´1). The LOD of the
imprinted nanofiber-coated electrode is ca. 23 times smaller than that of the imprinted core-shell
nanoparticles one (4.98 µg¨ L´1) [35]. What is more, it is outperformed more than that of GC
(0.5 µg¨ L´1) [15]. According to the hygiene standard, the content of phenol in drinking water
is for 2 µg¨ L´1 or less, and the INS we proposed is desirable for the detection of trace amounts TBP in
environmental samples.
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Regeneration is one of the most important properties for the application of the imprinted 
sensor. Therefore, the sensor was immersed in ethanol by shaking for 3 h, and back to the initial 
state. DPV was applied in the solutions containing 5 mmol·L−1 K3[Fe(CN)6] and 5.0 × 10−6 mol·L−1 
TBP. The cycle was repeated using the above description. As shown in Figure 11, the current value 
of INS is much more than NINS, although the NINS show almost no change. The current value of 
INS changed, but not much for six trials, which indicates good regeneration performance. A small 
current change of INS is possible that some recognition cavities might be blocked after regeneration 
or can be destroyed after rewashing and, thus, they no longer matched the template molecule. 
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3.5. The Selectivity Performance of the INS

In order to investigate the selectivity of INS, besides TBP, some species, such as phenol and
4-methyl-phenol, were employed as interference for selectivity tests by AC with the same operation as
the test of the detection limit. As shown in Figure 10, with the addition of different substances, the
sensor for TBP is different from the other two interferences. The result showed that the recognition
sites of TBP were formed in the INS, which played an important role in the process of recognition.
The selective recognition is based on the interaction between the template and the imprinting sites.
The recognition sites formed in the polymerized film have the capability to distinguish target molecules
through their size, shape, and functional group distribution [42]. Moreover, the current value of TBP is
always lower than phenol or 4-methyl-phenol. TBP bound to the polymer film, occupied the binding
sites, and blocked the reduction of the ferricyanide species; therefore, much lower currents have been
observed as in the case of the K3[Fe(CN)6] solution.
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3.6. Regeneration and Stability

Regeneration is one of the most important properties for the application of the imprinted sensor.
Therefore, the sensor was immersed in ethanol by shaking for 3 h, and back to the initial state. DPV
was applied in the solutions containing 5 mmol¨ L´1 K3[Fe(CN)6] and 5.0 ˆ 10´6 mol¨ L´1 TBP. The
cycle was repeated using the above description. As shown in Figure 11, the current value of INS is
much more than NINS, although the NINS show almost no change. The current value of INS changed,
but not much for six trials, which indicates good regeneration performance. A small current change of
INS is possible that some recognition cavities might be blocked after regeneration or can be destroyed
after rewashing and, thus, they no longer matched the template molecule.
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Figure 11. The regeneration of the INS/NINS.

As in [41], when not in use, the sensor can be simply protected in the electrode plastic cap filled
with nitrogen, and stored at 4 ˝C in a refrigerator. The INS retained about 90% of its initial effect after
45 days of storage. The modified electrode exhibited good stability.

4. Conclusions

To determine TBP, a new approach for the fabrication of the TBP-MIP sensor was presented by
combining a molecular imprinting technique and electrospinning. The modified electrode exhibited a
low detection limit (0.21 µg¨ L´1), good recognition, and good regeneration performance. Compared
with chromatography, LOD obtained from the experiment is outperformed more than GC (0.5 µg¨ L´1).
In addition, the fabrication procedure is simple, rapid, and inexpensive. We believe that our strategy
may be instructive to the determination of other phenolic pollutants, which are insoluble in water.
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