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Abstract: Poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)-amine) (P3TArH) was successfully
synthesized and coated on the surface of Fe3O4 magnetic nanoparticles (MNPs). The nanocomposites
were characterized by Fourier transform infra-red (FTIR), X-ray diffractometry (XRD),
Brunauer-Emmett-Teller (BET) surface area analysis, analyzer transmission electron microscopy
(TEM) and vibrating sample magnetometry (VSM). P3TArH-coated MNPs (MNP@P3TArH) showed
higher capabilities for the extraction of commonly-used phthalates and were optimized for the
magnetic-solid phase extraction (MSPE) of environmental samples. Separation and determination
of the extracted phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl
phthalate (DPP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), dicyclohexyl phthalate
(DCP), di-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DNOP), were conducted by a gas
chromatography-flame ionization detector (GC-FID). The best working conditions were as follows;
sample at pH 7, 30 min extraction time, ethyl acetate as the elution solvent, 500-µL elution solvent
volumes, 10 min desorption time, 10-mg adsorbent dosage, 20-mL sample loading volume and
15 g¨ L´1 concentration of NaCl. Under the optimized conditions, the analytical performances were
determined with a linear range of 0.1–50 µg¨ L´1 and a limit of detection at 0.08–0.468 µg¨ L´1 for
all of the analytes studied. The intra-day (n = 7) and inter-day (n = 3) relative standard deviations
(RSD%) of three replicates were each demonstrated in the range of 3.7–4.9 and 3.0–5.0, respectively.
The steadiness and reusability studies suggested that the MNP@P3TArH could be used up to five
cycles. The proposed method was executed for the analysis of real water samples, namely commercial
bottled mineral water and bottled fresh milk, whereby recoveries in the range of 68%–101% and
RSD% lower than 7.7 were attained.
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1. Introduction

Belonging to non-halogenated esters of phthalic acid, phthalates or phthalate esters are used as
plasticizers for nitrocellulose, since it was first recognized in 1880, replacing camphor [1]. Nowadays,
phthalates can be found in many different matrices in our environment and are widely utilized in
the PVC industries as a plasticizer, from floors, hoses, cables (building materials), toys and medical
appliances [2]. Other consumer-based products utilizing phthalates are as a component in inks,
adhesive materials, lacquers, sealing and packing materials, materials for treating surfaces, solvents
and fixing agents in fragrances, as well as additives in cosmetics [3–5]. They become emerging
pollutants and harmful to humans, especially children, since they are not chemically bound in plastics
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and could be leached out into the environment [4]. Thus, the usage of phthalates in the production of
toys, baby bottles and pacifiers is banned in many countries [6]. Exposure to phthalates over long-term
periods could result in health issues, for example potential carcinogenic effects or critical impact
on the hormonal systems, since they own lipophilic properties, which make them easily stored in
fatty tissues [7–10]. The higher molecular weight of phthalates, such as di(2-ethyl-hexyl) phthalate
(DEHP), di-n-butyl phthalate (DBP) and di-n-octyl phthalate (DNOP) often leads to serious health
illnesses and is alleged to be carcinogenic and lethal to liver and kidneys, as well as reproductive
organs [11,12]. In Malaysia, due to the awareness of the migration of phthalates from food packaging,
baby bottles and pacifiers, a regulation has been proposed, which in stated in Food Regulation
27(B) 1985, which regulated plastic materials, and articles shall be examined in agreement with
Malaysia Standard MS 2234: “Plastic Materials and Articles Intended to Come into Contact with Food”,
which clarified the specific migration limits as follows; 1.5 mg¨ kg´1 for di(2-ethyl-hexyl) phthalate
(DEHP), 0.3 mg¨ kg´1 for di-n-butyl phthalate (DBP), 30 mg¨ kg´1 for butyl benzyl phthalate (BBP)
and 9.0 mg¨ kg´1 for diisodecyl phthalate (DIDP) [13,14]. Recently, phthalates have been found in
polyethylene terephthalate (PET) bottles which may lead to many serious consequences, since the
PET bottles are widely used as containers for mineral water, milk and soft drinks. The existence of
phthalates in PET bottles may be explained through several possibilities: the type of raw materials,
the chemicals or processes involved in bottle manufacturing, the practice of the use of PET bottles,
as well as cross contamination in the bottling plant and cap resins [15–20]. Studies conducted by
Plotan et al. and Wagner et al. reported that in most of the inspected PET-bottled water samples,
endocrine disruptor activity was found [21,22].

