Next Article in Journal
Demethylation of Wheat Straw Alkali Lignin for Application in Phenol Formaldehyde Adhesives
Next Article in Special Issue
A Facile Route to Synthesize Nanographene Reinforced PBO Composites Fiber via in Situ Polymerization
Previous Article in Journal
RAFT-Mediated Polymerization-Induced Self-Assembly of Poly(Acrylic Acid)-b-Poly(Hexafluorobutyl Acrylate): Effect of the pH on the Synthesis of Self-Stabilized Particles
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Polymers 2016, 8(6), 206; doi:10.3390/polym8060206

Applications of Tris(4-(thiophen-2-yl)phenyl)amine- and Dithienylpyrrole-based Conjugated Copolymers in High-Contrast Electrochromic Devices

Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
*
Author to whom correspondence should be addressed.
Academic Editor: Ping Xu
Received: 20 April 2016 / Revised: 18 May 2016 / Accepted: 19 May 2016 / Published: 27 May 2016
(This article belongs to the Special Issue Conjugated Polymers 2016)
View Full-Text   |   Download PDF [9132 KB, uploaded 27 May 2016]   |  

Abstract

Tris(4-(thiophen-2-yl)phenyl)amine- and dithienylpyrrole-based copolymers (P(TTPA-co-DIT) and P(TTPA-co-BDTA)) were electropolymerized on ITO electrode by applying constant potentials of 1.0, 1.1, and 1.2 V. Spectroelectrochemical investigations revealed that P(TTPA-co-DIT) film displayed more color changes than P(TTPA-co-BDTA) film. The P(TTPA-co-DIT) film is yellow in the neutral state, yellowish-green and green in the intermediate state, and blue (1.2 V) in highly oxidized state. The ∆Tmax of the P(TTPA-co-DIT) and P(TTPA-co-BDTA) films were measured as 60.3% at 1042 nm and 47.1% at 1096 nm, respectively, and the maximum coloration efficiency (η) of P(TTPA-co-DIT) and P(TTPA-co-BDTA) films were calculated to be 181.9 cm2·C1 at 1042 nm and 217.8 cm2·C1 at 1096 nm, respectively, in an ionic liquid solution. Dual type electrochromic devices (ECDs) consisting of P(TTPA-co-DIT) (or P(TTPA-co-BDTA)) anodic copolymer, ionic liquid-based electrolyte, and poly(3,4-(2,2-diethylpropylenedioxy)thiophene) (PProDOT-Et2) cathodic polymer were constructed. P(TTPA-co-BDTA)/PProDOT-Et2 ECD showed high ΔTmax (48.1%) and high coloration efficiency (649.4 cm2·C1) at 588 nm. Moreover, P(TTPA-co-DIT)/PProDOT-Et2 and P(TTPA-co-BDTA)/PProDOT-Et2 ECDs displayed satisfactory optical memory and long term switching stability. View Full-Text
Keywords: electrochemical polymerization; optical contrast; spectroelectrochemistry; coloration efficiency; electrochromic devices electrochemical polymerization; optical contrast; spectroelectrochemistry; coloration efficiency; electrochromic devices
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Wu, T.-Y.; Chung, H.-H. Applications of Tris(4-(thiophen-2-yl)phenyl)amine- and Dithienylpyrrole-based Conjugated Copolymers in High-Contrast Electrochromic Devices. Polymers 2016, 8, 206.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top