Given the unlimited toxic effects arising from these materials, much research has been conducted
to find a solution to eliminate its contamination of the environment [23,24]. However, the determination
of phthalates in environmental samples is challenging due to their trace amounts and the intervention of
an intricate matrix [25]. Therefore, a sample preparation step for the extraction and preconcentration of
the analytes is required [26]. Solid phase extraction (SPE) is one of the established and popular methods
for sample enrichment prior to analysis using high performance liquid chromatography (HPLC) and
gas chromatography (GC) [27–29]. The advantages of SPE over liquid-liquid extraction (LLE) are
its simplicity, rapidness, that the adsorbent is recyclable, the steadiness, low cost, high enrichment
factors and low usage of organic solvents [30]. Numerous types of sorbents were synthesized and used
for the determination of plasticizers, for example an octadecyl packed column (C18), α-cyclodextrin
functionalized chitosan, poly(styrene–divinylbenzene) polymers and zeolitic imidazolate [31–34].
The selection of adsorbent plays an important role in SPE, since it can determine the efficiency,
anti-interference ability and selectivity of the method for the targeted analytes [35].

Magnetic nanoparticles (MNPs), especially iron oxides, have become one of the most useful
materials in numerous applications since their discovery, for example magnetic fluids, catalysis,
magnetic resonance imaging and environmental disciplines [36–38]. In the application for the removal
of pollutants from the environment, the nano-sized particles provide a high surface area to volume ratio,
which enhances adsorption capacity and efficiency [39,40]. Moreover, the distinct feature of MNPs is
their rapid response to an external magnetic field. This special property, called superparamagnetism,
does not preserve magnetism after the elimination of an external field. Thus, it helps to isolate
the adsorbents from an aqueous solution in a complex matrix without the need for centrifugation
or filtration and can be referred to as magnetic solid-phase extraction (MSPE) [41,42]. Due to the
simplicity of the technique, much research has been published on utilizing Fe3O4 as the adsorbent for
MSPE in water samples, for example determining antimicrobial residue, heavy metals, non-steroidal
anti-inflammatory drugs and pesticides [43–46].

However, the smaller the particle size, the more it becomes unstable, which initiates particle
accumulation. Moreover, metal oxide may be oxidize easily and reduce its magnetism properties.
Therefore, an appropriate surface functionalization can be done, which can be tailored to the specific
targeted analyte. The strategy to protect the magnetic core can be either by organic or inorganic
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compounds, for example Al2O3, SiO2, surfactants, alkyl carboxylates and polymeric coatings [47–50].
Recently, research articles reported on the utilization of conducting polymers as a coating agent of
the MNPs [51–53]. These nanocomposites have multifunctional and diverse properties, which may
enhance the surface functionalization and protect the magnetic core from environmental agitation.
Moreover, it may reduce aggregation and disperse the nanoparticles’ core shell distribution within
the suspension media [54]. Herein, we prepared a modified polythiophene containing an additional
aromatic ring and aliphatic sides on the surface of Fe3O4 magnetic nanoparticles (MNPs) to investigate
its performance as a magnetic solid-phase extraction of phthalates, as shown in Figure 1. Thus, in this
work, the sorbent was further tested for real aqueous samples, including commercial mineral water
and commercial fresh milk kept in a PET bottle.
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Figure 1. Phthalates used in this study.

2. Materials and Methods

2.1. Standard, Reagents and Chemicals

Analytical grade ferric chloride, ferrous chloride, ammonia solution (25 wt %), thiophene,
4-hydroxybenzaldehyde, acetonitrile, potassium permanganate, 4-aminophenol, 3-bromothiophene,
1,6-dibromohexane, N-bromosuccinimide, acetic acid, sodium hydrogen bicarbonate, potassium
iodide, potassium carbonate, tetrahydrofuran, methanol, hydrochloric acid, acetone and ethyl acetate
were purchased from Merck (Darmstadt, Germany). Acetone was procured from Fisher Scientific
(Loughborough, UK). Thiophene carboxaldehyde, polyvinyl alcohol and n-butyllithium (2.0 M in
cyclohexane) were obtained from Sigma Aldrich (Milwaukee, WI, USA). Magnesium sulfate anhydrous,
ethanol denatured and hexane were received from J. Kollins (Parkwood, Australia), while dimethyl
sulfoxide-d6 (DMSO-d6) and phthalate esters were purchased from Acros Organics (Geel, Belgium).
Ultrapure water was prepared by a model Aqua Max-Ultra ultra-pure water purification system
(Zef Scientific Inc., San Diego, CA, USA). Stock solutions of 1000 mg¨ L´1 of standards were prepared
by dissolving appropriate amounts of compounds in methanol, which remain stable for three months
if stored in a refrigerator at 4 ˝C. Working standard solutions were prepared daily by diluting the stock
standard solution to the required concentrations.
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2.2. Instruments

The Fourier transform infrared (FTIR) spectra were recorded on a Perkin–Elmer FTIR between
4000 and 400 cm´1, with a resolution of 2 cm´1. Structural elucidation was determined using 1H NMR,
JEOL 400 MHz. The pore diameter and surface area of Brunauer-Emmett-Teller (BET) analysis were
determined from low-temperature nitrogen adsorption isotherms at 77.40 K using a Quantachrome
Autosorb Automated Gas Sorption System (Quantachrome Instruments, Boynton Beach, FL, USA).
X-ray powder diffraction (XRD) analysis was conducted with Panalytical model Empyrean (Panalytical,
Almelo, Netherlands) at 40 kV and 35 mA using Cu Kα radiation (λ = 1.54059 Å). Morphological
analyses of the synthesized products were conducted using transmission electron microscopy (TEM)
analysis using an FEI Tecnai G2 spectra microscope (FEI, Hillsboro, OR, USA). The magnetic property
was tested using a vibration sample magnetometer (VSM) Model 9600 (Quantum Design Inc.,
San Diego, CA, USA). Magnetization measurements were carried out in an external field of up
to 15 kOe at room temperature.

Separation and detection of target analytes were performed by a Shimadzu 2010 gas
chromatograph (Shimadzu, Kyoto, Japan) equipped with a split/splitless injector and a flame
ionization detector (FID). A DB-5 Agilent fused-silica capillary column (Agilent, Santa Clara,
CA, USA) (30 m ˆ 0.32 mm i.d. ˆ 0.25 µm film thickness) was applied for separation of analytes.
Helium (with 99.999% purity) was used as the carrier gas at a constant flow rate of 4 mL¨ min´1.
Chromatographic conditions were controlled as described; the temperatures of the injector and detector
were set at 260 and 280 ˝C, respectively. The injection port was operated at splitless mode. Oven
temperature was held at 150 ˝C for 1 min and increased to 280 ˝C at 8 ˝C¨ min´1 for 3 min.

2.3. Synthesis of Adsorbents

2.3.1. Synthesis of (Phenyl-(4-(6-Thiophen-3-yl-Hexyloxy)-Benzylidene)-Amine) Monomer (3) (3TArH)

Synthesis of (3) consists of two steps (Scheme 1). The first step is to prepare the intermediates,
which were 3-(6-bromohexyl)thiophene (1) and 4-((phenylimino)methyl)phenol (2). The second step
was combining the two intermediates by the Williamson etherification method [55]. FT-IR spectrums
of synthesized compounds were demonstrated in (Figure S1, Supplementary Material)

‚ 3-(6-bromohexyl)thiophene (1): 3-bromothiophene (2 mL, 21.3 mmol) was added to the dry,
degassed hexane (50 mL). The reaction started by cooling the flask at ´78 ˝C. n-Butyllithium
in hexane (10.16 mL) was poured into the reaction flask and stirred for 10 min. THF (5 mL)
was injected drop-wise for 15 min and continuously stirred for 1 h, which produced a white
precipitate and clear supernatant liquid. The supernatant liquid was removed and changed with
hexane/THF (10:1 v/v, 55 mL). 1,6-dibromohexanes (32.7 mL, 213 mmol) was added and stirred
for 2 h. The reaction was stopped with the addition of saturated NaHCO3 (50 mL) and diluted
diethyl (100 mL). The organic layer was washed with water (100 mL), brine (100 mL), dried with
magnesium sulfate anhydrous, treated with decolorizing charcoal, filtered and concentrated
in a vacuum to give an oil with an orange color. Excess 1,6-dibromohexane was removed
via vacuum distillation (0.04 torr, 55 ˝C) and purified by silica gel column chromatography
(ethyl acetate/hexane, 1/99–5/95 v/v) to obtain an oily product. Yield: 52%. 1H NMR (Figure S2,
Supplementary Material) (400 MHz, DMSO-D6) δ (ppm): 7.42–6.97, (Ha, b, c), 3.51 (Hi), 2.57 (Hd),
1.6–1.32 (He, f, g, h). FTIR (cm´1): 3062.45 (C–H aromatic), 2983 and 2912 (C–H (sp3)), 1589.22 and
1423.89 (C=C aromatic), 651.02 (C–Br).

‚ 4-((Phenylimino)methyl)phenol (2): 4-hydroxybenzaldehyde (122 mg, 10 mmol) was added to
(112 mg, 10 mmol) 2-aminobenzenethiol in 50 mL ethanol. The mixture was refluxed for 3 h.
A yellow crystal was obtained after recrystallization with ethanol. Yield: 95%. 1H NMR (Figure S3,
Supplementary Material) (400 MHz, DMSO-D6) δ (ppm): 10.13 (Ha), 8.46 (Hd), 7.80–6.89 (Hb, c, f).
FTIR (cm´1): 3413.56 (O–H), 3100.34 (C–H aromatic), 1623.05 (C=N) 1589.45 and 1454.65.
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‚ Phenyl-(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)-amine) (3): A mixture of 4-((phenylimino)
methyl)phenol (1.97 g, 10 mmol), anhydrous potassium carbonate (4.14 g, 30 mmol) and
18-Crown-6 (16.6 mg, 0.1 mmol) was stirred in dried acetone (50 mL) at room temperature.
Then, compound 3-(6-bromohexylthiophene) (0.81 g, 2 mmol) was added. The reaction mixture
was refluxed under nitrogen with stirring for 24 h. After cooling to room temperature, the reaction
mixture was poured into the saturated solution of potassium carbonate. The organic phase was
collected and washed by water (3 ˆ 100 mL), dried by anhydrous sodium sulfate and filtered.
The solvent was removed by reduced pressure, and the residue was dried by vacuum to produce
the crude product. Purification was accomplished by column chromatography on silica with
25% hexane in chloroform to afford the monomer [56]. Yield: 67.6%. 1H NMR (Figure S4,
Supplementary Material) (400 MHz, DMSO-D6) δ (ppm): 8.5 (Hl), 7.8 (Hk), 7.4–6.9 (Hj, m, n, o),
6.6–6.9 (Ha, b, c), 3.97 (Hi), 2.67 (Hd), 1.74–1.41 (He, f, g, h). FTIR (cm´1): 2938.38, 1617, 1499.9,
1426.71, 1239.71, 1018.26.
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2.3.2. Polymerization of 3TArH and Thiophene Monomers on the Surface of MNPs

The preparation of MNP@PTh and MNP@P3TArH NPs involves two steps. Briefly, Fe3O4 has
been prepared by the co-precipitation method [57]. FeCl3¨ 6H2O (8.48 g, 30 mmol) and FeCl2¨ 4H2O
(2.25 g, 11.3 mmol) were dissolved in 400 mL deionized water under nitrogen atmosphere via vigorous
stirring (1000 rpm) at 80 ˝C. Then, a 20-mL ammonia solution 25% (w/w) was added to the solution.
The color of the bulk solution immediately changed from orange to black. After stirring the mixture
for 5 min, the Fe3O4 NP precipitates were obtained via magnetic decantation and washed three times
with deionized water. Finally, the Fe3O4 NPs were dried in a vacuum oven at 70 ˝C for 12 h.

The surface of Fe3O4 NPs was modified by being coated with the newly-designed modified
thiophene monomers via oxidation polymerization with the generation of ferric cations on the Fe3O4

NPs’ surface [54]. Fe3O4 NPs (1 mmol, 0.235 g) were discrete in polyvinyl alcohol (PVA) aqueous
solution (0.001 M). Later, 3TArH (3.64 g, 10 mmol) was added into the mixed solution with vigorous
stirring. Subsequently, 30 mL of HCl (0.5 M) solution were introduced into the mixture. Then,
the products obtained were dried in a vacuum oven at 70 ˝C for 12 h. Experiments were repeated
using freshly-distilled thiophene monomer (10 mmol, 0.84 g).

2.4. Solid Phase Extraction Optimization and Reusability Studies

Factors affecting the extraction efficiency of the proposed method, such as type of adsorbents, pH,
extraction time, sample volume, elution solvent, elution solvent volume, desorption time, adsorbent
dosage and effect of NaCl, were studied. All of the experiments were performed in triplicate, and the
means of the results were used in plotting the optimization curves.

The reusability of the adsorbent was determined with optimized conditions for up to five cycles.
The adsorbent was recycled after being washed with methanol and water and dried in vacuum at
70 ˝C for 12 h.
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2.5. Analytical Performances and Real Sample Analysis

In order to evaluate the figures of merit of the proposed technique, linearity, the limit of detection
(LOD), the limit of quantitation (LOQ) and repeatability were investigated under optimized conditions.
The linearity was analyzed through the standard curves ranging from 0.1–50 µg¨ L´1 by diluting
appropriate amounts of phthalates stock solution (1000 mg¨ L´1) with methanol and prepared in
triplicate. The calibration curves were prepared using 10 spiking levels of analytes. For each level,
three replicate experiments were performed.

To evaluate the reliability of the proposed method for the extraction of the plasticizers from real
samples, two real samples were selected, spiked and subjected to the MSPE-GC-FID analysis. The two
real samples were commercial bottled mineral water and bottled fresh milk.

3. Results and Discussion

3.1. Characterization of the Samples

Figure 2 shows several additional peaks in the spectrum of nanocomposites, proportional to
the MNP spectrum, which might be due to the surface functionalization. The strong absorption
peaks in the range of ~3400 cm´1 for MNP and all nanocomposites indicated the presence of OH
vibration, while the peak at 530–632 cm´1 corresponds to Fe–O stretching modes [58]. The C–H
aromatic stretching peak was observed for all nanocomposites, which falls at 3000 cm´1 for MNP@PTh
and 2980 cm´1 for MNP@P3TArH. C–H sp3 stretching (hexyl aliphatic side) occurred at 2934 cm´1 for
MNP@P3TArH. Schiff base peaks (C=N) were observed at 1674 and 1685 cm´1 for MNP@P3TArH [59].
C=C aromatic symmetric and asymmetric absorption bands demonstrated in the range of 1573–1461
cm´1 occurred for both nanocomposites. Two absorption band peaks at 1250 and 1072 cm´1 indicated
the presence of C–O in MNP@P3TArH. Hence, the FTIR study clearly revealed that the MNPs prepared
have been successfully functionalized.
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Figure 2. FTIR of: (i) MNP; (ii) MNP@PTh; (iii) MNP@P3TArH.

Figure 3 displayed the characteristic peaks observed for the MNPs and all nanocomposites.
The peaks of the nanocomposites were slightly wider than unmodified MNP. This may be due to
the presence of amorphous and polymeric materials, which coat the surfaces of the MNPs [60].
The characteristic peaks of all nanocomposites were observed at 2θ = 30˝, 35.7˝, 43˝, 53.4˝, 57.0˝ and
62.6˝, which are marked by their respective indices ((220), (311), (400), (422), (511) and (440)) [61].
This showed that the surface functionalization does not change the crystalline phase of MNPs [62].
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The BET surface area is measured using the multipoint BET method, within the relative pressure
(P/P0) range of 0.05–1. As described in (Figure S5, Supplementary Material), the MNPs and all
nanocomposites display an H3-type hysteresis loop, based on the Brunauer-Deming-Deming-Teller
(BDDT) classification, demonstrating the existence of mesopores with pore diameters between 2 and
50 nm [63]. The pore size and BET surface area of MNPs and nanocomposites are tabulated in Table 1.
The reduction in the pore size of nanocomposites is due to the addition of polymers on the surface.
Meanwhile, escalation in the surface area could be because of the dispersity of particles that results
from the enhancement of the spaces between them [64,65].

Table 1. BET pore size and surface area.

Sample Pore size (nm) Surface area (m2¨ g´1)

MNP 20.2 37.37
MNP@PTh 18.3 95.6

MNP@P3TArH 12.09 103.80

Morphological analysis of the synthesized products was performed using TEM techniques.
As shown in Figure 4, TEM images of all materials demonstrated a sphere-shaped property. From
the images, we could clearly observe the good dispersion of the functionalized nanoparticles
(MNP@PTArH) in the TEM image. For instance, before polymerization, magnetic nanoparticles were
highly agglomerated with each other. After polymerization of MNP with 3TArH, they showed lower
agglomeration, and the nanocomposite became well dispersed. The dispersity of the nanocomposite
influenced its surface area, as evidence by the BET result of MNP@P3TArH, which is higher compared
to MNP@PTh and MNP, as tabulated in Table 1.
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The magnetic properties of the samples were recorded at room temperature with an external field
of ˘15 kOe. Important magnetic variables, such as saturation magnetization (MS), were evaluated.
The maximum saturation (MS) of MNPs occurred at 69.2 emu¨ g´1, respectively. After surface
functionalization, the magnetization of MNP@PTh and MNP@P3TArH was reduced to 65.3 and
61.5 emu¨ g´1 respectively. The magnetization decrease signified the presence of a dead magnetic layer
on the surface of the nanocomposites [58]. Although the magnetization has declined, the value is still
within the acceptable range, which suggests that it can be applied as the MSPE sorbent [66].

3.2. Solid Phase Extraction Optimization and Reusability Studies

3.2.1. Type of Adsorbent

Hypothetically, the adsorption of phthalates is based on the hydrophobicity and π–π
dispersion [67]. To prove that the structure architecture influences the adsorption studies of phthalates,
three different types of sorbents, which are naked magnetic nanoparticles (MNP), MNP-PTh and
MNP@P3TArH, were tested. As seen in Figure 5, MNP resulted in an insignificant peak area for
all of the analytes studied. After the introduction of polythiophene derivatives on the surface
of MNP, the peak area of phthalates increased. The presence of aliphatic and aromatic groups in
the MNP@P3TArH enhances the dispersion of phthalates, which enhances the π–π dispersion and
hydrophobic interaction. As evidenced, butyl benzyl phthalate (BBP) is more prone to the adsorbent
with more aromatic sides, as in the MNP@PT3ArH, compared to the other adsorbents. Besides, the high
surface area of MNP@P3TArH also contributes to the increase of extraction performance. Since the
MNP@P3TArH has demonstrated the high peak area for all analytes studied, it was selected for further
MSPE optimization.
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Figure 5. Comparison of MNP@P3TArH with naked MNP and MNP@PTh for the extraction of
targeted phthalates.

3.2.2. Sample pH

To study the influence of the surface charge of adsorbent/adsorbate in the extraction process,
experiments were performed under different pH conditions, ranging from pH 2–9. As shown from
Figure 6a, the peak areas for phthalates increase when the pH rise from 2–7, but decline later from 8–9.
At low pH, C=N, alkoxy in P3TArH was protonated, making the adsorbent surface positively charged.
At pH < 7, phthalates hydrolyze to phthalic acid, thus making the carbonyl group nucleophilic, reacting
with hydrogen ions in the aqueous solution, producing positive charges. Due to both the absorbate and
adsorbent acquiring positive charges, the electrostatic repulsion occurred and retarded the adsorption
performance [68]. At basic conditions, the surface adsorbent became negatively charged, while the
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adsorbate hydrolyzes to phthalate anions, reducing the extraction efficiency [69]. Thus, in neutral
pH, the extraction increased due to the absence of electrostatic repulsion that disturbed the extraction
capability. As the optimum performance was demonstrated at pH 7, this pH was selected for all of
the experiments.
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Figure 6. (a) Effect of sample pH; (b) effect of extraction time for the extraction of targeted phthalates.

3.2.3. Extraction Time

It has been understood that prolonged extraction time might increase the recovery of analytes.
Thus, the influence of extraction time on the recoveries of the analyte has been investigated.
As demonstrated in Figure 6b, the peak area increased rapidly for the first 20 min, since more adsorption
sites were available and phthalates could easily interact with these sites. After 30 min, the peak area
was almost persistent; therefore, 30 min was sufficient to extract the maximum of the target analytes.
In order to ensure that the extraction time was satisfactory, further experiments were carried out until
90 min, and they were found to be constant.

3.2.4. Desorption Studies

The elution solvent is one of the crucial parameters to be considered. In order to determine
the best elution solvent, the solvent must be able to elute all of the analytes that were retained from
the adsorbent in a small volume [70]. Six eluting solvents with dissimilar polarities, namely hexane,
toluene, diethyl ether, acetonitrile, methanol and ethyl acetate, were studied.

As evidenced in Figure 7a, polar solvents (acetonitrile, methanol and ethyl acetate) were the best
solvents, with high peak areas compared to non-polar solvents (hexane, toluene and diethyl ether),
since phthalates contain a polar carbonyl group [71]. Among the polar solvents, ethyl acetate showed
high solvent strength, since it gave the maximum peak area for the phthalates studied and was thus
selected to be the eluent.
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Figure 7. Desorption studies for the extraction of targeted phthalates: (a) effect of eluent type;
(b) volume of organic eluent; (c) desorption time.

The volume of ethyl acetate was tested from 0.1 mL–2.5 mL. As observed in Figure 7b, the peak
area increased from 0.1 mL and remained constant after 0.5 mL. This showed that 0.5 mL may
accommodate the maximum phthalates extracted from the sorbent.

Further, desorption time was optimized to investigate the best time taken for the analytes to
desorb from the sorbent ranging from 0–12 min. As revealed in Figure 7c, analytes were desorbed
rapidly in the first 4 min and started to become linear after 10 min. This indicated that 10 min of time
are sufficient to desorb back all of the analytes from the adsorbent. As for the case of BBP, desorption
was found to be slower than other phthalates. This could be due to the presence of an additional
aromatic ring in BBP, which makes it less polar to the eluent (ethyl acetate). After 6 min of desorption,
most of the phthalates had reached near to equilibrium, whereas BBP was desorbed steeply after 6 min
until it reached equilibrium at 10 min.

3.2.5. Mass of Adsorbent

Investigation of the adsorbent amount was executed in the range of 1–25 mg. As exposed
in Figure 8a, the extraction peak area increased up to 10 mg, but decreased later with a further
increase of the adsorbent. Increasing the adsorbent amount provides more active sites for the
adsorption of target analytes. However, a high amount of adsorbent at a specific volume has weakened
elution efficiency [30]. It is shown that this adsorbent only required a small amount of adsorbent to
remove phthalates efficiently, which added the advantage of economic value. Therefore, for further
experiments, the adsorbent amount of 10 mg was applied.
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Figure 8. (a) Effect of adsorbent dosage; (b) effect of sample volume; (c) effect of NaCl concentration,
for the extraction of targeted phthalates.

3.2.6. Sample Loading Volume

The effect of sample volume was investigated by the extraction of the phthalates ranging from
5–100 mL and shown in Figure 8b. Each sample was spiked with 10 mg¨ L´1 analytes and 10 mg
adsorbent. As can be seen, peak area increased until 20 mL and further decreased till 100 mL. A 20-mL
volume of sample demonstrated the most efficient extraction. An increase in sample volume could
lead to a high distribution of adsorbent to the aqueous phase, which lowered the amount of adsorbent
in the volume unit sample solution, and the extraction became less effective [72]. Thus, a 20-mL sample
volume was chosen as the optimized sample volume.

3.2.7. Effect of NaCl

Indeed, the addition of salt in the sample matrices effects the extraction efficiency. Thus, studies
on the concentration of NaCl ranging from 0–25 g¨ L´1 were conducted. As observed in Figure 8c, peak
areas of the studied analytes increased from 0–15 g¨ L´1, but decreased later from 20–25 g¨ L´1. This can
be due to the addition of salt, which increases the ionic strength and eventually decreases the solubility
of the analytes in the media. However, as the concentration of salt increases, the diffusion rate of the
analytes may reduce, since the solvation cage of the analytes is disturbed [51]. Since a 30 g¨ L´1 NaCl
concentration gave a high peak area for all analytes studied, it was chosen for subsequent experiments.

3.2.8. Reusability Studies

To investigate the probability of reusing and regenerating the sorbent, a reusability test was
designed and implemented for Fe3O4@P3TArH, which was recycled after being washed with methanol
and water and was dried in a vacuum at 70 ˝C for 12 h. From Figure 9, it could be surmised that after
five repeated experiments, the adsorbent was still active. This may be due to some of the particles
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in the adsorbent accumulating due to the heat treatment after several cycles, which decreases the
surface area.
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Figure 9. Reusability cycles.

3.3. Analytical Performances and Real Sample Analysis

The optimized method obtained for the extraction of phthalates using MNP@P3TARH involved
the sample at pH 7, 30 min extraction time, ethyl acetate as the elution solvent, 500-µL elution solvent
volumes, 10 min desorption time, 10 mg adsorbent dosage, 20-mL sample loading volume and a
15 g¨ L´1 concentration of NaCl. In order to assess the validation of the proposed method, linearity,
the limit of detection, the limit of quantitation and repeatability were performed under optimum
conditions. Analytical performance figures of merits are tabulated in Table 2.

Table 2. MNP@P3TArH (magnetic-solid phase extraction (MSPE)) analytical figures of merit.

Analytes R2 Linear range
(µg¨ L´1)

LOD
(µg¨ L´1)

LOQ
(µg¨ L´1)

RSD (%) Interday
n = 3

RSD (%) Intraday
n = 7

DMP 0.992 0.5–50 0.462 1.539 3.4 4.8
DEP 0.992 0.5–50 0.468 1.562 5.0 4.3
DPP 0.997 0.5–50 0.286 0.954 4.6 3.7
DBP 0.998 0.1–50 0.063 0.213 4.5 4.5
BBP 0.996 0.1–50 0.080 0.268 4.8 4.3
DCP 0.993 0.5–50 0.332 1.106 4.7 4.0

DEHP 0.997 0.1–50 0.054 0.182 3.0 4.0
DNOP 0.997 0.1–50 0.073 0.244 3.6 4.9

Calibration curves obtained for the studied phthalates were linear over the range of 0.1–50 µg¨ L´1

with R2 more than 0.99. As per the U.S. EPA standard, the screening of phthalates in drinking water
must be done at a concentration above 0.6 µg¨ L´1 [4]. However, the LOD of our method lies within
the range of 0.080–0.468, indicating the suitability of this method as an efficient phthalate detector.

Repeatability studies were conducted for inter-day (three consecutives replicates for three days)
and intra-day (seven consecutives replicates on the same day). The results were expressed as relative
standard deviations (RSD%). This method demonstrated good precision, since the RSD (%) values
were in the range of 3%–5% [73]. Comparative studies on the analytical performance between the
proposed methods with other developed methods are shown in Table 3. Obviously, the extraction of
phthalates using MNP@P3TArH provides sensitivity and repeatability.
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Table 3. Comparatives study of the proposed method with other MSPE adsorbents for the extraction
of phthalates.

Analyte Method LOD
(µg¨ L´1)

LDR
(µg¨ L´1) RSD (%) Reference

DBP, DEHP, DOA MNP@PTh-GC-FID 0.2–0.4 0.4–100 4–12.3 [72]
DPP, DBP, DCP, DNOP MNP@Chitosan-C18-HPLC-UV 0.012–0.037 0.001–0.01 2.1–6.8 [73]

DBP, DEHP MNP@Zeolite-GC-FID 2.80–3.2 10–1200 10%–13% [74]
DMP, DEP, DBP, BBP, DNOP MNP@ZIF-8-HPLC 0.08–0.24 1–100 <5.5 [75]
DMP, DPP, DEP, DBP, BBP,

DCP, DEHP, DNOP MNP@P3TArH- GC-FID 0.05–0.09 0.1–50 3.0–5.0 This study

To endorse the reliability of the method using MNP@P3TArH, it was applied to determine
phthalates in the water from the mineral water bottle stored at room temperature and commercial
fresh milk. Figure 10 shows the chromatogram of commercial fresh milk unspiked and spiked with
phthalates. None of the targeted phthalates were found in the water samples under the optimized
condition described. To evaluate the matrix effect, all of the samples were spiked with 50 µg¨ L´1 of
the phthalates studied. Recoveries and RSD (%) for all of the water samples were determined and
are shown in Table 4. From the optimization procedures until the real sample analyses, DMP, DEP
and DPP demonstrated lower recoveries; this may be due to the lower molecular weight of phthalates
being more prone to aqueous solution than to the adsorbent [76]. From the chromatogram of mineral
bottle stored at room temperature as shown in (Figure S6, Supplementary Material), the recoveries
obtained for water in the mineral bottle demonstrated higher values compared to the recovery for the
milk sample. This might be caused by the matrix effect that holds the analyte in the milk sample to be
higher compared to the water sample. RSD (%) values were found to be in the range of 1.3%–5.8%,
which indicated a precise method.
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Table 4. Analysis of analytes in the real samples.

Analyte MNP@P3TArH MSPE (˘RSD%, n = 3)

Mineral water Commercial fresh milk

DMP 85(5.8) 68(5.0)
DEP 85 (4.9) 67(3.0)
DPP 88(1.3) 72(7.7)
DBP 95(2.4) 85(3.3)
BBP 93(3.0) 82(3.8)
DCP 90(4.7) 77(5.8)

DEHP 99(1.3) 89(4.5)
DNOP 101(4.2) 91(3.3)
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4. Conclusions

MNP@P3TArH has been successfully synthesized, characterized and utilized as a sorbent for the
analysis of GC-FID in the determination of selected phthalates. The optimized conditions of MSPE
were carefully selected as follows: sample at pH 7, 30 min extraction time, ethyl acetate as the elution
solvent, 500-µL elution solvent volume, 10 min desorption time, 10 mg adsorbent dosage, 20-mL
sample loading volume and a 15 g¨ L´1 concentration of NaCl. The steadiness and reusability studies
suggested that the MNP@P3TArH could be used up to five cycles without significantly impacting its
extraction capacity. The adsorbent covers a wide range of phthalates with a dynamic linear range of
0.1–50 µg¨ L´1 and a limit of detection at 0.08–0.468 µg¨ L´1. The presence of new interfaces (π–π and
hydrophobic interactions) among the sorbent and target analytes increased the adsorption capability.
The application of MNP@P3TArH as the MSPE sorbent was successfully executed by the analysis of
phthalate esters in the mineral water and commercial fresh milk.

Supplementary Materials: Supplementary Materials can be found at www.mdpi.com/2073-4360/8/5/117/s1.
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